EMBEDDED SECURITY SYSTEMS 2015

Mirostaw Kutylowski

&grades: 40% lecture, 60% lab
exam, no tests during the course, exam in English unless...
short problems, skills examined not knowledge

lower bound: 40% 3, 50% 3.5, 60% 4, 70 % 4.5 80% 5.0

Objectives

presentation of architecture, limitations and functionalities of embedded systems used in security
area C2 developing programming skills concerning cryptographic smart cards and FPGA

1. smart cards ~8 hours
telecommunication systems ~2 hours
HSM, TPM, remote attestation ~4 hours
FPGA =~4

sensor systems /2 hours

RFID tags ~4 hours

A B

CUDA and parallel programming ~4 hours

1. SMART CARDS

cards of no-smart solutions:

e embossed - credit cards: reading does not require electricity, manipulation more difficult
then with magnetic strip

e magnetic: ~1000 bits, 3 tracks, track 1: 79 6bit chars, track 2: 40 4bit chars, track 3: 107
4-bit chars, limited density (movement in reader against the head), standard data, track 3

for read-write, no physical protection, cheap readers, accidental erasure by a nearby magnet,
horror as ATM cards

smart cards: classification

e memory cards (with security logic and without)

usually memory: non-volatile EEPROM, serial communication, control logic: where you can
write. Cheap. E.g. prepayed telephone cards

e processor: with coprocessor or without (as bad as: RSA in 20 minutes)
e contact or wireless

e multimegabyte



Contactless cards:
e energy: inductive (low!)
e small range (typicaly 10 cm)
e a reader may activate it from distance
e response with low energy, recognizable from a short distance only
e memory: kilobytes
e well sealed against corrosion
e main parts:
e antenna (most area of the card)

e electronic part: modulation, demodulation, clock generator, voltage regulation, reset
generation

e interface between RF interface and memory chip
e access logic
e application data: EEPROM, ROM

processor cards:
I/O0 —— CPU  — flash memory
RAM
ROM

NPU (numerical processing unit)

contacts:

e 8 fields, normally 6 used (2 for future applications), places for contacts strictly determined
in standard

e ground (GND), voltage (Vcc) , I/0, clock (CLK), CTRL, sometimes: Single Wire Protocol
(SWP), USB

e casy to destroy
e corrosion, mechanical scratches, not for intensive use
security tokens:

e type 1: USB tokens — contact interface like in USB, insert into a port after breaking out of
a card

e type 2: small display (eg. 4 digits). input also possible: e.g. a card with 2 buttons (each one
side of the card), battery inside



optical:
e writing technique - like CD (linear and not circular)

e area designated field according to standards, may leave place for contact interface of a chip
and magnetic strip, less place for graphical part on the card

e megabytes (~6MB storage)
e redundancy, therefore not easy to destroy information
e usage: e.g. border control cards (Mexico-USA)

Physical properties:

standard format: 85.6x54 mm (ID-1), other formats for SIM cards (in larger ID-1 cards with
stamping),

parameters:
e mechanical robustness (card and contacts)
e temperature resistance
e surfice
e electrostatic discharge
e clectromagnetic susceptibility
e ultraviolet radiation

e X-ray radiation

Material: trade-off with different properties

PVC: polivinyl chloride, credit cards, cheap, problems with low and high temperatures, injection
molding impossible, lifetime 2 years, cost factor: 1

ABS: mobile, termally stable up to 100 C, laser engraving poor, lifetime 3 years, cost factor: 2

PC: polycarbonate, ID cards, durable, 160 C, problems with hot stamping, lifetime 5 years, cost
factor: 7, low scratch resistance,

PET: health cards, mechanical: very good resistance, lifetime 3 years, cost factor: 2.5

Graphical security means:

e Guilloche patterns - fine lines on the surface under the outer transparent foil, in case of any
manipulation the pattern destoryed. Technique used on bank notes

e colored signature field - printed paper strip glued to the surface

e microtext - look like simple lines but something printed — used on bank notes, defence
against photocopying, readable only under a loupe

e ultraviolet ink



barcodes (one and two dimensional), two dimensional PDF 417 can encode up to 1000 bytes,
error correction codes so that up to 25% of the surface can be damaged (dirty)

hologram - few companies in the world, cheap, holograms are embossed holograms, holo-
grams reflected in diffuse daylight (some holograms require laser light), permanently bonded
to the surface microstructure,

kinegram - as holograms, show different image from different angles.

MLI: (multiple laser image) - small lenses, some are blackend by the laser. Looks like a
hologram but can contain personalized information (holograms are always the same)

embossing - like in credit cards (the characters are pressed with a considerable force). Rather
old style...

laser engraving (surface or inside, uder the coat) — equipment fairly expensive, used to
personalize cards. However, it is slow (major slow down for production of ID cards). However
- a professional forger can make corrections ...

scratch field — nice for card delivery. The character printed under the coat are not readable
even with ultraviolet, infrared light etc

thermochrome (TC) display: not a real display, but can be reprinted with a special reader.
heating a point to 120°C' makes a black dot. Heating the whole strip makes it almost
transparent again

MM (modulated feature) — hidden MM box, invisible, contains control digits for the
contents of the magnetic strip. Used by POS and ATM terminals. Control digits computed
with MM algorithm

Chip modules:

the chip too fragile and too thick to be laminated on the surface. It is inserted inside

electrical connections are the problem, automatic bonding of the gold wires to the back of
contacts with ultrasonic welding

Chip-on flex modules, stages of production:
e tape with empty modules
e gluing the dice into modules
e Dbonding the dice
e encapsulating the dice

lead-frame: chip produced together with contacts and the simply inserted by a robot into
the card body and glued

Electrical properties:

8 connections, 2 auxiliary and can be omitted or used e.g. for USB

connections:

e (1: Vcc voltage supply



o (C2: RST reset

e (3 CLK clock

e (4 AUX1

e (5 GDN ground

e (6 SPU standard or proprietary use (SWP)

e C71/O
e (8 AUX2

IC1 C5 |

Ic2 Ol

c3 C1l

Ic4 O

e max 60 mA for 5V, max ambient temperature 50 degrees, 350 pA per megaherz, power
consumption too low to cause overheating, power reduction e.g. for SIM in different phases
of activity (low if the phone is not transmitting and using cryptoprocesor)

e contact C6 was for EEPROM erasing but not needed anymore, used for Single Wire Protocol

e voltage is a problem: 3V for SIM cards (batteries for smarphones weight optimization), 5V
needed for EEPROM erasure. charge pumps applied

e o internal clock supply (potential risk: adversary may increase the clock frequency to create
faults, fault cryptanalysis)

e problems with collisions on I/0 line (too high currents would destroy interface components)
e protection against out of range voltages, electrostatic charges, precisely defined activationa

and deactivation sequences: first ground, then voltage, then clock, warm reset when voltage
increases on the reset line

Microcontrollers:

e area: manufacturing costs and durability (bending, torsion), typically 10mm?, square shape

e must be integrated, “standard components” are not well suited due to size of the resulting
circuit,

e native designs are proprietary, even a crime to check the layout



e semiconductor technology -> density increases -> chip area drops . But some problems:
error probability, necessity to decrease voltage, ...

e extremely high reliability needed. So behind the “state-of-the-art” which is frequently
instable

e memory small (e.g. 100KB), a 8-bit processor ok for less than 64KB, then extensions,
usually CISC (complex instruction set computer) - instruction over a number of steps, some
based on RISC (reduced instruction set computer), also 32 bit processors that needed also
for interpreter based architectures (Java Card)

MEMORY

Memory types:
non volatile:
EPROM - UV erasure, not suited for smart cards,

EEPROM - electrical erasure, cell capacitors, discharged state=0, charged state=1, erase state -
> non-erased (single bit), non-erased-> erased: page or sector, both slow, size 1.14 pm, 100.000-
1.000.000 erasures, 2-10ms, tunneling efect - if there are electrons on the floating gate then they
prevent flow in the substrate

flash - a different technique for writing: hot electron injection, write time ,flash”, erase like
EEPROM, size 0.47, 10.000-100.000 erasures, very fast writing, lower voltage (12V) than EEPROM
(17V), NOR flash: free read of individual cells, but complicated circuits, or NAND flash: dense
but reading full blocks

ROM - connections broken — memory via a circuit, irreversible process - one disconnected never
can be reconnected, lack of connection = 0, small: 0.54pum area size

volatile:

RAM - transistors, flip-flop, size 1.87 um area size, erasures - unlimited, write: 70ns

AUXILIARY UNITs:

UART - universal asynchronous receiver transmitter, software solutions would be too slow

USB — USB connection has rigid timing requirements, they cannot be guaranteed by the regular
chip, 12 MB/s (Full Speed), CRC and buffers on the endpoints

