
EMBEDDED SECURITY SYSTEMS 2016

Mirosław Kutyłowski

&grades: 40% lecture, 60% lab

exam, no tests during the course, exam in English unless...

short problems, skills examined not knowledge

lower bound: 40% 3, 50% 3.5, 60% 4, 70 % 4.5 80% 5.0

Objectives

presentation of architecture, limitations and functionalities of embedded systems used in security
area C2 developing programming skills concerning cryptographic smart cards and FPGA

——

1. smart cards ≈6 hours

2. security printing ≈2 hours

3. telecommunication systems ≈2 hours

4. HSM, TPM, remote attestation ≈4 hours

5. FPGA ≈2

6. sensor systems ≈2 hours

7. RFID tags ≈4 hours

8. CUDA and parallel programming ≈4 hours

9. smart meters ≈2 hours

——————————————————————————————————————–

1. SMART CARDS

cards of no-smart solutions:

• embossed - credit cards: reading does not require electricity, elementary protection only

• magnetic: ≈1000 bits, 3 tracks, track 1: 79 6bit chars, track 2: 40 4bit chars, track 3: 107
4-bit chars, limited density (movement in reader against the head), standard data on tracks
1 2, track 3 for read-write, no physical protection, cheap readers, accidental erasure by a
nearby magnet, horror as ATM cards (obsolete in EU but still in use in some countries)

data stored in financial cards: Track 1, Format B:

• start character

• format character

• PAN - primary account number — up to 19 characters. e.g. credit card number

• separator character

• name: 2 to 26 characters

1

• separator character (’^’)

• expirationYYMM.

• service code 3 characters

• discretionary data: may include Pin Verification Key Indicator (PVKI, 1 character),
PIN Verification Value (PVV, 4 characters), Card Verification Value or Card Verifi-
cation Code (CVV or CVC, 3 characters)

• end sentinel (generally ’?’)

• one character validity character (over other data on the track).

smart cards: classification

• memory cards (with security logic and without)

usually memory: non-volatile EEPROM, serial communication, control logic: where you can
write. Cheap. E.g. prepayed telephone cards

• processor: with coprocessor or without (as bad as: RSA in 20 minutes)

• contact or wireless

processor cards:

I/O ——— CPU —- flash memory

RAM

ROM

|

NPU (numerical processing unit)

Contactless cards:

• energy: inductive (low!)

• small range (typicaly 10 cm)

• a reader may activate it from distance

• response with low energy, recognizable from a short distance only

• memory: kilobytes

• well sealed against corrosion

• main parts:

• antenna (most area of the card)

2

• electronic part: modulation, demodulation, clock generator, voltage regulation, reset
generation

• interface between RF interface and memory chip

• access logic

• application data: EEPROM, ROM

contacts:

• 8 fields, normally 6 used (2 for future applications), places for contacts strictly determined
in standard

• 8 connections, 2 auxiliary and can be omitted or used e.g. for USB

connections:

• C1: Vcc voltage supply

• C2: RST reset

• C3 CLK clock

• C4 AUX1

• C5 GDN ground

• C6 SPU standard or proprietary use (SWP)

• C7 I/O

• C8 AUX2

|C1 C5 |

|C2 C6|

|C3 C7|

|C4 C8|

3

• easy to destroy

• corrosion, mechanical scratches, not for intensive use

security tokens:

• type 1: USB tokens – contact interface like in USB, insert into a port after breaking out of
a card

• type 2: small display (eg. 4 digits). input also possible: e.g. a card with 2 buttons (each one
side of the card), battery inserted

optical:

• writing technique - like CD (linear and not circular)

• area designated field according to standards, may leave place for contact interface of a chip
and magnetic strip, less place for graphical part on the card

• high volume (≈ 6MB storage)

• redundancy via error correcting codes, therefore not easy to destroy information, particu-
larly against burst errors

• usage: e.g. border control cards (Mexico-USA), Italian personal ID card, but market success
limited

Physical properties of smart cards:

standard format: 85.6x54 mm (ID-1), other formats for SIM cards (in larger ID-1 cards with
stamping),

functional components:

4

magnetic stripe, signature panel, embossing, imprinting of personal data by laser beam, hologram,
security printing, invisible authentication feature, chip

important parameters of card body (properties defined by the standard):

• mechanical robustness (card and contacts)

• temperature resistance

• surface profile

• electrostatic discharge

• electromagnetic susceptibility

• ultraviolet radiation resistance

• X-ray radiation resistance

Material: trade-off with different properties

PVC: polivinyl chloride, credit cards, cheap, problems with low and high temperatures, injection
molding impossible, lifetime 2 years, cost factor: 1

ABS: a common thermoplastic polymer, SIM cards, termally stable up to 100 C, laser engraving
poor, lifetime 3 years, cost factor: 2

PC: polycarbonate, ID cards, durable, 160 C, problems with hot stamping, lifetime 5 years, cost
factor: 7, low scratch resistance,

PET: health cards, mechanical: very good resistance, lifetime 3 years, cost factor: 2.5

Chip modules:

• the chip too fragile and too thick to be laminated on the surface. the chip is inserted inside

• electrical connections are the problem,

• automatic bonding of the gold wires to the back of contacts with ultrasonic welding

• or mechanically connected to the back of the module

• Chip-on flex modules, stages of production:

• tape with empty modules

• gluing the dice into modules

• bonding the dice

• encapsulating the dice

• lead-frame: chip produced together with contacts and the simply inserted by a robot into
the card body and glued

5

Electrical properties:

• voltage is a problem: 3V for SIM cards (batteries for smartphones weight optimization), 5V
for smart cards, higher voltage needed for EEPROM erasure. charge pumps must be applied

• max 60 mA for 5V, max ambient temperature 50 degrees, 350 µA per megaherz, power
consumption too low to cause overheating, power reduction e.g. for SIM in different phases
of activity (low if the phone is not transmitting and using cryptoprocesor)

• contact C6 used to be for EEPROM erasing but not needed anymore (instead used for
Single Wire Protocol)

• no internal clock supply (this is a potential risk: adversary may increase the clock frequency
to create faults, fault cryptanalysis)

• problems with collisions on the I/O line (too high currents would destroy interface compo-
nents)

• protection against out of range voltages, electrostatic charges, precisely defined activation
and deactivation sequences: first ground, then voltage, then clock, warm reset when voltage
increases on the reset line

Microcontrollers:

• area: manufacturing costs and durability (bending, torsion), typically 10mm2, square shape

• must be integrated, “standard components” are not well suited due to the size of the resulting
circuit,

• native designs are proprietary, even a crime to check the layout

• semiconductor technology -> density increases -> chip area drops . But some problems:
error probability, necessity to decrease voltage, ...

• extremely high reliability needed. So behind the “state-of-the-art” which is frequently
instable

• memory small (e.g. 100KB), a 8-bit processor ok for less than 64KB, then extensions,
usually CISC (complex instruction set computer) - instruction over a number of steps, some
based on RISC (reduced instruction set computer), also 32 bit processors that needed also
for interpreter based architectures (Java Card)

——-

MEMORY

Memory types:

non volatile:

EPROM - UV erasure, not suited for smart cards,

EEPROM - electrical erasure, cell capacitors, discharged state=0, charged state=1, erase state
→ non-erased: changes by single bit possible, non-erased-> erased: page or sector,

6

size per bit: 1.14 µm, up to 100.000-1.000.000 erasures, slow write operations: 2-10ms,

it is based on tunneling efect - if there are electrons on the floating gate then they prevent flow in
the substrate,

data retention time limited - currently 10 years, problems with external influence (radiation) that
may result in changing cell contents

flash - a different technique for writing: hot electron injection, electron to the floating gate come
from the channel and not from tunelling effect

write time - low („flash”) 30µs, erase like for EEPROM (tunneling efect) ,

size 0.47, 10.000-100.000 erasures„ lower voltage (12V) than EEPROM (17V),

NOR flash: free read of individual cells, but complicated circuits,

NAND flash: dense but reading full blocks, NAND used for storage due to large block size, NOR
flash may be used for storing programs