SWP single wire protocol - communication between SIM and NFC controller concurrently with the
regular I/0, data sent with voltage modulation and returned with current modulation- full duplex,

timer - a 16 bit counter (or 16 bit), used for timeout detection, watchdog for security reasons

CRC cyclic redundancy clock, Reed Solomon codes,

e 1 =ux1...x% is the sequence to be encoded

e pyla)= Zle x;a° ! polynomial over some finite field

o c(x)=ps(a1)pz(ag)...p.(ay) is the code of x, where a; is the ith power of the root of degree n.



e ((r)=x-A, Vandermode matrix,row 1: 1....1,row 2: ay, ....a,,row 3: a, ...,a%, and so on

e properties: distance between the codewords: n — k 4+ 1 (this is optimal), since two polyno-
mials of degree k£ may have only k — 1 equal values

e it can correct half of it bits

RNG temperature etc. hard to implement,
pragmatic solutions: PRNG (sometimes poor),
be aware that the algorithm implemented is not original one (e.g. DSA but DSA+LFSR+...),

PRNG: the next value derived with the key from the previous values.
e Round Robin- eg 12 values in a buffer
e testing - NIST tests, good for excluding biased/faulty generators, no security guarantees

e hardware Trojans: faults in the circuitry that are not changing the layout-wires, but e.g. the
number of electorns in the substrate (invisible during the audit, but may be used to “break
randomness” if the manufacturer knows what are the faulty places

Clock multiplication: external clock cannot have frequency over 5MHz. Internally we can
increase it a few times with a multiplication circuit. Potentially: one could adjust the speed to
adjust energy usage (problems with intereference of oscillators with the GSM, UMTS commu-
nication)

MMU: memory management unit for monitoring boundaries between the application programs
(strict separation). must be tailored to the opearting system of the chip

JAVA accelerator: approaches 1) dedicated hardware component, high speed but takes place,
2) native instructions for java

Symmetric crypto coprocessor: 75 microseconds per DES, 150 per 3DES
asymmetric coprocessor:

RSA up to 2048, problematic key generation, probabilistic time

EC 160-256 bits: create DSA, random numbers problematic

hash functions: SHA, Keccak, SHA1 in PL

memory for keys:
e masterkey, derived keys, dynamic keys (session)

e PIN: master or deriving from master key, PIN updates in different memory, problems of
nonuniformity of PIN (no leading zeroes, etc), subclasses where strategy gives higher chances

DATA ENCODING

Abstract Syntax notation, ASN.1: primitive types (boolean, integer, octet string, bitstring), con-
structed data types, (page 111)



encoded via TLV structures: (Tag, Length,Value), tags for frequently used data types are in a
standard,

BER -Basic Encoding Rules, Distinguished Encoding Rules — subset of BER

Some details:

e tag:1-2 bytes, the first byte: b8, b7 define the class: universal, application, context-specific,
private class, b6: data object primitive or constructed, b5-bl: tag code, if all ones then the
second byte specifies the tag code

e Length: 1-4 bytes:

e 1 byte: 00 to 7F: encode length 0-127
e 2 bytes: 1st byte 81, 2nd byte encodes length 0-255

e 3 bytes: 1st byte 82, 2nd and 3rd bytes encode length 0-65535

properties: not too flexible, but not too high overhead, much better than XML
Data Compression (useful for images):

only very simple methods used as compression/decompression procedures might require too much
space and it does not pay off to compress. Two main methods:

e run-length encoding: blocks of zeroes and ones, each longer block encoded by its length
after an escape symbol, short blocks encoded directly,

e encodings like Huffman encoding: variable length encoding

Internal logical organization - state machines
e after activation and reset always in the same initial state
e in case of any trouble - reset
e state machine: transitions describing the events

e standard SDL notation:

{ J State CI Stop imer
3 Input |_<>—‘ Drecision
D Clutput j Declarations
:’ Plain C code Create task

and circle as a label (instead of C code from picture simple conditions)

e try to write automaton with flow without cycles (except for reset) with a few short paths

oo



input consisting of (standard) instructions. Their execution automatically delivers response
to the reader. Later more about instructions.

methods to design automata with compound states

example (page 122)

FILE MANAGEMENT

general:

previously direct physical addressing

still no man-machine interfaces, hexadecimal adressing

e file itself contains all information about itself in a header, the rest is the body

e header not changed frequently (problems with EEPROM, flash) , so placed in a separate
page

e files allocated to memory place for security reasons, shared files sometimes via shared
headers

e separation of applications via separation of directories

lifecycle:

1. CREATE (might be with initial data or not)

2. ACTIVATE/DEACTIVATE — activation necessary before use (only a limited number of
files might be active at a time!)

3. TERMINATE - permanently blocked, its memory is permanently inaccessible (secure

option)

4. or: DELETE - memory recovered (insecure)

Types:

MF- Master file, main directory, implicitly selected after activation

DF - Dedicated Files, directories, hierarchy, always not deep (1-2 levels)

ADF - application dedicated files - not below MF

EF - elementary file, data necessary for application

Internal EF - hidden files used by operating system. They cannot be selected for applications

File names

logical names due to transferability of programs

File Identifier (FID), 2 bytes, some reserved, e.g. 3F00 is MF



e MF: FID

e DF: FID, DF name (16 bytes, normally bytes 5-16 are AID - application ID: 5 bytes RID
(registered identifier: A-international registrations, D-national registration, country code,
application provider number)

e EF: FID, SFI (short FID) - to be used in instructions

File selection

one opened for I/O

SELECT (explicitely) or implicit (by READ ..., UPDATE, ...)
File structures

transparent: a single sequence of characters, no internal structure, reading file contensts by
specifying offset, instructions: READ BINARY, WRITE BINARY, UPDATE BINARY

linear fixed: equal length records, reading by specyfing record number, instructions: READ
RECORD, WRITE RECORD, UPDATE RECORD

linear variable: frequently not supported, should be avoided, the same instructions as for linear
fixed, but execution more complicated

cyclic: a fixed number of records of a fixed size, access to first last, previous or next record

PUT DATA, GET DATA: for TLV objects

Access conditions:
e defined at file creation and then almost always unchanged

e state oriented (current state is compared with the file access information) or command
oriented (which commands have to be executed first)

e global security state (card, state of MF) and local security state (state of a file)

STANDARD OPERATIONS

e cach card implements some set, but unnecessary commands are removed

e different sets: general, payment cards, telecommunication cards, over 20 standards, impor-
tant is Global Platform Specification, Common Electronic Purse Specification (CEPS)

e arguments, return values

File commands:
CREATE FILE
ACTIVATE FILE
DEACTIVATE FILE
TERMINATE EF
TERMINATE DF
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DELETE FILE

TERMINATE CARD USAGE

SELECT - selects a file, or an upper DF

STATUS - shows selected file and it properties in return, otherwise does not do anything
READ BINARY (number of bytes, offset) return: data, return code

WRITE BINARY ... this is not a write instruction but logical AND

UPDATE BINARY - this is the write operation in the standard meaning

ERASE BINARY (not necessarily physical erase)

READ RECORD, WRITE RECORD (like WRITE BINARY), UPDATE RECORD, APPEND
RECORD (adding a new record at the end)

PUT DATA, GET DATA - direct access to TLV objects

SEEK (length of data, pattern, offset, mode (forward from the start, backwards from the start,
forward from the next record, backwards from the previous record) returns record number

SEARCH - another standard, file can be checked

SEARCH BINARY- the same for transparent files

INCREASE, DECREASE — for cyclic files, operations on a counter (changing the current position)
EXECUTE - starts executable EF (some operating systems enable this)

PIN commands:

VERIFY PIN, VERIFY CHV — PIN verification, (CHV = Card holder Verification) , switch: global
PIN or application specific (each application may have its own PIN)

CHANGE CHV - reset PIN

RESET RETRY COUNTER - with PUK, counter like in ATM cards enable only a limited number
of PIN trials

UNBLOCK CHYV (using PUK)

ENABLE VERIFICATION REQUIREMENT - e.g. GSM for PIN with SIM cards
DISABLE VERIFICATION REQUIREMENT - switch off the PIN verification
Security operations:

GET CHALLENGE - returns a random number

INTERNAL AUTHENTICATE

e sends random number, key number

e return: Xicc:= F(key,random)

e terminal tests the result (showing that the terminal holds the symmetric key)
EXTERNAL AUTHENTICATE

e random number R sent to the terminal

e FEx(R) sent to card, the card checks whether the result is correct (the key K is shared with
the terminal)

11



MUTUAL AUTHENTICATE
e GET DATA (data about chip number)
¢ GET CHALLENGE — RNDi¢¢ transfered to terminal
e authentication

a) terminal generates RNDipp, computes Xipp = Ex (RNDrp, RNDicc, chip number)

b) card decrypts, checks if RNDicc is present there. If no then aborts.

¢) the card sends Xirp = Fx(RNDice, RNDipp, chip number)

d) terminal decrypts and checks the plaintext RNDcc, RNDipp, chip number

GENNERAL AUTHENTICATE (for the use e.g. with PACE)

PERFORM SECURITY OPERATION

option COMPUTE CRYPTOGRAPHIC CHECKSUM - computes a cryptographic MAC of a file
option VERIFY CRYPTOGRAPHIC CHECKSUM - checks cryptographic MAC of a file

option ENCIPHER — encrypts the data, algorithm and mode determined first by MANAGE SECU-
RITY ENVIRONMENT

option DECIPHER - returns decrypted data

option HASH - returns hash of data, a switch available for performing only the last part of hash
computation (for efficiency reasons)

option COMPUTE DIGITAL SIGANTURE

option VERIFY DIGITAL SIGNATURE

option VERIFY CERTIFICATE

option GENERATE

Global Platform:

LOAD - load data

INSTALL - specifies among others the size of volatile and nonvolatile memory reserved
Hardware test

TEST RAM

TEST NVM - testing non volatile memory, given area rewriten many times with a pattern
COMPARE NVM - reading NVM and checking if the given pattern really retained there
DELETE NVM — clears a given area of NVM

Electronic Purse commands
INITIALIZE IEP for Load— options:
load amount, currency code , PPSAM descriptor, random number, user defined data

response: provider id (PPIEP), IEP identifier, cryptoalbo used, expiry date, purse balance, IEP
transaction number, key information, signature, return code

CREDIT IEP

load: information on key to be used, signature,
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response: signature, response code

INITTALIZE TEP for Purchase — the card sends data to the terminal: purse provider identifier, IEP
identifier, crypto algorithm used, expiry data, purse balance, currency code, authentication mode,
IEP transaction number, key information, signature

DEBIT IEP — charging the balance, parameters: PSAM identifier, PSAM transaction number
amount to be debited, currency code, key info, signature, the card returns a signature of the
transaction

Credit card commands

GET PROCESSING OPTIONS

GENERATE APPLICATION CRYPTOGRAM

command: desired application cryptogram, transaction related data

response: cryptogram information data, application transaction counter, application cryptogram,
return code

Processing times examples:

(below data may differ for different implementations, especially for cryptographic operations)

READ BINARY 100 bytes: processing time 2ms, transfer 146 ms

UPDATE BINARY 100 bytes with erasing: processing 35ms, transfer 162 ms
EXTERNAL AUTHENTICATE: 235ms processing, 270ms data transfer
INTERNAL AUTHENTICATE: 135ms processing, 201ms data transfer
MUTUAL AUTHENTICATE: 135ms processing time, 163 ms data transfer
VERIFY PIN: 27ms processing time, 56 ms transfer time

DEBIT IEP: 235 ms processing time, 270 ms transfer

CREDIT IEP: 175 ms processing time, 222ms transfer

corollary: processing and time complexity is crucial!

Communication

sequence of steps:
1. power up on card
2. card sends ATR, smart card in a sleep mode
3. smart cards obtains APDU and changes to active mode

4. response

13



points 3 and 4 executed in a cycle

ATR “answer to reset”, sent on I/O line, max 33 bytes, usually a few bytes, transmission “divisor
rate” the same for all cards, start must occur in a time window (400-40000 clock cycles - eg. up to
8.14 ms for 4.9153MHz frequency of the signal), if not then tries 2 more times

TS - initial character, German: ,00111011”, French: ,00111111” , start with 1, measures time of
elementary time unit: the time between two first falling edges of T'S and divides by 3

TO format character - which interface characters transmitted afterwards in ATR (a few options
possible - see below)

interface characters: TA1l, TB1, TC1, TA2 ... interface charcters defining basic parameters of
transmission, like guard time, divisor, etc.

e TAI: initialetu= % -sec, where f is the frequency used

work etu = % L sec, where F' is the rate conversion factor, D= bit rate adjustment factor

(used due to variations of conditions during operation), the standard describes an encoding
for a few combinations of values

e TAi for ¢ >1 define supply voltage and parameters of the clock

T1, ... Historical characters — chaos, many informations on smart cards, OS, ..

TCK check character (error detection code):
e protocol T=0: not sent as there is bytewise error detection

e protocol T=1: XOR checksum for all bytes starting from TO up to the TCK

PPS (protocol Parameter Selection)

Some cards allow changing parameters of the transmissions — important for SIM cards, USIM cards.
e there is a fixed collection of possibilities

e some of the configurations are not specified (“for future use”)

APDU application protocol data unit

APDU is the only way of communication with the card.
e fixed format, quite compressed

e initiated by command APDU - sent from the terminal to the card, the answer is response
APDU

command APDU
e header:

e CLA (class byte, e.g. GSM denote as A0’) it may denote credit card, electronic
purse, private use, ...
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e INS instruction byte

e P1, P2: two parameters, (no more possible, the meaning defined by the standard)

e Lc field (length of data transmitted)
e data field
e Le field (length of expected response)
response APDU
e data comes first (length is defined by Le from Command APDU)

o afterwards the status bytes SW1 and SW1. The following options for the status: process
completed (normal, warning), process aborted (exec. error, checking error)

Secure messaging
the goal: securing the communication with the card: authentication, or even confidentiality

this is a problem even for contact interface as I/O contact can be traced
e authentic mode procedure:
— the CCS (cryptographic checksum) computed, e.g. with AES,

— the input is the original APDU+some padding (necessary to have a full number of
blocks),

— the out is the old APDU in plaintext encoded as TLV sturcture plus a TLV encoded
CCS

—  Warning: there is no confidentiality!
e combined mode procedure:
e (CCS computed similarly as for authentic mode
e then the resulting APDU encrypted: but only all TLV objects,

e the result is APDu with CLA, INS, P1,P2 unencrypted, then TLV encoded cypher-
text in the data field

e Problem: the command and parameters are still unencrypted! Information leaked

e A solution: using a command ENVELOPE which says the card to decode the cipher-
text and find there the real command to execute

e the response APDU also contains encrypted data

send sequence counter

also a security mechanism: as APDU might be undelivered e.g. by jamming the radio channel

e started with a random value during a communication session
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e then appended at each round
e there are two methods of encoding the counter:
e as a separate data field
e the counter is XOR with some portion of APDU before computing CCS — advantage:
if the recipient knows the expected value of the counter, then he can easily recompute.

Advantage is that no extra communication space required.

Logical channels

application may run in parallel on the card, no interleaving between request-response, APDU
specifies the logical channel - to which application the communication belongs

Data transmission with contacts

Physical layer

communication only digital, OV as reference level, the other level is +5V, or +3V, or +1.8V
conventions: OV represents 0 (direct convention), or 1 (inverse convention)

based on RS232 (0V used instead of negative voltage)

I/0 line is in high level always when the data is not sent

serial communication

asynchronous: so the sender adds the start bit at the beginning of each transmission (low voltage),
8 data bits, followed by the parity bit, and stop bits (used as guard time)

transmission speed: frequency/divider, divider says how many periods of the carrier frquency
needed to encode a bit. Typically divider is 372 and 512, 5MHZ max frequency, 32 minimum usabe
divider so at most 156 250 bit/s

Memory cards
simplest protocols, variety,

prepaid telephone cards

ISO protocols (15 versions described), mosty used T=0, T=1
T=0

e France, early standard, simple, minimal memory usage

e used for GSM worldwide

e Dbyte oriented

e command structure: CLA, INS,P1,P2,P3, data field, P3 specifies the length of data field
error handling:

e retransmission of byte immediately if an error detected (not after a block of bytes)
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e reporting error I/0O line down after byte transmission, in halfway of etu (so in a “wrong
place”), during the guard time

e this mechanism technically problematic sometimes, since in some cases below 1 etu nothing
is detectable

e alternative mechanism: add 1 to the received command byte as confirmation (note that the
comand bytes are coded by even numbers) - becoming technically obsolete solution

SM hard - many versions (with overhead)

interpretation of an APDU by a relatively simple state machine

T=1 protocol
e asynchronous
e half-duplex (both directions communication but not at the same time)
e Dblock oriented (a block is the minimal unit to be transmitted)

e follows layer concept of communication protocols (data for higher leyers sent transparently
by data link layer)

Block:
e contains application data and control data of the protocol
e structure of a block:

e prologue field: 1 byte NAD(node address- destination and source), 1 byte PCB (pro-
tocol control block - e.g. sending sequence number(mod 2)), 1 byte LEN (length)

e information field: APDU

e epilogue field: EDC . It contains either a CRC error detection code from ISO or just
LCR - XOR of all bytes (faster, easier but less usable as error detection)

e send/receive counter: binary
e parameters for transmission to avoid deadlocks:
—  CWT -character waiting time, in order to aviod deadlock, (time interval between the
leading edges of characters), CWT = 2°WI - 11 etu, CWI parameter is taken from
ATR, default CWI=13