ROM - connections broken – memory via a circuit, irreversible process - one disconnected never
can be reconnected, lack of connection = 0, small: 0.54µm area size

volatile:

RAM - based on transistors and flip-flop, 1.87 µm area size (12.5 bigger than ROM), erasures -
unlimited, write: 70ns

——-

AUXILIARY UNITs:

UART - universal asynchronous receiver transmitter, software solutions would be too slow -
problem: speed of communication versus clock frequency. Divisor: how many sycles are necessary
to send 1 bit. Going from 372 down

USB – USB connection has rigid timing requirements, they cannot be guaranteed by the regular
chip, 12 MB/s (Full Speed), CRC and buffers on the endpoints

SWP single wire protocol - communication between SIM and NFC controller concurrently with the
regular I/O, data sent with voltage modulation and returned with current modulation- full duplex,

timer - a 16 bit counter (or 16 bit), used for timeout detection, watchdog for security reasons

Error detection:

1. XOR checksums

• logical XOR of all bytes

2. CRC cyclic redundancy clock,

• commonly used CRC16: x16+ x12+ x5+1 (ISO),

• code: remainder from dividing data by the CRC polynom

3. Reed Solomon codes,

• x=x1
xk is the sequence to be encoded

• px(a) =
∑

i=1
k

xia
i−1 polynomial over some finite field

• C(x)= px(a1)px(a2)
 px(an) is the code of x, where ai is the ith power of the root of degree
n.

7

• C(x)= x ·A,Vandermodematrix, row 1: 1
 .1, row 2: a1,
 .an, row 3: a1
2, ...,an

2 , and so on

• properties: distance between the codewords: n− k + 1 (this is optimal), since two polyno-
mials of degree k may have only k− 1 equal values

• it can correct half of its bits

• commonly used CRC16: x16+ x12+ x5+1 (ISO),

RNG temperature etc. hard to implement, an implementation: LFSR + reading its state by the
processor at ranom moments

pragmatic solutions: PRNG (sometimes poor),

be aware that the algorithm implemented is not original one (e.g. DSA but DSA+LFSR+...),

PRNG: the next value derived with the key from the previous values.

• Round Robin- eg 12 values in a buffer

• testing - NIST tests, good for excluding biased/faulty generators, no security guarantees

• hardware Trojans: faults in the circuitry that are not changing the layout-wires, but e.g. the
number of electrons in the substrate (invisible during the audit, but may be used to “break
randomness” if the manufacturer knows what are the faulty places

Clock multiplication: external clock cannot have frequency over 5MHz. Internally we can
increase it a few times with a multiplication circuit. Potentially: one could adjust the speed to
adjust energy usage (problems with intereference of oscillators with the GSM, UMTS commu-
nication)

MMU: memory management unit for monitoring boundaries between the application programs
(strict separation). must be tailored to the operating system of the chip

JAVA accelerator: approaches 1) dedicated hardware component, high speed but takes place,
2) native instructions for java

Symmetric crypto coprocessor: 75 microseconds per DES, 150 per 3DES

asymmetric coprocessor:

RSA up to 2048, problematic key generation, probabilistic time, RSA below 2048 bits is “disallowed”
now by NIST

EC 160-256 bits: create DSA, random numbers problematic

hash functions: SHA, Keccak, SHA1 in PL

memory for keys:

• masterkey, derived keys, dynamic keys (session)

• PIN: master or deriving from master key, PIN updates in different memory, problems of
nonuniformity of PIN (no leading zeroes, etc), subclasses where strategy gives higher chances

—————————————————–——————————————————————

8

DATA ENCODING

• saving place is more important than universality and flexibility, properties: limited flexi-
bility, low overhead, much better than XML

• ASN:

Abstract Syntax notation,

ASN.1: primitive types (boolean, integer, octet string, bitstring), constructed data types,
example:

SC_Controller::= SEQUENCE{

Name IA5String,

CPUType CPUPower,

NPU Boolean,

EEPROMSize INTEGER,

RAMSize INTEGER,

ROMSize INTEGER}

CPUPower::= ENUMERATED {

8bit (8),

16bit (16),

32bit (32)}

• encoding via TLV structures: (Tag, Length,Value), tags for frequently used data types
are in a standard,

• BER -Basic Encoding Rules, Distinguished Encoding Rules – subset of BER

Some details:

• tag:1-2 bytes, the first byte: b8, b7 define the class: universal, application, context-
specific, private class, b6: data object primitive or constructed, b5-b1: tag code, if
all ones then the second byte specifies the tag code

• Length: 1-4 bytes:

• 1 byte: 00 to 7F: encode length 0-127

• 2 bytes: 1st byte 81, 2nd byte encodes length 0-255

• 3 bytes: 1st byte 82, 2nd and 3rd bytes encode length 0-65535

• ...

• Data Compression (useful for images):

only very simple methods used as compression/decompression procedures might require too
much space and it does not pay off to compress. Two main methods:

• run-length encoding: blocks of zeroes and ones, each longer block encoded by its
length after an escape symbol, short blocks encoded directly,

9

• encodings like Huffman encoding: variable length encoding based on frequency of
symbols. Only static methods used due to complexity of dynamic Huffman encoding:

– take the expected probability of characters

– for a character x try to assign a code of length log2Pr (x)

—————————————————–——————————————————————

STATE MACHINES

• after activation and reset always in the same initial state

• in case of any trouble - reset

• state machine: transitions describing the events

• standard SDL notation:

and circle as a label (instead of C code from picture simple conditions)

• design rule: write an automaton, avoid cycles (except for reset) with a few short paths

• the input consists of (standard) instructions. Their execution automatically delivers
response to the reader. the set of instructions is available in the card profile

• there are methods to design automata with compound states

• example:

state 1 - - - - - - -

| |

input B input A

| |

state 2 state 1

| __________________________

10

| |

input E input C

| |

state 4 state 3

| __________ |

| | input D

input F input G |

| | state 3

state 1 state 5

|

input H

|

state 5

A, C: operation SELECT

B: VERIFY

D: READ BINARY

E: GET CHALLENGE

F: all instuctions but EXTERNAL AUTHENTICATE

G: EXTERNAL AUTHENTICATE

H: SELECT/UPDATE BINARY

—————————————————————————

FILE MANAGEMENT

general:

• previously direct physical addressing

• still no man-machine interfaces, hexadecimal adressing, etc.

• the file itself contains all information about itself in a header, the rest is the body

• a header is not changed frequently (problems with EEPROM, flash) , so it is placed in a
separate page

• the files are located in the memory according to security requirements, files are shared
sometimes via shared headers

• separation of applications via separation of directories

lifecycle:

1. CREATE (might be with initial data or not)

11

2. ACTIVATE/DEACTIVATE – activation necessary before use (only a limited number of
files might be active at a time!)

3. TERMINATE - permanently blocked, its memory is permanently inaccessible (secure
option)

4. or: DELETE - memory recovered (insecure)

Types:

MF- Master file, main directory, implicitly selected after activation

DF - Dedicated Files, directories, hierarchy, always not deep (1-2 levels)

ADF - application dedicated files - not below MF

EF - elementary file, data necessary for application

Internal EF - hidden files used by operating system. They cannot be selected by applications.

File names

logical names due to transferability of programs

• File Identifier (FID), 2 bytes, some FIDs are reserved

• MF: FID is 3F00 (reserved value for MF)

• DF: FID, DF name (1 to 16 bytes, the first 5 for the name of DF, normally bytes 5-16 are
AID - application ID: 5 bytes RID (registered identifier: A-international registrations, D-
national registration, country code, application provider number), the rest is PIX (propri-
etary application identifier extensions)

• EF: FID (2 bytes), some reserved/predefined (e.g. GSM, student identity cards,...), SFI
(short FID) - to be used in instructions values from 0 to 30, while 0 is the current EF

File selection

one opened for I/O

SELECT (explicitely) or implicit (by READ ..., UPDATE, ...)