—  BWT block waiting time: between leading edge of XOR in the epilogue field and
leading edge of NAD in the response of the card

BWT = 2BWI.960. 3—;2 sec +11 etu

for the default BWI=4 it means ~1.6 sec
—  BGT - block guard time: time between communications in opposite directions

e waiting times can be changed during protocol execution
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e Dblock chaining: if block are larger than the buffer of the sender or receiver, then the data
field is splitted and a chain of blocks is used. a flag “more” is used to indicate a chain

e error handling:
e sophisticated mechanism

e error -> the sender receives an R block indicating an error = retransmission
of the last block

e if retransmission ok, then resynchronisation with an S block, card acknowl-
edges and the counters (on both sides) reset to 0

e if a block cannot be sent then RESET and the whole session terminated, data
transmitted so far is lost

Other protocols with potentially high importance:
USB (Universal Serial Bus)
e T=0, T=1 are no for slow data transmission,
e target: 12Mbit/s USB communication
e the main problem is time synchronization, USB assumes stability of frequency on both sides,
but the smartcard has frequency from the reader — this is unstable. Extra circuit on the
smart card required
e problem also with the code: USB requires a few KB of code for interface on card
e USB is encoding bits via difference of electrical levels on a pair of signal lines (more reliable
than the encoding on a line), C4 and C8 used for USB (AUX1 and AUX2 conatacts, normally

unused)

e encoding method NRZI (nonreturn to zero) encoding: a 0 encoded by polarity reversal, for
1 polarity is unchanged,

e clock for the bus retreived from the polarity reversals, what to do if there is a long block of
1’s? after six ones obligatory bit stuffer - a zero.

e logical connection: 4bit “endpoints”. EPO for control, other endpoints are unidirectional
e transfer modes:
e control transfers: initiated on EPO, acknowledged on both directions,

e interrupt transfers for small amounts of data — not really an interrupt, since the time
periods for interrupt transfers are fixed

e bulk transfers: non-time critical for large amounts of data
e isochronous transfers: for time critical transfers
e least significant bit sent first (little endian), data sent in frames at fixed time intervals (about

1ms), a frame starts with a SOF (start of frame) packet containing a packet identifier, frame
number and CRC code
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SWP (Single Wire Protocol)

e NFC controller has to find a way to communicate with the SIM card while the card is
communicating with the telephone with another channel

e (6 contact used as a single line (previous usage as external programming voltage for
EEPROM not needed anymore)

e full duplex
e complicated encoding at the electrical level (card is always the slave):
e S1 (master-to-slave): high voltage at 75% time — a 1, hogh voltage at 25% of time - a 0

e S2 (slave to master): influences the voltage at the high voltage period of S1: 0 by
reducing the voltage, 1 by keeping it high

Contactless transmission

flexible batteries - expensive, so energy must come together with communication
INDUCTIVE COUPLING:

range depends on power consumption inside: no computation on card, then range about 1m, with
writing on the card- range 10cm to enable enough energy, 1m — few tens of microwats, writing
already 100 microwats, processor already 10miliwat, legal restrictions on energy sent by readers

wavelength 2400m or 22m depending on frequency: much smaller than the distance between the
card and reader: physical transformer model can be used

voltage: rectified on the chip, proportional to the signal frequency, depends on the number of
turns in the coil and the coil area, strong current needed on coils

picture page 286

transmission back: (small) fluctuations of current on the side of smart card, in order to be able
to separate from the strong signal form the reader: a different frequency for modulation is used,
the reader applies a filter to separate them

picture page 287
CAPACITIVE COUPLING:

by putting very close (on surface), coupling area both on terminal and on the card, two fields
on card, two on reader, too low energy to run microprocessor directly so inductive coupling used
anyway for providing energy

Collision avoidance:
collisions between cards: possible as a single radio channel.

Methods of separation:

e space division multiple access
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e time division multiple access - TDMA

e frequency division multiple access - FDMA

e code division multiple access - CDMA — codes on the same frequency. Decoding: searching
how the transmission received could be composed of individual transmissions (main idea of

UMTS)

CLOSE COUPLING CICC

up to lem — slot or surface operation, must tolerate electrostatic discharge,
power transmission: via inductive coupling, power frequency 4.9 MHZ,
two pairs H1,H1 and H3, H4 have phase shift of 90 degrees,

two pairs to make it resistant to card position

data transmission:
e terminal to card (PSK phase shift keying): 4 alternating magnetic fields, all 4 fields shifted
by 90°, to change a bit all four fields shift simultaneously by 90°, at the beginning a 1 is

always sent picture page 294

e data transmission from the card to the terminal: modulation at 307.2kHz, change of bit by
shift of phase by 180° of the subcarrier. picture page 294

Capacitive data transmission

e timing constraints: how much time when power off, when power rises, for the first transmis-
sion to the card, for the first transmission from the card

PROXIMITY COUPLING ISO 14443
e normal operation up to 10cm, large antennas for signal detection from bigger distances
e inductive coupling, magnetic field strength defined to be in some interval
e transmission frequency about f.=13 Mhz
e many different applications

e communication interfaces: type A, type B (terminals periodically perform both just to be
able to talk with both types of cards)

type A:
e initialization: bitrate f./128, later a different bitrate chosen: f./k where k=128, 64,32, 16

so the bitrate is 106kbits/s or 212 or 424 or 847

communication from terminal to card:

e amplitude modulation - with signal going to zero (short interrupts)
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e small interrupts (3 ps) = noenergy transmitted to the card but the card survives operating
e encoding: modified Miller encoding:

—  transmitting a 1: pause after half bit interval

— transmitting a 0: no pause

— transmitting more zeroes: a pause between two consecutive zeroes, the first 0 has a
pause before

—  start: a pause

— example: | 0 | 1 | 0O | O |1 |
m e ] ] (]

— end of message logical zero 0 followed by one bit period with no pause
from card to terminal
e load modulation with a subcarrier
e transmitting a 1: carrier modulate by subcarrier in the first half of the bit interval
e transmitting a 0: carrier modulate by subcarrier in the second half of the bit interval
e start of a message: carrier modulated by the subcarrier in the first half of the bit interval

e end of the message: no modulation by a subcarrier

fig. 10.21 page 302

type B:
e 10 interruptions of energy supply
terminal to card:
e subcarrier modulation
e modulation index 10% (slight changes of the amplitude)

e encoding: NRZ (non-return-zero), simply a higher amplitude means a 1 and the lower one
means a 0.

card to terminal:
e modulation with BSPK (binary phase shift keying)- shift of 180°
e 1o change of the character = no pahse shift, if there is a change then a phase shift,
e initially: subcarrier with no phase shifting for some period of time

e the first character is understood to be a logical 1
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figure page 304

Anticollision mechanism

two cards communicating with the reader during initialization phase

type A

Manchester encoding used to ensure collision detection:
e subcarrier modulated in the half of the interval
e first high- then low” or “first low-then high” to encode two bit values

e if the signals are synchronous than overlapping produces a “high-high” and an evi-
dence of collision

all cards are transmitting synchronously their IDs

after Reset the card in the Idle state and can only answer the Type A Request (REQA)
and Type A Wake-up (WUPA),

then the cards send synchronously Answer to Request type A (ATQA)
the terminal receives the responses and knows that at least one card is present

message format ATQA: the first part for the reader the second part for the cards,

in the first part bytes of address specified, in the second part all matching cards respond.

The length of the parts vary, but the total length is the always the same. The first part has
at least 16 bits and no more than 55 bits.

ANTYCOLLISION or SELECT: the message specifies UID (card ID - either random for
the session or a fixed one) and the number of bits relevant. Only the cards that match the

UID (on a given portion), reply

step by step until only one card responds

type B

predefined time slots
dynamic slotted Aloha, number of slots in the REQB

all cards Idle until REQB, then choose a random slot to send its data

SIM Cards and telecommunication systems

Problems to be solved:

how to authenticate the subscribers?
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e how to protect the communication confidentiality?

e how to know the position of the subscriber?

e distributing security functions?

e how to work in roaming with partially trusted partners?
e interoperability

GSM

e suscriber ID: IMEI (international mobile equipment identity) - ID of a phone, IMSI- inter-
national mobile subscriber information - ID of a user (never transmitted in clear), TMSI -
temporary mobile subscriber identity — temporary and related to local area

e SIM card (Subscriber Identity module):

e dedicated commands
e storage for some user data
e user management

e security functions: authentication, encryption

e key management:
a secret key Ki on the smartcard, shared with the provider, a copy available in AuC

possible on-the-fly derivation Ki=f(IMSI), where f is a private punction of the provider
e authentication:
1. BSS (or MSC) generates RAND at random and sends to the mobile station

2. mobile station: SRES:= ¢g(RAND,Ki), where g is a provider specific function (e.g.
might be A3)

3. SRES sent to BSS, where the result is checked
e encryption:
1. RAND reused

2. mobile station: Kc:=h(RAND,Ki), where h is a provider specific function (e.g. might
be A8)

3. BSS: Ke:=h(RAND Ki)

4. encryption with the session key Kc and a stream cipher. The key for a frame:
r(TDMA frame number, Kc) where r is a provider specific function (e.g. A5),
the encrypted frame is the

frame plaintext XOR frame key
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5. the communication: down and uplink interleaved, short frame
e problems with distributing the user secret keys:

e instead of providing the key Ki of the user, AuC distributes on demand valid the
triples

(RAND, SRES, Kc)

e the local provider from the Visited Network does not have to implement the provider
specific algorithms, or even to know them = easy roaming and cooperation with
different vendor systems

e attack (IMSI catcher device used):

e the mobile user gets authenticated, but the network is not authenticated,

e use a fake base station, starting authentication, accepting whatever SRES comes and
switching off the encryption

e connecting to other subscriber via a different link (via a prepaid card, not showing
subscriber number)

e attack: only the links between the mobile phoine and the base station are secured, no end-
to-end encryption or authentication. E.g. point-to-point microwave links used in the access
network, where eavsdropping is easy

e protecting identity: TMSI used instead of IMSI after first authentication of a user in a service
area

e local authentication: not all time the triples from the AuC used, instead the sessions are
linked in the Visited Network

e cloning a SIM card is a problem (the provider may create a copy of the card e.g. for
eavsdropping)

UMTS
e USIM card used instead of SIM

e CDMA coding - more sophisticated and in principle better. In practice leads to problems,
and LTE is simplifies a lot (a nd makes it more efficient)

e reuse of concepts: limited trust in the Visited Network, identity protection
e correcting security problems:

e fake base station

e encryption in the access network

e 1o cleartext transmissions

e authentication tuples: (RAND, XRES, CK, IK,AUTN), XRES=expected response,
CK=cipher key, IK=integrity key
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XRES—f2(RAND,Ki), = CK—f3(RAND,Ki),  IK—f4(RAND,Ki), = AUTN=SQN®
AK||AMF||IMAC, AK={5(RAND, Ki), MAC=f1(RAND,AMF Ki), AMF - system param-
eters
AKA (Authentication and Key Agreement protocol):

1. service network to mobile user: RAND(i), AUTN(i) (taken from the list)

2. mobile user computes verifies AUTN(i) (SQn must be in a correct range), recomputes
XRES(i) via definition, replies with XRES(i)

3. use CK(i) for encryption and IK(i) for integrity

problematic synchronisation with SQN

goals:

TPM

Trusted Platform Module, small integrated circuits on motherboard of PC, laptop (but also
specifications for mobile, embedded, ...), 28 pin, may be integrated with other chips

passive hardware module (responds to requests and nothing more), complicated command
set, TCG Software Stack to ease using TPM,

specification by Trusted Computing Group of Trusted Platform Alliance (industry initia-
tive)

on major products: Dell, Lenoovo, HP, Toshiba, ...

not allowed in Russia (no TPM), own obligatory specification in China (partially secret)
“root of trust”

specification TPM 1.2 and TPM 2.0

lack of commertial success

inexpensive chip, hard to use, limited usability

controversies: a tool to monopolize the software market

origin: sophisticated malware attacks, defend insecure OS by TPM as antivirus is only
partially effective

secure storage

keeping track of booting process
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attestation of the state of the operating system
not really converting into secure operating systems
applications started only in a certain state of OS

flexible to work with different systems

Crypto (TPM 1.2):

RSA (2048 and 1024)

SHA-1 (no hash longer than 160 bits!)

HMAC (keyed-Hash Message Authentication Code)
RNG

no symmetric crypto due to US law at that time (restrictions to export and therefore the
whole idea of standardization fails for symmetric algorithms)

operations: asymmetric encryption, signatures, HMAC,

Storage:

PCR (platform configuration registers), storing SHA-1 hash values (160 bits)

each PCR has an index and is devoted to different data: 0-7 measure core system components
like BIOS, 8-15 are OS defined, 16-23 for late launch

operations on PCR:
e reset at boot time
e otherwise only extend operation Extend(PCR,value)=Hash(PCR||value)
NVRAM - small nonvolatile random access memory
counters (only increasing until reset when back to 0)
storing keys:

e the main key permanently in TPM and never allowed to leave it ("stored internal
to the TPM”) (SRK - Storage Root Key)

e other keys encrypted and exported outside. In case of need imported to TPM,
decrypted with keys that are in TPM

e exported data contain the key value itself and a “proof’ - a value known to TPM
only, and authorization information. The exported ciphertext is called a “blob”.

e importing: load command and a blob, TPM decrypts with SRK, checks the proof,
checks the supplied password

e keys might be for encryption or digital signature
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Measured Boot
e booting process: a sequence of stages where the next code uploaded and executed
e before executing a code its hash “extends” the PCR value (which PCR depends on the stage)
e the first piece of code should be completelty write-protected
e result: a set of PCR values that cannot be manipulated. A fingerprint of what has been
booted. may be used to check against a know value — in case of manipulation the state of

PCRs is different than expected

e thisis not the same as Secure Boot where the signature over the code is checked at each stage

Late launch:
the same mechanism as for booting for security critical issues

not controlled by operating system, not breakable

Sealed Storage
e files encrypted with key exported from TPM. Decryption only via TPM

e decryption only when the machine is in a proper state (judgement based on the contents of
PCRs)

Network Attestation
e sending data about the machine state
e steps:
e random nonce sent from a server to TPM
e client software determines identity key to be used
e TPM hashes PCR values together with nonce and signs with identity key

e nonce is for freshness

Overview of TPM 2.0
Cryptography:
e RSA of TPM 1.2 became weak

e SHA-1 of TPM-1 became weak, but replacing it with SHA-2 or SHA-3 impossible due to
hash length (additional 12 bytes)

e TPM 1.2. stores RSA keys via factorization: but only one factor - which saves space, but is

slow (storing both factors would be impossible due to the size). TPM 2.0 uses symmetric
encryption and there is no problem
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e TPM 2.0 lists a variety of algorithms: SHA-1 and RSA for backward compatibility but also
SHA-256, AES, EC, (also Chinese algorithms?)

e encryption of a key should be by a key at least as strong as the encrypted key. Contorversies
what is stornger... Mixing algorithms not allowed.

e if a key cannot be duplicated and moved to another TPM then it must be encrypted with
exactly the same algorithm

Authentication
e TPM 1.2 very limited: only by passwords and PCR values

e TPM 1.2: password inserted into the command sent to TPM, problem with two users for
the same machine!

e Enhanced Authorization (EA) of TPM 2.0:
e Dbasic mechanism: software interacting with TPM must show knowledge of a password
e policies: multiply authorization methods and Boolean logic to combine them
e TPM stores a hash of a Boolean logic and values for authentication methods
e authentication methods:
e passwords
e PCR values
e TPM counter
e commands (object use may be limited to certain commands)
e digital signature of a user (form a smart card)
Compilible Specifications

e specification well structured (1l.introduction, 2. list of variables, structures, constants, 3.
list of commands with brief description in English, 4. subroutines for part 3 in pseudocode)

e misunderstandings because of pseudocode
e  Microsoft tool to extract compalible reference TPM — but not available for external users

specification well structured (1.introduction, 2. list of variables, structures, constants, 3. list of
commands with brief description in English, 4. subroutines for part 3 in pseudocode)

Activation

e TPM 2.0 on by default

e firmware has full access to TPM just like the owner

TPM 1.2 details
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secure storage

e initialization of TPM: invoking TPM TakeOwnership creates SRK (Storage Root Key), at
the same time also secret tmpProof - to identify the blobs produced by the TPM

e tree of keys

e creating a key: TPM _CreateWrapKey , arguments: parent key, new encrypted authdata,
authorization HMAC based on the parent authdata, key exported

e loading a key: necessary to use the key, TPM LoadKey2, arguments: key blob, returns
handle to the key to be used in following commands

o after key loaded one can use TPM_Seal and TPM Unseal , requires authorisation from
authdata

authentication sessions

OIAP - object independet authentication protocol,
nonces of the user process: “odd”

nonces of the TPM: “even” nonces

nonces sent with each message, authentication HMAC takes into consideration the most recent
odd and even nonce (linking the messsages)

for commands that can mniupulate many objects
OSAP - object specific ...,
OSAP secret: based on even and odd nonce and authdata for the object