File structures

− transparent: a single sequence of characters, no internal structure, reading file contents by
specifying offset, instructions: READ BINARY, WRITE BINARY, UPDATE BINARY

− linear fixed: equal length records, reading by specyfing record number, instructions: READ
RECORD, WRITE RECORD, UPDATE RECORD

− linear variable: frequently not supported, should be avoided, the same instructions as for
linear fixed, but execution more complicated

− cyclic: a fixed number of records of a fixed size, access to the first, the last, the previous
or the next record (in relation to the current record)

Access conditions:

• defined at file creation time and almost always unchanged, access conditions stored in the
file header

12

• state oriented conditions (the current state is compared with the file access information)
or command oriented (which commands have to be executed before accessing the file –
risky in multiapplication cards)

• global security state (card, state of MF) and local security state (state of a file)

• some commands influence directly local security status: e.b LOCK, and REHABILITATE

———————————————————————————————————————

STANDARD OPERATIONS

• each card implements some set, but unnecessary commands are removed for saving
space

• different collections of operations: general, payment cards, telecommunication cards,
over 20 standards, the most important are Global Platform Specification, Common Elec-
tronic Purse Specification (CEPS)

• arguments, return values

File commands:

CREATE FILE

DEACTIVATE FILE or INVALIDATE: locks file

ACTIVATE FILE or REHABILITATE: unlocks file

TERMINATE EF irreversible version of DEACTIVATE

TERMINATE DF

DELETE FILE – actually the same as TERMINATE, however it depends on the operating system
whether the file is really deleted or only marked as deleted

TERMINATE CARD USAGE

SELECT - selects a file, or an upper DF

STATUS - shows selected file and it properties, otherwise no action

READ BINARY for transparent files, arguments’: (number of bytes to be read, offset) return: data,
return code

WRITE BINARY ... this is not a write instruction but the logical AND

UPDATE BINARY - this is the write operation in the standard meaning

ERASE BINARY (not necessarily physical erase)

READ RECORD, WRITE RECORD (like WRITE BINARY), UPDATE RECORD, APPEND
RECORD (adding a new record at the end)

PUT DATA (structure of data objects, objects), GET DATA (number of data objects, tag) - direct
access to TLV objects

SEEK (length of data, pattern, offset, mode (forward from the start, backwards from the start,
forward from the next record, backwards from the previous record) returns record number

SEARCH - another standard, file can be checked

SEARCH BINARY- the same for transparent files

13

INCREASE, DECREASE – for cyclic files, operations on the counter (changing the current posi-
tion)

EXECUTE – starts executable EF (some operating systems enable this)

PIN commands:

VERIFY PIN, VERIFY CHV – PIN verification, (CHV = Card holder Verification) , switch: global
PIN or application specific (each application may have its own PIN)

CHANGE CHV – reset PIN

RESET RETRY COUNTER – with PUK, counter like in ATM cards enable only a limited number
of PIN trials

UNBLOCK CHV (using PUK)

ENABLE VERIFICATION REQUIREMENT – e.g. GSM for PIN with SIM cards

DISABLE VERIFICATION REQUIREMENT – switch off the PIN verification

Security operations:

GET CHALLENGE - returns a random number

INTERNAL AUTHENTICATE - authentication of a card against a terminal

• the terinal sends a random number r and the key number (the key is shared with the card)

• the card returns: XICC8 Enckey(r)

• the terminal tests the result

EXTERNAL AUTHENTICATE - authenticaton of the terminal via a key shared with the card

• the card sends a random number r to the terminal (via GET CHALLENGE)

• XIFD = EncK(r) sent to card, the card checks whether the result is correct (the key K is
shared with the terminal)

MUTUAL AUTHENTICATE - based on a shared key

• GET DATA (data about chip number)

• GET CHALLENGE – RNDICC transfered to the terminal

• authentication:

− the terminal generates RNDIFD, computes
XIFD=EncK(RNDIFD,RNDICC, chip number)

− the card decrypts XIFD, checks if RNDICC is present there. If no then abort.

− the card sends XICC=EncK(RNDICC,RNDIFD, chip number)

− the terminal decrypts and checks the plaintext RNDICC,RNDIFD, chip number

GENERAL AUTHENTICATE (for the use e.g. with PACE)

PERFORM SECURITY OPERATION

14

option COMPUTE CRYPTOGRAPHIC CHECKSUM - computes a cryptographic MAC of a file

option VERIFY CRYPTOGRAPHIC CHECKSUM - checks cryptographic MAC of a file

option ENCIPHER – encrypts the data, the algorithm and mode used are determined first by
MANAGE SECURITY ENVIRONMENT command

option DECIPHER - returns decrypted data

option HASH - returns hash of data, a switch available for performing only the last part of hash
computation (for efficiency reasons)

option COMPUTE DIGITAL SIGNATURE

option VERIFY DIGITAL SIGNATURE

option VERIFY CERTIFICATE

option GENERATE ASYMMETRIC KEY PAIR

option MANAGE SECURITY ENVIRONMENT – setting active key, padding, parameters for key
generation, ...

Global Platform:

LOAD – load data

INSTALL – specifies among others the size of volatile and nonvolatile memory reserved

Hardware test

TEST RAM

TEST NVM – testing non volatile memory, given area rewriten many times with a pattern

COMPARE NVM – reading NVM and checking if the given pattern really retained there

DELETE NVM – clears a given area of NVM

Electronic Purse commands (IEP Intersector Electronic Purse)

INITIALIZE IEP for Load– options:

load amount, currency code , PPSAM (SAM=Secure Access Module) descriptor, random number,
user defined data

response: provider id (PPIEP), IEP identifier, cryptoalgo used, expiry date, purse balance, IEP
transaction number, key information, signature, return code

CREDIT IEP

load: information on key to be used, signature,

response: signature, response code

INITIALIZE IEP for Purchase – the card sends data to the terminal: purse provider identifier, IEP
identifier, crypto algorithm used, expiry data, purse balance, currency code, authentication mode,
IEP transaction number, key information, signature

DEBIT IEP – charging the balance, parameters: PSAM identifier, PSAM transaction number
amount to be debited, currency code, key info, signature, the card returns a signature of the
transaction

15

Credit card commands

GET PROCESSING OPTIONS

GENERATE APPLICATION CRYPTOGRAM

command: desired application cryptogram, transaction related data

response: cryptogram information data, application transaction counter, application cryptogram,
return code

Processing times examples:

(below data may differ for different implementations, especially for cryptographic operations)

READ BINARY 100 bytes: processing time 2ms, transfer 146 ms

UPDATE BINARY 100 bytes with erasing: processing 35ms, transfer 162 ms

EXTERNAL AUTHENTICATE: 235ms processing, 270ms data transfer

INTERNAL AUTHENTICATE: 135ms processing, 201ms data transfer

MUTUAL AUTHENTICATE: 135ms processing time, 163 ms data transfer

VERIFY PIN: 27ms processing time, 56 ms transfer time

DEBIT IEP: 235 ms processing time, 270 ms transfer

CREDIT IEP: 175 ms processing time, 222ms transfer

corollary: processing and transmission times are substantial!

———————————————————————————————————————

Communication

sequence of steps:

1. power up on card

2. card sends ATR (Answer to Reset) , the smart card again in a sleep mode

3. the smart cards obtains APDU and changes to the active mode

4. the card responds

steps 3 and 4 executed in a cycle

ATR “answer to reset”, sent on I/O line, max 33 bytes, usually a few bytes, transmission “divisor
rate” the same for all cards, start must occur in a time window (400-40000 clock cycles - e.g. up
to 8.14 ms for 4.9153MHz frequency of the signal), if not then tries 2 more times

TS - initial character, German: „00111011” (“hl+ hhlhhhll”), French: „00111111” (“ hl + hhlllll”),
start with 1, measures the time of elementary time unit: the time between two first falling edges
of TS and divides by 3

16

T0 format character - defines which “interface characters” transmitted afterwards in ATR (a few
options possible - see below)

interface characters: TA1, TB1, TC1, TA2 ... interface characters defining basic parameters of
transmission, like guard time, divisor, etc.

• TA1: initial etu=
372

f
· sec , where f is the frequency used

work etu=
F

D
·
1

f
sec, where F is the rate conversion factor, D= bit rate adjustment factor

(used due to variations of conditions during operation), the standard describes an encoding
for a few combinations of values

• TAi for i > 1 define supply voltage and parameters of the clock

• TC1 defines extra guard time (standard value is 2etu)

• TC2 defines maximum waiting time between characters

T1, ... Historical characters – chaos, many informations on smart cards, OS, ..

TCK check character (error detection code):

• protocol T=0: not sent as there is bytewise error detection

• protocol T=1: XOR checksum for all bytes starting from T0 up to the TCK

PPS (Protocol Parameter Selection)

Some cards allow changing parameters of the transmissions – important for SIM cards, USIM cards.

• changes on demand by the terminal

• there is a fixed collection of possibilities

• some of the configurations are not specified (“for future use”)

APDU - acronym for Application Protocol Data Unit

APDU is the only way of communication with the card.

• fixed format, quite compressed

• initiated by command APDU - sent from the terminal to the card, the answer is response
APDU

command APDU

• header:

• CLA (class byte, e.g. GSM denoted as ’A0’) it may denote credit card, electronic
purse, private use, ...

• INS instruction byte

17

• P1, P2: two parameters, (no more possible, the meaning defined by the standard)

• body:

• Lc field (length of data transmitted)

• data field

• Le field (length of expected response)

response APDU

• data comes first (length is defined by Le from Command APDU)

• afterwards the status bytes SW1 and SW2.

• The following options for the status: process completed (normal, warning), process aborted
(execution error, checking error)

Secure messaging

the goal: securing the communication with the card: authentication, or even confidentiality

this is a problem even for contact interface as I/O contact can be traced

• authentic mode procedure:

− the CCS (cryptographic checksum) computed, e.g. with AES,

− the input is the original APDU+some padding (necessary to have a full number of
blocks),

− the output is the old APDU in plaintext encoded as TLV structure plus a TLV
encoded CCS

− Warning: there is no confidentiality!

• combined mode procedure:

• CCS computed similarly as for authentic mode

• then the resulting APDU encrypted: but only the TLV objects,

• the result is APDu with CLA, INS, P1,P2 unencrypted, then TLV encoded cypher-
text in the data field

• Problem: the command and parameters are in plaintext! Information leaked

• A solution: using a command ENVELOPE which says the card to decode the cipher-
text and find there the real command to execute

• the response APDU also contains encrypted data

send sequence counter

also a security mechanism: as APDU might be undelivered e.g. by jamming the radio channel

• started with a random value during a communication session

18

• then modified at each round

• two methods of encoding the counter:

• as a separate data field

• the counter is XORed with some portion of APDU before computing CCS – advan-
tage: if the recipient knows the expected value of the counter, then he can easily
recompute it . Main advantage: no extra communication

Logical channels

application may run in parallel on the card, no interleaving between request-response, an APDU
may specify the logical channel - to which application the communication belongs

——————————————————————————————————

Data transmission with contacts

Physical layer

communication only digital, 0V as reference level, the other level is +5V, or +3V, or +1.8V

conventions: 0V represents 0 (direct convention), or 1 (inverse convention)

based on RS232 (0V used instead of negative voltage)

I/O line is in high level always when the data is not sent

serial communication

asynchronous: so the sender adds the start bit at the beginning of each transmission (low voltage),
8 data bits, followed by the parity bit, and stop bits (used as guard time)

transmission speed: frequency/divider, divider says how many periods of the carrier frquency
needed to encode a bit. Typically divider is 372 and 512, 5MHZ max frequency, 32 minimum usable
divider so at most 156 250 bit/s

Memory cards

simplest protocols, variety,

prepaid telephone cards

ISO protocols (15 versions described), mosty used T=0, T=1

T=0

• France, early standard, simple, minimal memory usage

• used for GSM worldwide

• byte oriented

• command structure: CLA, INS,P1,P2,P3, data field, P3 specifies the length of data field

− after receiving the header the card send ACK in a form of Procedure Byte

− then the data transmitted

19

• one byte - twelve bits due to start bit, parity bit and 2 etu for guard time

error handling:

• retransmission of byte immediately if an error detected (not after a block of bytes), error
detected by wrong parity of a byte

• reporting error I/O line down after byte transmission, in halfway of etu (so in a “wrong
place”), during the guard time

• this mechanism technically problematic sometimes, since in some cases below 1 etu nothing
is detectable

SM hard - many versions (with overhead)

interpretation of an APDU by a relatively simple state machine

T=1 protocol

• asynchronous

• half-duplex (both directions communication but not at the same time)

• block oriented (a block is the minimal unit to be transmitted)

• follows layer concept of communication protocols (data for higher layers sent transparently
by data link layer)

Block:

• contains application data and control data of the protocol

• structure of a block:

• prologue field: 1 byte NAD(node address- destination and source), 1 byte PCB (pro-
tocol control block - e.g. sending sequence number(mod 2)), 1 byte LEN (length)

• information field: APDU

• epilogue field: EDC . It contains either a CRC error detection code from ISO or just
LCR - XOR of all bytes (faster, easier but less usable as error detection)

• send/receive counter: binary

• parameters for transmission to avoid deadlocks:

→ CWT -character waiting time, in order to avoid deadlock, (time interval between the
leading edges of characters), CWT = 2CWI + 11 etu, CWI parameter is taken from
ATR, default CWI=13

→ BWT block waiting time: between leading edge of XOR in the epilogue field and
leading edge of NAD in the response of the card

BWT=2BWI ·960 ·
372

f
sec+11 etu

20

for the default BWI=4 it means ≈1.6 sec

→ BGT - block guard time: time between communications in opposite directions

• waiting times can be changed during protocol execution

• block chaining: if block are larger than the buffer of the sender or receiver, then the data
field is splitted and a chain of blocks is used. a flag “more” is used to indicate a chain

• error handling:

• sophisticated mechanism

• error ⇒ the sender receives an R block indicating an error ⇒ retransmission
of the last block

• if retransmission ok, then resynchronisation with an S block, card acknowl-
edges and the counters (on both sides) reset to 0

• if a block cannot be sent then RESET and the whole session terminated, data
transmitted so far is lost

Other protocols with potentially high importance:

USB (Universal Serial Bus)

• T=0, T=1 are no for slow data transmission,

• target: 12Mbit/s USB communication

• the main problem is time synchronization, USB assumes stability of frequency on both sides,
but the smartcard has frequency from the reader – this is unstable. Extra circuit on the
smart card required

• problem also with the code: USB requires a few KB of code for interface on card

• USB is encoding bits via difference of electrical levels on a pair of signal lines (more reliable
than the encoding on a line), C4 and C8 used for USB (AUX1 and AUX2 conatacts, normally
unused)

• encoding method NRZI (nonreturn to zero) encoding: a 0 encoded by polarity reversal, for
1 polarity is unchanged,

• clock for the bus retreived from the polarity reversals, what to do if there is a long block of
1’s? after six ones obligatory bit stuffer - a zero.