HMAC computed with OSAP secret

ADIP encryption
AuthData Insertion Protocol
OSAP session can invoke it

authdata is encrypted with XOR with one-time key computed as SHA-1(s,n.) where s is the OSAP
secret and n, is the current even nonce
Platform Authentication

e each TPM has a unique pair of endorsement keys (EK) set at manufacture time and (usu-
ally) certified by manufacturer, used for encryption only

e may be changed by the owner, but regarded as the identity long time key, (tpmProof is
secret, so cannot be used as identity)

o AIK (application identity key) can also be created. They are used to sign application-specific
data and PCR state via TPM _Quote,

e AIK has to be authenticated! Either from a certificate from privacy CA or via Direct
Anonymous Attestation
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Privacy CA

e signs public part of AIK

e user software:
e creates AIK via: TPM Makeldentity,
e sends public key together with certificate on EK to CA
e CA checks the certificate of EK
e CA signs a certificate for AIK
e CA encrypts certificate with a new session key -> blob Bl
e CA encrypts the session key and the publik AIK with EK, creating blob B2
e CA sends blobs to software
e software sends B2 to TPM
e TPM checks that AIK is in the TPM and releases the decryption key
e software decrypts Bl

Key migration

migratable keys
— TPM-CreateWrapKey with parameter, authdata specified for allowing migration

— TPM _CreateMigrationBlob with input: wrapped key, its parent key handle, migration
type, authorisation digest (parent key usage authorisation, migration authorization)

— type REWRAP: rewraps with migration public key (key of another TPM)

— type MIGRATE: unwraps and XORs with a random password 7, returns the blob and r
certifiable migratable keys

— created with TPM _CMK-CreateKey and then certified with TPM _CertifyKey2

— certificate specifies Migration Selection Authority (or more) (authorities restricting desti-
nations)

—  Pre-approved Destinations (PAD)
— creating a CMK:

— TPM_ CMK _ApproveMA: source TPM creates a ticket to approve some MSA and
PDAs

— TPM_ CMK CreateKey: takes ticket from TPM _CMK ApproveMA

— TPM _AuthorizeMigrationKey: owner of TPM approves migration of the key
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— exporting CMK: (to PDA or MSA)
TPM_ CMK CreateBlob on
— CMK wrapped key
— migrationKeyAuth
—  MSA list

— sigTicket form MSA nad restrict Ticket (public keys belonging to MSA, des-
tination parent key, and key-to-be-migrated)
Delegation
the purpose: delegating some priviledge of the owner to another party and may be withdraw later
possible to create authdata value for the resource with list of admitted commands
Blobs:

AuthData— controls ability to read, write, aund use objects stored in the TPM and execute TPM
commands, 160 bit secret, knowledge of it by computing HMAC

key blobs - Blob(PK,SK) = PUBBIlob(PK,SK) || Enc(PKparent, PrivBlob(PK, SK))
PUBBIlob(PK,SK) = PK || PCR values
PrivBlob(PK, SK) = SK]| Hash(PubBlob(PK,SK)) ||tpmProof

Problems:

— huge documentation

- complex administration

- when starting then operation resembles malware operation (rebooting, strange communicates)
- typical PKI problems

- privacy issues (when used for attestation)

— low effect

- malicious use not controlable by OS

REMOTE ATTESTATION

goal:
e attestation that a target machine has certain (desirable) properties

e make decision whether further interaction with this machine (e.g. whether to transmit
sensitive data)

e it should check, whether the target machine is safe if the target is safe

Problems to be solved:
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attacks:
e inserting unauthorized code to the servers on a large scale
e the attack is remote
e attacked computers are standard general purpose machines,

e network involves interaction between independent entities (retailers, distributors, financial
organizations,...)

Goal: protocol parties can check remotely that the computer of the partner is in some sense in a
decent state (e.g. a bank and a customer: the bank has to check if the customer’s PC is protected)

Attestation architecture:

desired properties:
e measurements: measure diverse aspect of target, choice non-trivial

e a bad strategy: hashes of memory, one cannot derive too much about machine
behavior,

e problems with data compression
e domain separation:
e the attester should not interfere too much with the operation on the target
e the state of the measurement tool must be inaccessable to the target machine
e the result: corrupted or uncorrupted - additional data is itself a problem
e separation implementation strategies:
e a copy of the target on a Virtual Machine

e hardware separation: coprocessor used for attestation only, visibility by hard-
ware constraints and not by configuration of a hypervisor

e self-protecting trust base: not too big (then audit/certification of the trust base too complex)
o delegate attestation to proxies:

e if some data must not reach the attester, then use a proxy between the target and
the attester

e specialized proxies

e attestation management: flexibility is necessary, queries: constraints subject to policies,
communication, Attestation Manager as a local component to govern these issues
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Example Architecture

Components:
e trust base: TPM/CPU, hypervisor

e S-Guest: supervisory virtual platform: contains virtual TPM, M&A (measurements and
attestation)

e U-guest: user platform with “normal” operating system: contains virtual TPM, M&A

PROTOCOLS

IBM Protocol:

verifier: sends a nounce NN, 160 bits to attestation service

attestation service: request NV to TPM

TPM to attestation service: ML (measurement list), Signax(PCR, N)
attestation service to verifier: Sigaik(PCR, N), ML, ATK oyt

verifier: check signatures and certificates

CAVES
e Attester, Client, Server, Verifier, EPCA (Enterprise Privacy CA)
e steps:

1. Client to Server: request R, attester A, key K encrypted by Server’s key (K is a
session key for Client-Server)

2. Server to Verifier: S (Server), R, A, Ng (server nonce) encrypted with Verifier’s
public key,

3. Verifier gets from EPCA a signed record containing certificate, A, I(identity key of
Attester), E (name of EPCA)

4. Verifier to Server: encrypted: Ny (verifier’s nonce), J (query), V, Ng, M (PCR mask)
5. Server to Client: Ny, J, V, M encrypted with K.

6. Client to Attester: (encryption with a long period shared symmetric key) S, Ny, J,
V, M, R.

7. Attester to Client: (encryption as above)
e K’ (extra key), Ny, B (blob)
e B is a ciphertext encrypted with the public key of the verifier of:

e K' S, Jo (mesurement), M, P (PCR vector)
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e signature created with I for Hash(Hash(A,V,R, Ny, J, Jo), M, P)
8. Client to Server: B
9. Server to Verifier: B
10. Verifier to Server: encrypted with Kg: verification result, Ng, K’
11. Server to Client: data encrypted with K’
Some properties:

e client and server cannot read the attestation result and cannot manipulate it without detec-
tion

Direct Anonymous Attestation (DDA)

goal: remote testing a device on the other side without learning its identity

parties:
— host (operating system and application software)
— TPM
— the issuer (similar as Privacy CA and checks EK certificate)

—  verifier

protocol:

e DDA-join: TPM chooses a secret f, the issuer creates a blind signature of f (credential
cre), encrypts it with the Endorsement Key and sends it to the TPM

e DDA-sign: signature of AIK using (f,cre)

Building blocks

Schnorr authentication modulo an RSA number
e RSA number n of length I,
e user’s public key y=g¢*modn , x is a private key of length [

e authentication: the prover chooses r of length I, + I. + [, and ¢t = g"mod n, he sends ¢ to
the verifier

e the verifier chooses ¢ at random

e the prover replies with s =7 — x - ¢ computed as integers, for large lp; this does not leak
much information about z
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e the verifier checks that t =y¢- g°

e security argument based on Strong RSA assumption:

on a random RSA number n and u <n it is infeasible to find v and e > 1 such that
v =umodn.