• logical connection: 4bit “endpoints”. EP0 for control, other endpoints are unidirectional

• transfer modes:

• control transfers: initiated on EP0, acknowledged on both directions,

• interrupt transfers for small amounts of data – not really an interrupt, since the time
periods for interrupt transfers are fixed

21

• bulk transfers: non-time critical for large amounts of data

• isochronous transfers: for time critical transfers

• least significant bit sent first (little endian), data sent in frames at fixed time intervals (about
1ms), a frame starts with a SOF (start of frame) packet containing a packet identifier, frame
number and CRC code

SWP (Single Wire Protocol)

• NFC controller has to find a way to communicate with the SIM card while the card is
communicating with the telephone with another channel

• C6 contact used as a single line (previous usage as external programming voltage for
EEPROM not needed anymore)

• full duplex

• complicated encoding at the electrical level (card is always the slave):

• S1 (master-to-slave): high voltage at 75% time – a 1, high voltage at 25% of time - a 0

• S2 (slave to master): influences the voltage at the high voltage period of S1: 0 by
reducing the voltage, 1 by keeping it high

—————————————————————————————————-

Contactless transmission

flexible batteries - expensive, so energy must come together with communication

INDUCTIVE COUPLING:

range depends on power consumption inside: no computation on card, then range about 1m, with
writing on the card- range 10cm to enable enough energy, 1m – few tens of microwats, writing
already 100 microwats, processor already 10miliwat, legal restrictions on energy sent by readers

wavelength 2400m or 22m depending on frequency: much smaller than the distance between the
card and reader: physical transformer model can be used

voltage: rectified on the chip, proportional to the signal frequency, depends on the number of
turns in the coil and the coil area, strong current needed on coils

picture page 286

transmission back: (small) fluctuations of current on the side of smart card, in order to be able
to separate from the strong signal form the reader: a different frequency for modulation is used,
the reader applies a filter to separate them

picture page 287

CAPACITIVE COUPLING:

by putting very close (on surface), coupling area both on terminal and on the card, two fields
on card, two on reader, too low energy to run microprocessor directly so inductive coupling used
anyway for providing energy

22

Collision avoidance:

collisions between cards: possible as a single radio channel.

Methods of separation:

• space division multiple access

• time division multiple access - TDMA

• frequency division multiple access - FDMA

• code division multiple access - CDMA – codes on the same frequency. Decoding: searching
how the transmission received could be composed of individual transmissions (main idea of
UMTS)

CLOSE COUPLING CICC

up to 1cm – slot or surface operation, must tolerate electrostatic discharge,

power transmission: via inductive coupling, power frequency 4.9 MHZ,

two pairs H1,H1 and H3, H4 have phase shift of 90 degrees,

two pairs to make it resistant to card position

data transmission:

• terminal to card (PSK phase shift keying): 4 alternating magnetic fields, all 4 fields shifted
by 90o, to change a bit all four fields shift simultaneously by 90o, at the beginning a 1 is
always sent picture page 294

• data transmission from the card to the terminal: modulation at 307.2kHz, change of bit by
shift of phase by 180o of the subcarrier. picture page 294

Capacitive data transmission

• timing constraints: how much time when power off, when power rises, for the first transmis-
sion to the card, for the first transmission from the card

PROXIMITY COUPLING ISO 14443

• normal operation up to 10cm, large antennas for signal detection from bigger distances

• inductive coupling, magnetic field strength defined to be in some interval

• transmission frequency about fc= 13 Mhz

• many different applications

• communication interfaces: type A, type B (terminals periodically perform both just to be
able to talk with both types of cards)

23

type A:

• initialization: bitrate fc/128 , later a different bitrate chosen: fc/k where k= 128, 64,32, 16

so the bitrate is 106kbits/s or 212 or 424 or 847

communication from terminal to card:

• amplitude modulation - with signal going to zero (short interrupts)

• small interrupts (3 µs) ⇒noenergy transmitted to the card but the card survives operating

• encoding: modified Miller encoding:

→ transmitting a 1: pause after half bit interval

→ transmitting a 0: no pause

→ transmitting more zeroes: a pause between two consecutive zeroes, the first 0 has a
pause before

→ start: a pause

→ example: | 0 | 1 | 0 | 0 | 1 |

��������������������

→ end of message logical zero 0 followed by one bit period with no pause

from card to terminal

• load modulation with a subcarrier

• transmitting a 1: carrier modulate by subcarrier in the first half of the bit interval

• transmitting a 0: carrier modulate by subcarrier in the second half of the bit interval

• start of a message: carrier modulated by the subcarrier in the first half of the bit interval

• end of the message: no modulation by a subcarrier

fig. 10.21 page 302

type B:

• no interruptions of energy supply

terminal to card:

• subcarrier modulation

• modulation index 10% (slight changes of the amplitude)

• encoding: NRZ (non-return-zero), simply a higher amplitude means a 1 and the lower one
means a 0.

24

card to terminal:

• modulation with BSPK (binary phase shift keying)- shift of 1800

• no change of the character = no pahse shift, if there is a change then a phase shift,

• initially: subcarrier with no phase shifting for some period of time

• the first character is understood to be a logical 1

figure page 304

Anticollision mechanism

two cards communicating with the reader during initialization phase

type A

• Manchester encoding used to ensure collision detection:

• subcarrier modulated in the half of the interval

• ”first high- then low” or “first low-then high” to encode two bit values

• if the signals are synchronous than overlapping produces a “high-high” and an evi-
dence of collision

• all cards are transmitting synchronously their IDs

• after Reset the card in the Idle state and can only answer the Type A Request (REQA)
and Type A Wake-up (WUPA),

• then the cards send synchronously Answer to Request type A (ATQA)

• the terminal receives the responses and knows that at least one card is present

• message format ATQA: the first part for the reader the second part for the cards,

in the first part bytes of address specified, in the second part all matching cards respond.

• The length of the parts vary, but the total length is the always the same. The first part has
at least 16 bits and no more than 55 bits.

• ANTYCOLLISION or SELECT: the message specifies UID (card ID - either random for
the session or a fixed one) and the number of bits relevant. Only the cards that match the
UID (on a given portion), reply

• step by step until only one card responds

type B

• predefined time slots

• dynamic slotted Aloha, number of slots in the REQB

• all cards Idle until REQB, then choose a random slot to send its data

25

———————————————————————————————————————

SIM Cards and telecommunication systems

Problems to be solved:

• how to authenticate the subscribers?

• how to protect the communication confidentiality?

• how to know the position of the subscriber?

• distributing security functions?

• how to work in roaming with partially trusted partners?

• interoperability

GSM

• suscriber ID: IMEI (international mobile equipment identity) - ID of a phone, IMSI- inter-
national mobile subscriber information - ID of a user (never transmitted in clear), TMSI -
temporary mobile subscriber identity – temporary and related to local area

• SIM card (Subscriber Identity module):

• dedicated commands

• storage for some user data

• user management

• security functions: authentication, encryption

• key management:

a secret key Ki on the smartcard, shared with the provider, a copy available in AuC

possible on-the-fly derivation Ki=f(IMSI), where f is a private function of the provider

• authentication:

1. BSS (or MSC) generates RAND at random and sends to the mobile station

2. mobile station: SRES:= g(RAND,Ki), where g is a provider specific function (e.g.
might be A3)

3. SRES sent to BSS, where the result is checked

• encryption:

1. RAND reused

2. mobile station: Kc:=h(RAND,Ki), where h is a provider specific function (e.g. might
be A8)

3. BSS: Kc:=h(RAND,Ki)

26

4. encryption with the session key Kc and a stream cipher. The key for a frame:

r(TDMA frame number,Kc) where r is a provider specific function (e.g. A5),

the encrypted frame is the

frame plaintext XOR frame key

5. the communication: down and uplink interleaved, short frame

• problems with distributing the user secret keys:

• instead of providing the key Ki of the user, AuC distributes on demand the triples

(RAND, SRES, Kc)

• the local provider from the Visited Network does not have to implement the provider
specific algorithms, or even to know them ⇒ easy roaming and cooperation with
different vendor systems

• attack (IMSI catcher device used):

• the mobile user gets authenticated, but the network is not authenticated,

• use a fake base station, starting authentication, accepting whatever SRES comes and
switching off the encryption

• connecting to other subscriber via a different link (via a prepaid card, not showing
subscriber number)

• attack: only the links between the mobile phoine and the base station are secured, no end-
to-end encryption or authentication. E.g. point-to-point microwave links used in the access
network, where eavsdropping is easy

• protecting identity: TMSI used instead of IMSI after first authentication of a user in a service
area

• local authentication: not all time the triples from the AuC used, instead the sessions are
linked in the Visited Network

• cloning a SIM card is a problem (the provider may create a copy of the card e.g. for
eavsdropping)

UMTS

• USIM card used instead of SIM

• CDMA coding - more sophisticated and in principle better. In practice leads to problems,
and LTE is simplified a lot (a nd makes it more efficient)

• reuse of concepts: limited trust in the Visited Network, identity protection

• correcting security problems:

• fake base station

• encryption in the access network

27

• no cleartext transmissions

• authentication tuples: (RAND, XRES, CK, IK,AUTN), XRES=expected response,
CK=cipher key, IK=integrity key

• XRES=f2(RAND,Ki), CK=f3(RAND,Ki), IK=f4(RAND,Ki), AUTN=SQN⊗
AK||AMF||MAC, AK=f5(RAND, Ki), MAC=f1(RAND,AMF,Ki), AMF - system parame-
ters

• AKA (Authentication and Key Agreement protocol):

1. service network to mobile user: RAND(i), AUTN(i) (taken from the list)

2. mobile user computes verifies AUTN(i) (SQNmust be in a correct range), recomputes
XRES(i) via definition, replies with XRES(i)

3. use CK(i) for encryption and IK(i) for integrity

• problematic synchronisation with SQN

Graphical security means:

• Guilloche patterns - fine lines on the surface under the outer transparent foil, in case of any
manipulation the pattern destoryed. Technique used on bank notes

• colored signature field - printed paper strip glued to the surface

• microtext - look like simple lines but something printed – used on bank notes, defence
against photocopying, readable only under a loupe

• ultraviolet ink

• barcodes (one and two dimensional), two dimensional PDF 417 can encode up to 1000 bytes,
error correction codes so that up to 25% of the surface can be damaged (dirty)

• hologram - few companies in the world, cheap, holograms are embossed holograms, holo-
grams reflected in diffuse daylight (some holograms require laser light), permanently bonded
to the surface microstructure,

• kinegram - as holograms, show different image from different angles.

• MLI: (multiple laser image) - small lenses, some are blackend by the laser. Looks like a
hologram but can contain personalized information (holograms are always the same)

• embossing - like in credit cards (the characters are pressed with a considerable force). Rather
old style...

• laser engraving (surface or inside, uder the coat) – equipment fairly expensive, used to
personalize cards. However, it is slow (major slow down for production of ID cards). However
- a professional forger can make corrections ...

• scratch field – nice for card delivery. The character printed under the coat are not readable
even with ultraviolet, infrared light etc

28

• thermochrome (TC) display: not a real display, but can be reprinted with a special reader.
heating a point to 120oC makes a black dot. Heating the whole strip makes it almost
transparent again

• MM (modulated feature) – hidden MM box, invisible, contains control digits for the
contents of the magnetic strip. Used by POS and ATM terminals. Control digits computed
with MM algorithm

TPM

• Trusted Platform Module, small integrated circuits on motherboard of PC, laptop (but also
specifications for mobile, embedded, ...), 28 pin, may be integrated with other chips

• passive hardware module (responds to requests and nothing more), complicated command
set, TCG Software Stack to ease using TPM,

• specification by Trusted Computing Group of Trusted Platform Alliance (industry initia-
tive)

• on major products: Dell, Lenoovo, HP, Toshiba, ...

• not allowed in Russia (no TPM), own obligatory specification in China (partially secret)

• ”root of trust”

• specification TPM 1.2 and TPM 2.0

• lack of commertial success

• inexpensive chip, hard to use, limited usability

• controversies: a tool to monopolize the software market

• origin: sophisticated malware attacks, defend insecure OS by TPM as antivirus is only
partially effective

goals:

• secure storage

• keeping track of booting process

• attestation of the state of the operating system

• not really converting into secure operating systems

• applications started only in a certain state of OS

• flexible to work with different systems

29

Crypto (TPM 1.2):

• RSA (2048 and 1024)

• SHA-1 (no hash longer than 160 bits!)

• HMAC (keyed-Hash Message Authentication Code)

• RNG

• no symmetric crypto due to US law at that time (restrictions to export and therefore the
whole idea of standardization fails for symmetric algorithms)

• operations: asymmetric encryption, signatures, HMAC,

Storage:

• PCR (platform configuration registers), storing SHA-1 hash values (160 bits)

• each PCR has an index and is devoted to different data: 0-7 measure core system components
like BIOS, 8-15 are OS defined, 16-23 for late launch

• operations on PCR:

• reset at boot time

• otherwise only extend operation Extend(PCR,value)=Hash(PCR||value)

• NVRAM - small nonvolatile random access memory

• counters (only increasing until reset when back to 0)

• storing keys:

• the main key permanently in TPM and never allowed to leave it (”stored internal
to the TPM”) (SRK - Storage Root Key)

• other keys encrypted and exported outside. In case of need imported to TPM,
decrypted with keys that are in TPM

• exported data contain the key value itself and a “proof” - a value known to TPM
only, and authorization information. The exported ciphertext is called a “blob”.

• importing: load command and a blob, TPM decrypts with SRK, checks the proof,
checks the supplied password

• keys might be for encryption or digital signature

Measured Boot

• booting process: a sequence of stages where the next code uploaded and executed

• before executing a code its hash “extends” the PCR value (which PCR depends on the stage)

• the first piece of code should be completelty write-protected

30

• result: a set of PCR values that cannot be manipulated. A fingerprint of what has been
booted. may be used to check against a know value – in case of manipulation the state of
PCRs is different than expected

• this is not the same as Secure Boot where the signature over the code is checked at each stage

Late launch:

the same mechanism as for booting for security critical issues

not controlled by operating system, not breakable

Sealed Storage

• files encrypted with key exported from TPM. Decryption only via TPM

• decryption only when the machine is in a proper state (judgement based on the contents of
PCRs)

Network Attestation

• sending data about the machine state

• steps:

• random nonce sent from a server to TPM

• client software determines identity key to be used

• TPM hashes PCR values together with nonce and signs with identity key

• nonce is for freshness

Overview of TPM 2.0

Cryptography:

• RSA of TPM 1.2 became weak

• SHA-1 of TPM-1 became weak, but replacing it with SHA-2 or SHA-3 impossible due to
hash length (additional 12 bytes)

• TPM 1.2. stores RSA keys via factorization: but only one factor - which saves space, but is
slow (storing both factors would be impossible due to the size). TPM 2.0 uses symmetric
encryption and there is no problem

• TPM 2.0 lists a variety of algorithms: SHA-1 and RSA for backward compatibility but also
SHA-256, AES, EC, (also Chinese algorithms?)

• encryption of a key should be by a key at least as strong as the encrypted key. Contorversies
what is stornger... Mixing algorithms not allowed.

• if a key cannot be duplicated and moved to another TPM then it must be encrypted with
exactly the same algorithm

31

Authentication

• TPM 1.2 very limited: only by passwords and PCR values

• TPM 1.2: password inserted into the command sent to TPM, problem with two users for
the same machine!