It follows that for random g, h it is hard to compute w < n and integers a, b, ¢ such that
w®= ¢*h® mod n where ¢ does not divide @ and b

A version proving that x is in a given interval
e as above but r of length I, 4 l. 4 lpni
e .. and a check that sis of the length at most [, + I + lpn; (including negative numbers)
e similar protocols may be built to show that the secret is in a given interval
Camenisch-Lysyanskaya Signature
e blind signature: a signer does not see the message to be signed,
e the resulting siganture is randomizable

e keys: n=p-q RSA number, public key: randomly chosen squares Ry, R1,..., R, —1,5,7Z <n,
secret key: p

e message space: L strings of [, bit numbers
e creating a signature:
1. choose a prime number e of length I, > [,, + 2

2. choose a random number v of length [, =1,, +[,;, +[,, where [, is a security parameter

4 7 1/e

3. Compute = <W) modn
where 1/e means 1/emod (p—1)(¢—1)

4. output (4,e,v)

e verification: check that Z=A°R{"...R]"*1'S" mod n and that the range of each element is
as described

e provable security: based on the strong RSA assumption
Camenisch-Lysyanskaya Signature on a (partially) secret message

e as CL but now the receiver computes U = Rgm...Rf“S“/for v’ chosen at random, and sends
U to the signer

e the receiver proves (noninteractive zero konwledge proof) that he actually knows some
my, ..., m;, v’ that yield U

1/e
. z
e the signer computes A:= ( U»Rl"jfl.A.RzLLIIS“”) modn
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e the signer proves that A has this form

e the signature is (A, e, v), where v=v"+0v"

Proving posession of a signature
e proving possesion of signature (A, e, v) of m, i.e. satisfying Z = R§'S*A°modn

e given a signature (A4,v,e) choose rat random and compute A":=A-S~", v :=v+e-r, the
new signature is (A’, e, v’)

e A’ is uniformly distributed, so it does not leak information on the signature

e proving possession of €,v’, u such that Z = RSA'eS”/ and that they are in a proper interval

Direct Anonymous Attestation - an overview

Properties:
unforgeability. DAA-Sign can be sucessful only if TPM before has executed DDA-Join
anonymity. information from DDA-Sign do not enable to link with DDA-Join

rogue tagging. given DDA related secret information of a rogue TPM, the verifier can check
if DDA-Sign has been executed by this party

System parameters:
e lengths of diverse parameters,
Key generation (performed by the Issuer)
e RSA numbern=p-q (p=2p'+1, ¢=2¢'+1)
e Srandom generator of quadratic residues mod n (squares modulo n)
e random zg,x1,7. < p'q’
o 7=5% Ry=85" Ri=5"
e a proof that Z, Ry, Ry have been computed correctly
e primes p,I', with '=rp+ 1, where pis not a factor of r
e group Zf, and an element v € Zf of order p
e a random identifier (r
DDA-Join
e TPM chooses a random f € Z¥, f= fo||f1 (concatenation)

e TPM computes its pseudonym Nj= (If mod I and sends it to the Issuer
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e the issuer checks all rogue (f§, fi) whether N+ le",”f{modl" (if yes, then abort)
e blind signature of f by the Issuer:

e TPM chooses v’ at random, U = R(J;"R{IS”/, sends U to the issuer

e TPM proves that U has been created correctly

e TPM authenticates U to the issuer with the endorsement key

e Issuer chooses random v =9 + 2 (a leading one inserted)

1/e
i ()
U-Sv

sends A,v”, e to the host of TPM
e Issuer proves to the host that A,v” have been correctly created
e the host stores A,v”, e and sends v” to the TPM
e TPM sets v=v"+v" and stores (fo f1,v)

e 5o after executing the protocol host+TPM obtain a “certificate” from the Issuer, but neither
the host not the TPM knows it completely

DDA-Sign
e the host sends (, a random power of v, to the TPM
e TPM computes Ny = ¢/ll/1 and sends it to the host

e TPM and the host create a “signature of knowledge” that they know together DDA-certifi-
cate and that the same numbers fq fi have been used:

i. the host picks w at random at some range and computes A’=A-S~*modn

ii. TPM picks r,, 70,71 in some predefined range and randomizes:

U =Ry"R;"S™ modn

'y =71g||rpmod p

Nv = ¢ modT

and sends U,]@ to the host

iii. the host picks r¢,r, at random (in an appropriate range) and computes

A'=U07" A g

iv. the host receives a nonce ny from the verifier and computes a hash ¢, of

. (parameters), §,A’,NV,//1\’,]V\\/,7LV

v. TPM computes ¢ =Hash(Hash(cp,n¢), b, m) for a nonce n; and b="
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and sends ¢, ns to the host

vi. TPM computes s, =1, +c-v, S¢, =7, — C* fo, 8¢, =7f, — ¢+ f1 and sends them to
the host

vii. the host computes over integers
se=rctc-(e—2TY) s5=5,+1rp+c-(e-w)
viil. the signature ¢, A", Ny, ¢, n, S5, Sggs Sgs Sé
e Verification:
i. reconstruct Ny as N‘°}~§5“’0+21f

. —~ _ole=1\—¢C _g . .
ii. reconstruct A’ as (Z-A’ ) CRi%0. Ry §so
iii. recompute c

iv. change the range of all elements

v. check whether Ny is on the rouge list

FPGA

to be expanded here

Side channel analysis

according to P. Kubiak notes ....

to be expanded here

RFID security

Distance bounding
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many applications require that the RFID device communicates with a terminal in a close proximity.
Normally, a device can talk only with a terminal that is physically close. But there are attacks:

e delay short, standards leave plenty of time - long timeouts (e.g. 5s)
e NFC devices can be used (emulate cards and readers)

e practical attacks on biometric passport, studentID, Mifare classic, world cup tickets 2006

Attack types

e distance fraud: a sole dishonest prover convinces the verifer that he is at a shorter distance
than he really is

e e.g. with a strong signal from remote place

e mafia attack: the prover is honest, but an attacker tries to modify the distance that the
verifer establishes by interfering with their communication.

e a relay between a genuine card and a genuine terminal
e the relay consists of two device: one close to the terminal and one close to card
e only relaying messages. If fast then the card believes it is close to the terminal

e communicating with a sales terminal on one side and with a remote clients card on
the other side - enabling payment that is supposed to work only from a small distance

e terrorist attack: the dishonest prover colludes with another attacker that is closer to the
verifer, to convince the verifier that the distance to the prover is short.

e distance hijacking: dishonest prover convinces the verifer that it is at short distance
exploiting the presence of an honest prover

Distance bounding protocols
takes response time or signal strength

A basic protocol:
1. fori=1 ton (rapid bit exchange)
e verifier: start clock, a random C); sent to the prover
e prover: send a random R; to the verifier
e verifier: stop clock
2. prover: signs C1, Ry, ....,Cyn, R,

3. verifier: checks the signature and checks the maximal time distance between sending C;
and receiving R; (should be within some security bounds)
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Attack (problem): a rogue prover can send R; before getting C;

Solution (Chaum-Brands):

1.

verifier chooses at random n bits «;

. prover chooses at random n bits m;

prover creates a commitment for the bits m and sends it to the verifier

. rapid bit exchange: for i=1 ton

e verifier: sends «; to the prover
e prover: 5;=m;xor«; and sends f; to the verifier
prover: signs a1 Bs....a0, By, sends the signature and the opening to the commitment

verifier: checks the signature and checks the maximal time distance between sending «; and
receiving f; (should be within some security bounds), check the commitment

Hijicking attack:

intercept the signature sent in step 5 (with jamming of the signal to the verifier)

send own signature over aifB120s....a,3y, and the opening to the commitment

Version based on public key verification (Fiat-Shamir protocol)

(no signatures but proof of knowledge of square root X of Y)

. prover generates at random n numbers R; and sends S; = R?mod N to the verifier

prover chooses at random n bits [3;,
prover creates a commitment for the bits 81 5s.... 3, and sends the commitment to the verifier
verifier chooses at random n bits «;,
rapid bit exchange: for =1 ton
e verifier: sends «; to the prover
e prover: immediately responds with §; to the verifier

prover: presents an opening to the commitments for 3;0s....5,, and sends the responses
XoxorBiR. (which is either X - R; or R; depending whether o; = f3;)

verifier: checks the response (by squring it and comparing with S;Y or S;) and checks the
maximal time distance between sending «; and receiving §; (should be within some security
bounds), check the commitment

Problem of noise and transmission errors

many transmissions lost, so the protocol might be instable
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e asymmetric cryptography

e mafia attack suceeds with pbb 27"

Hacke-Kuhn

( kind of standard protocol in this area)
e the prover is weak, teh verifier is trong (terminal)
e the prover and the verifier share a secret key K
e steps:
1. the verifier sends a nonce Ny
2. the prover sends a nonce Np
3. the prover calculates R=h(K, Ny, Np), and splits R into two halves: Ry, Ra,
4. verifier chooses (1, ...., (), at random
5. rapid bit exchange: for i =1 to n:
a) the prover sends C;
b) the verifier responds with the ith bit of R¢,
6. the verifier checks the bits received
problem: chance of (%)n to succeed if the distance is bigger but the adversary knows K: the

answers sent in advance and for about n/2 positions the bits of Ry, Ry are the same, only for %n
bits we need to guess the answer in advance

options:

void slots: the third pseudorandom sequence that determines if in a given time slot to send a
message or not

(asking for a response in a wrong time will be detected)

Swiss-knife:

shared secret x, the reader has a database of the tags and their keys, the protocol achieves mutual
authentication and distance bounding

1. the reader chooses a random nonce N4 and transmits it to the tag

2. the tag chooses a random Npg, computes a temporary key a = f,(Np, system param) using
its permanent secret key x

3. the tag splits his permanent secret key x in two shares by computing Z°=a, Z' =axorz

4. the tag transmits Np to the reader
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5. rapid bit exchange: for i =1 to n perform (the response time measured each time)
i. the reader chooses a bit ¢; and send to the tag
ii. the tag responds with r; = Z;
6. final phase (it is slow, time not measured):
i. the tag computes tg= f,(c1,....,cn,ID, Na, Np)
ii. the tag transmits ¢t and c, ...., ¢, it received during the rapid bit exchange phase.

iii. the reader searches its database for (ID,z) such that tg= fy(c1,....,¢n,ID,Na, NB);
it recomputes Z9, Z1.

iv. the reader checks the responses for:
e the number of errors for ¢; in response of the tag
e the number of bad responses r;
e the number of too slow responses
the total numer should be small. There is a threshold above which the reader rejects
v. the reader responds with t4 = f,(Ng)

vi. the tag checks t4

RFID privacy

purpose: provide a system where a (passive) eavesdropper cannot trace the tags and overwrite
them.