• Enhanced Authorization (EA) of TPM 2.0:

• basic mechanism: software interacting with TPM must show knowledge of a password

• policies: multiply authorization methods and Boolean logic to combine them

• TPM stores a hash of a Boolean logic and values for authentication methods

• authentication methods:

• passwords

• PCR values

• TPM counter

• commands (object use may be limited to certain commands)

• digital signature of a user (form a smart card)

Compilible Specifications

• specification well structured (1.introduction, 2. list of variables, structures, constants, 3.
list of commands with brief description in English, 4. subroutines for part 3 in pseudocode)

• misunderstandings because of pseudocode

• Microsoft tool to extract compalible reference TPM – but not available for external users

specification well structured (1.introduction, 2. list of variables, structures, constants, 3. list of
commands with brief description in English, 4. subroutines for part 3 in pseudocode)

Activation

• TPM 2.0 on by default

• firmware has full access to TPM just like the owner

TPM 1.2 details

secure storage

• initialization of TPM: invoking TPM_TakeOwnership creates SRK (Storage Root Key), at
the same time also secret tmpProof - to identify the blobs produced by the TPM

• tree of keys

32

• creating a key: TPM_CreateWrapKey , arguments: parent key, new encrypted authdata,
authorization HMAC based on the parent authdata, key exported

• loading a key: necessary to use the key, TPM_LoadKey2, arguments: key blob, returns
handle to the key to be used in following commands

• after key loaded one can use TPM_Seal and TPM_Unseal , requires authorisation from
authdata

authentication sessions

OIAP – object independet authentication protocol,

nonces of the user process: “odd”

nonces of the TPM: “even” nonces

nonces sent with each message, authentication HMAC takes into consideration the most recent
odd and even nonce (linking the messsages)

for commands that can mniupulate many objects

OSAP – object specific ...,

OSAP secret: based on even and odd nonce and authdata for the object

HMAC computed with OSAP secret

ADIP encryption

AuthData Insertion Protocol

OSAP session can invoke it

authdata is encrypted with XOR with one-time key computed as SHA-1(s,ne) where s is the OSAP
secret and ne is the current even nonce

Platform Authentication

• each TPM has a unique pair of endorsement keys (EK) set at manufacture time and (usu-
ally) certified by manufacturer, used for encryption only

• may be changed by the owner, but regarded as the identity long time key, (tpmProof is
secret, so cannot be used as identity)

• AIK (application identity key) can also be created. They are used to sign application-specific
data and PCR state via TPM_Quote,

• AIK has to be authenticated! Either from a certificate from privacy CA or via Direct
Anonymous Attestation

Privacy CA

• signs public part of AIK

• user software:

• creates AIK via: TPM_MakeIdentity,

33

• sends public key together with certificate on EK to CA

• CA checks the certificate of EK

• CA signs a certificate for AIK

• CA encrypts certificate with a new session key -> blob B1

• CA encrypts the session key and the publik AIK with EK, creating blob B2

• CA sends blobs to software

• software sends B2 to TPM

• TPM checks that AIK is in the TPM and releases the decryption key

• software decrypts B1

Key migration

migratable keys

− TPM-CreateWrapKey with parameter, authdata specified for allowing migration

− TPM_CreateMigrationBlob with input: wrapped key, its parent key handle, migration
type, authorisation digest (parent key usage authorisation, migration authorization)

− type REWRAP: rewraps with migration public key (key of another TPM)

− type MIGRATE: unwraps and XORs with a random password r, returns the blob and r

certifiable migratable keys

− created with TPM_CMK-CreateKey and then certified with TPM_CertifyKey2

− certificate specifies Migration Selection Authority (or more) (authorities restricting desti-
nations)

− Pre-approved Destinations (PAD)

− creating a CMK:

− TPM_CMK_ApproveMA: source TPM creates a ticket to approve some MSA and
PDAs

− TPM_CMK_CreateKey: takes ticket from TPM_CMK_ApproveMA

− TPM_AuthorizeMigrationKey: owner of TPM approves migration of the key

− exporting CMK: (to PDA or MSA)

TPM_CMK_CreateBlob on

− CMK wrapped key

− migrationKeyAuth

34

− MSA list

− sigTicket form MSA nad restrict Ticket (public keys belonging to MSA, des-
tination parent key, and key-to-be-migrated)

Delegation

the purpose: delegating some priviledge of the owner to another party and may be withdraw later

possible to create authdata value for the resource with list of admitted commands

Blobs:

AuthData– controls ability to read, write, aund use objects stored in the TPM and execute TPM
commands, 160 bit secret, knowledge of it by computing HMAC

key blobs - Blob(PK,SK) = PUBBlob(PK,SK) || Enc(PKparent, PrivBlob(PK, SK))

PUBBlob(PK,SK) = PK || PCR values

PrivBlob(PK, SK) = SK|| Hash(PubBlob(PK,SK)) ||tpmProof

Problems:

– huge documentation

- complex administration

- when starting then operation resembles malware operation (rebooting, strange communicates)

- typical PKI problems

- privacy issues (when used for attestation)

– low effect

- malicious use not controlable by OS

——————————————————————————————————————–

REMOTE ATTESTATION

goal:

• attestation that a target machine has certain (desirable) properties

• make decision whether further interaction with this machine (e.g. whether to transmit
sensitive data)

• it should check, whether the target machine is safe if the target is safe

Problems to be solved:

attacks:

• inserting unauthorized code to the servers on a large scale

• the attack is remote

• attacked computers are standard general purpose machines,

35

• network involves interaction between independent entities (retailers, distributors, financial
organizations,...)

Goal: protocol parties can check remotely that the computer of the partner is in some sense in a
decent state (e.g. a bank and a customer: the bank has to check if the customer’s PC is protected)

Attestation architecture:

desired properties:

• measurements: measure diverse aspect of target, choice non-trivial

• a bad strategy: hashes of memory, one cannot derive too much about machine
behavior,

• problems with data compression

• domain separation:

• the attester should not interfere too much with the operation on the target

• the state of the measurement tool must be inaccessable to the target machine

• the result: corrupted or uncorrupted - additional data is itself a problem

• separation implementation strategies:

• a copy of the target on a Virtual Machine

• hardware separation: coprocessor used for attestation only, visibility by hard-
ware constraints and not by configuration of a hypervisor

• self-protecting trust base: not too big (then audit/certification of the trust base too complex)

• delegate attestation to proxies:

• if some data must not reach the attester, then use a proxy between the target and
the attester

• specialized proxies

• attestation management: flexibility is necessary, queries: constraints subject to policies,
communication, Attestation Manager as a local component to govern these issues

Example Architecture

Components:

• trust base: TPM/CPU, hypervisor

• S-Guest: supervisory virtual platform: contains virtual TPM, M&A (measurements and
attestation)

36

• U-guest: user platform with “normal” operating system: contains virtual TPM, M&A

PROTOCOLS

IBM Protocol:

verifier: sends a nounce N , 160 bits to attestation service

attestation service: request N to TPM

TPM to attestation service: ML (measurement list), SignAIK(PCR, N)

attestation service to verifier: SigAIK(PCR, N),ML,AIKcert

verifier: check signatures and certificates

CAVES

• Attester, Client, Server, Verifier, EPCA (Enterprise Privacy CA)

• steps:

1. Client to Server: request R, attester A, key K encrypted by Server’s key (K is a
session key for Client-Server)

2. Server to Verifier: S (Server), R, A, NS (server nonce) encrypted with Verifier’s
public key,

3. Verifier gets from EPCA a signed record containing certificate, A, I(identity key of
Attester), E (name of EPCA)

4. Verifier to Server: encrypted:NV (verifier’s nonce), J (query), V ,NS,M (PCR mask)

5. Server to Client: NV , J , V , M encrypted with K.

6. Client to Attester: (encryption with a long period shared symmetric key) S, NV , J ,
V , M , R.

7. Attester to Client: (encryption as above)

• K ′ (extra key), NV , B (blob)

• B is a ciphertext encrypted with the public key of the verifier of:

• K ′, S, JO (mesurement), M , P (PCR vector)

• signature created with I for Hash(Hash(A, V ,R,NV , J , JO),M , P)

8. Client to Server: B

9. Server to Verifier: B

10. Verifier to Server: encrypted with KS: verification result, NS ,K
′

11. Server to Client: data encrypted with K ′

37

Some properties:

• client and server cannot read the attestation result and cannot manipulate it without detec-
tion

Direct Anonymous Attestation (DDA)

goal: remote testing a device on the other side without learning its identity

parties:

− host (operating system and application software)

− TPM

− the issuer (similar as Privacy CA and checks EK certificate)

− verifier

protocol:

• DDA-join: TPM chooses a secret f , the issuer creates a blind signature of f (credential
cre), encrypts it with the Endorsement Key and sends it to the TPM

• DDA-sign: signature of AIK using (f , cre)

Building blocks

Schnorr authentication modulo an RSA number

• RSA number n of length ln

• user’s public key y= gxmodn , x is a private key of length l

• authentication: the prover chooses r of length ln + lc+ lphi and t= grmod n, he sends t to
the verifier

• the verifier chooses c at random

• the prover replies with s= r − x · c computed as integers, for large lphi this does not leak
much information about x

• the verifier checks that t= yc · gs

• security argument based on Strong RSA assumption:

on a random RSA number n and u<n it is infeasible to find v and e> 1 such that
ve= umodn.