EPCGen2 standard

hardware:
e UHF 860-960 MHz
e CRC (cyclic redundancy code), fixed based on polynomial of degree 16,
e a (poor) PRNG (pbb of single 16bit strings close to 2716 repetition 10.000 tags of the
same pseudorandom sequences < 0.1%, predicting the next 16bits based on previous ones
< 0.025%
e 1o hash function, half-duplex communication
e Dbasic functions: select tag, inventory, access (reading/writing)
inventory:

1. query to tag - number ¢ in the range [1..15]

2. each tag chooses a ¢ bit random number ¢
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6

. the tag waits time ¢ with QUERYrep
. the tag chooses a random number from RN16
reader ack with one RN16

. the chosen tag responds with EPC data

tag memory: 32 bit kill password, 32 bit write password, EPC id (32-96 bits), CRC bits, TID
memory - parameters for readers, user memory

privacy:

session unlinkability (two sessions, hard to say if belong to the same tag if the first tag
updated its state in the meantime),

forward privacy (past interactions are safe if state of the tag revealed after refreshing),

backward privacy (future interactions after refreshing safe are safe)

EPC global network architecture

—

—

_>

ONS: Object Naming Service: return address of the EPC issuer

EPCDS: EPC Discovery Service: returns addresses of the parties holding events (time,
location, ...) on one EPC

EPCIS: EPC Information Service - database run by RFID management with events data

essential problem: access to EPCIS data not under strict control

Main security issues:

ii.

1.

1v.

. tag/reader mutual authentication
key distribution
path authentication

clone detection

Anti-cloning solutions

OSK Internal Hash Chain

two hash functions: G and H

each tag shares a secret with a backend database, entries ID;, k}
secret on the tag updated at each authentication, key stored sz
execution:

i. current password shown G (kf )7 backend database searches for a matching entry
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ii. secret update: sz+1 = H(sz)
Dimitriou
i. the reader chooses r; at random and sends to the tag
ii. the tag generates ro at random, transmits H(kf), r9, Hklj(TQ, 1)
iii. the reader computes kf'H = G(kij)7 and sends Hklj_#l(?“g, 1),
iv. the tag verifies Hkgﬂ(rg, r1), if ok, then updates kf“ = G(kf)

against cloning and tracing! But the backend server might be ahead of the tag

Flyweigth protocol
e system holding data loosely synchronized with tags
e for each tag entry in a database

e each tag shares with database a synchronized state of RNG, they share at least one number
at all times

e tag and server get mutually authenticated by sending 3 messages (or at most 5 if something
goes wrong)

o tag stores: (RN1;RN2 ; IDiag; gtag; K 7;cnt) where giag is the current state, K™ the key for
refreshing, and a bit flag cnt

e database stores: (RN1°";RN1"*** ;:RN2 ;RN3 ;RN4 ;RN5 ; ID¢ag; Gtag ;K" ; cnt’)
e RNI is either RN1°% or RN1#ext

e update procedure on the server: cnt’ <0, RN1% + RN1"*** draw the next numbers from
the RNG: RN2 ;RN3 ;:RN4 ;RN5;RN17ext

e alarm is a flag for detection of replay attacks on the side of the tag, it takes the value of
the previous cnt

e alarm’ is analogos on the side of the server

e cnt (ent’ for the server) is a flag that indicates whether the update has finished successfully

1. Reader — Tag: Query
Tag : set alarm < cnt, cnt <— 1 . Broadcast RNj.
2. Tag — Reader — Server: RN,

Server :
i. Check if RN1 is in Database.

ii. If RN; =RN{" for an item in Database,
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then alarm’<cnt’, cnt’ <1 , and return RN,
else if RN; = RNt for an item in Database, then set alarm’<« 0,
update, and return RN,

else abort

iii. Server — Reader — Tag: RNy

Tag :
i. Check RNy, if wrong then abort

ii. If RNy is correct then draw five successive numbers from giae , assign them to the
variables RN3, RN4, RN5 (volatile), RN1 ; RN2, and set cnt <0

iii. If alarm = 0 then return RN =RNj3
iv. Else return RN = RNy

iv. Tag — Reader — Server: RN

Server :

a) If RN =RNj3 and alarm’=0, then update and

accept the tag as the authorized Tag
b) Elseif RN = RNy, then return RNj3 , store RN5 and update.
c) else abort

v. Server — Reader — Tag: RNj3

Tag :

a) Check RNg

b) If RNj is correct and alarm = 1 then return RNj
c) else abort

vi. Tag — Reader — Server: RNj5

Server :
a) Check RNj5
b) If RNj5 is correct then update and accept the tag as the authorized Tag

c) else abort

Lightweight devices
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Practical limitations

traget devices — electronic Product codes etc:
e price $0.05 to $0.10
e Application-specific Integrated Circuits (ASICs)
e printed, designed with tools Hardware Description Languages
e usually passively powered
e like Electronic Product Codes (EPCs)
area:
e a lot of depends on interconnections, however ...
e Measured in Gate Equivalents (GEs): 1 GE = area of a two-input NAND gate.
e higher area - negative and positive influence on the speed
e higher area = higher cost
e 2000 GEs an upper limit for really simple devices
e examples: AES 3400 GE. More lightweight encryption: below 1000GEs
Nonvolatile non-permanent memory:
e EEPROM is expensive
e limit 2K
Power
e passive devices, limit 10 yW
e big differences depending on particular solutions
e temperature constraints, electromagnetic constraints (e.g healthcare devices)
Clock
e limit 100 kHz
e = number of clock cycles per session 150.000
Communication
e animal ID: 30-300 kHz, bandwidth <10kBit/s, distance 0.1-0.5 m
e contactless payment: 300kHz -3Mhz, bandwidth<50kbit /s

e access control: 3-30Mhz, bandwidth<100kbit/s
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e range counting: 300Mhz-3GHz, bandwidth<200kbit /s

e vehicle identification, toll gates: 3GHz-30GHz, bandwidth<200kbit /s, distance 10 m
RNG

e even if randomness is cheap, still we need circuits to handle it (testing entropy ...)

e 1o verifiable data

e at most 128 bits per authentication session is a good estimate
Conventional protocol (implementable)

— a key K shared by the reader and the tag

— challenge-response: reader sends a random nonce a, the tag returns Encg(a), the reader
decrypts and compares with a

— implementaion: less than 1000GEs, 2.5uW power, 500 clock cycles,
— communication 128 bits
— memory 80 bits
— no RNG needed
A warning: LPN “lightweight protocols™

e secrets: x, y
e round:

i. prover to verifier: b

ii. verifier to prover: challenge a

iii. prover to verifier: z=a-x +b- y+ error-vector

iv. verifier: Checks the Hamming weight of z —a-x+b-y
e based on LPN problem: Learning Parity with Noise
e key storage: 2K (ok)
e random bits: over 200K to insure many rounds (disaster)

e communication complexity: over 200K, practical bound at about 30K

Lightweight encryption example: Trivium

e stream cipher, 80 bits key, 80 bits initialization vector, 288 bits of the internal state

e phases: initialization, state update+output of bits
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e generation pseudorandom bits:

fori=1to T do

t1:= Sep + S93

lo:=s162 + S177

t3:= S243 + S288

zit=1t1+ta+ 13

t1:=1t1+ So1- S92+ s171

loi=12+ 175 S176 + S264

l3:=13+ S286 - S287 + Se9

(81, 82y ++vry S93) := (t3, 81, ..., S92)

(894, 895, ----s S177) 1= (t1, S04, ---, $176)

(5178, 5179, ---, S288) = (t1, 5178, -, S287)
e initialization:

— 4 full cycles (4*288 rounds) without giving the output

— initial state: (s1,..., S93):=
(51787 veey 3288) = (O, veey 0, 1, 1, ].)
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