It follows that for random g, h it is hard to compute w < n and integers a, b, c such that
wc= gahbmodn where c does not divide a and b

38

A version proving that x is in a given interval

• as above but r of length lx+ lc+ lphi

• .. and a check that s is of the length at most lx+ lc+ lphi (including negative numbers)

• similar protocols may be built to show that the secret is in a given interval

Camenisch-Lysyanskaya Signature

• blind signature: a signer does not see the message to be signed,

• the resulting siganture is randomizable

• keys: n= p · q RSA number, public key: randomly chosen squares R0,R1,
 ,RL−1, S ,Z <n,
secret key: p

• message space: L strings of lm bit numbers

• creating a signature:

1. choose a prime number e of length le> lm+2

2. choose a random number v of length lv= ln+ lm+ lr, where lr is a security parameter

3. compute A8

(

Z

R0

m0

RL−1

mL−1Sv

)

1/e

modn

where 1/e means 1/emod (p− 1)(q− 1)

4. output (A, e, v)

• verification: check that Z=AeR0
m0

RL−1

mL−1Sv mod n and that the range of each element is
as described

• provable security: based on the strong RSA assumption

Camenisch-Lysyanskaya Signature on a (partially) secret message

• as CL but now the receiver computes U =R0
m0

Ri

miSv ′

for v ′ chosen at random, and sends
U to the signer

• the receiver proves (noninteractive zero konwledge proof) that he actually knows some
m0,
 ,mi, v

′ that yield U

• the signer computes A8

(

Z

U ·Ri+1

mi+1

RL−1

mL−1Sv ′′

)

1/e

modn

• the signer proves that A has this form

• the signature is (A, e, v), where v= v ′+ v ′′

Proving posession of a signature

• proving possesion of signature (A, e, v) of m, i.e. satisfying Z =R0
mSvAemodn

39

• given a signature (A, v, e) choose r at random and compute A′
8 A ·S−r, v ′

8 v+ e · r, the
new signature is (A′, e, v ′)

• A′ is uniformly distributed, so it does not leak information on the signature

• proving possession of ǫ, v ′, µ such that Z =R0
µA′ǫSv ′

and that they are in a proper interval

Direct Anonymous Attestation - an overview

Properties:

unforgeability. DAA-Sign can be sucessful only if TPM before has executed DDA-Join

anonymity. information from DDA-Sign do not enable to link with DDA-Join

rogue tagging. given DDA related secret information of a rogue TPM, the verifier can check
if DDA-Sign has been executed by this party

System parameters:

• lengths of diverse parameters,

Key generation (performed by the Issuer)

• RSA number n= p · q (p=2p′+1, q=2q ′+1)

• S random generator of quadratic residuesmodn (squares modulo n)

• random x0, x1, xz< p′q ′

• Z =Sxz, R0=Sx0, R1=Sx1

• a proof that Z,R0, R1 have been computed correctly

• primes ρ,Γ, with Γ= rρ+1, where ρ is not a factor of r

• group ZΓ
∗ , and an element γ ∈ZΓ

∗ of order ρ

• a random identifier ζI

DDA-Join

• TPM chooses a random f ∈ZΓ
∗ , f = f0||f1 (concatenation)

• TPM computes its pseudonym NI= ζI
f modΓ and sends it to the Issuer

• the issuer checks all rogue (f0
′, f1

′) whether NI � ζI
f0

′||f1
′

modΓ (if yes, then abort)

• blind signature of f by the Issuer:

• TPM chooses v ′ at random, U =R0
f0R1

f1Sv ′

, sends U to the issuer

• TPM proves that U has been created correctly

• TPM authenticates U to the issuer with the endorsement key

40

• Issuer chooses random v ′′= v̂ +2
 . (a leading one inserted)

A=

(

Z

U ·Sv ′′

)

1/e

sends A, v ′′, e to the host of TPM

• Issuer proves to the host that A, v ′′ have been correctly created

• the host stores A, v ′′, e and sends v ′′ to the TPM

• TPM sets v= v ′+ v ′′ and stores (f0,f1, v)

• so after executing the protocol host+TPM obtain a “certificate” from the Issuer, but neither
the host not the TPM knows it completely

DDA-Sign

• the host sends ζ, a random power of γ, to the TPM

• TPM computes NV = ζ f0||f1 and sends it to the host

• TPM and the host create a “signature of knowledge” that they know together DDA-certifi-
cate and that the same numbers f0,f1 have been used:

i. the host picks w at random at some range and computes A′=A ·S−wmodn

ii. TPM picks rv, r0, r1 in some predefined range and randomizes:

Û =R0
rf0R1

rf1Srv modn

rf̂ = rf0||rf1mod ρ

NV = ζrf modΓ

and sends Û , NV to the host

iii. the host picks re, rw at random (in an appropriate range) and computes

A′= Û
−1 ·A′re ·Srw

iv. the host receives a nonce nV from the verifier and computes a hash ch of

... (parameters), ζ , A′, NV , A
′, NV , nV

v. TPM computes c=Hash(Hash(ch, nt), b,m) for a nonce nt and b=?

and sends c, nt to the host

vi. TPM computes sv = rv + c · v, sφ0
= rf0− c · f0, sφ1

= rf1− c · f1 and sends them to
the host

vii. the host computes over integers

sǫ̂ = re+ c · (e− 2le−1), sv̂ = sv+ rw+ c · (e ·w)

viii. the signature ζ , A′, NV , c, nt, sv̂ , sφ0
, sφ1

, sǫ̂

41

• Verification:

i. reconstruct NV as NV
c ·ζsφ0

+2
lf

ii. reconstruct A′ as
(

Z ·A′−2le−1
)

−c
·R0

sφ0 ·R1
φs1 ·Ssv̂

iii. recompute c

iv. change the range of all elements

v. check whether NV is on the rouge list

FPGA

to be expanded here

RFID security

Distance bounding

many applications require that the RFID device communicates with a terminal in a close proximity.
Normally, a device can talk only with a terminal that is physically close. But there are attacks:

• delay short, standards leave plenty of time - long timeouts (e.g. 5s)

• NFC devices can be used (emulate cards and readers)

• practical attacks on biometric passport, studentID, Mifare classic, world cup tickets 2006

Attack types

• distance fraud: a sole dishonest prover convinces the verifer that he is at a shorter distance
than he really is

• e.g. with a strong signal from remote place

• mafia attack: the prover is honest, but an attacker tries to modify the distance that the
verifer establishes by interfering with their communication.

• a relay between a genuine card and a genuine terminal

• the relay consists of two device: one close to the terminal and one close to card

42

• only relaying messages. If fast then the card believes it is close to the terminal

• communicating with a sales terminal on one side and with a remote clients card on
the other side - enabling payment that is supposed to work only from a small distance

• terrorist attack: the dishonest prover colludes with another attacker that is closer to the
verifer, to convince the verifier that the distance to the prover is short.

• distance hijacking: dishonest prover convinces the verifer that it is at short distance
exploiting the presence of an honest prover

Distance bounding protocols

takes response time or signal strength

A basic protocol:

1. for i=1 to n (rapid bit exchange)

• verifier: start clock, a random Ci sent to the prover

• prover: send a random Ri to the verifier

• verifier: stop clock

2. prover: signs C1, R1,
 ., Cn, Rn

3. verifier: checks the signature and checks the maximal time distance between sending Ci

and receiving Ri (should be within some security bounds)

Attack (problem): a rogue prover can send Ri before getting Ci

Solution (Chaum-Brands):

1. verifier chooses at random n bits αi

2. prover chooses at random n bits mi

3. prover creates a commitment for the bits m and sends it to the verifier

4. rapid bit exchange: for i=1 to n

• verifier: sends αi to the prover

• prover: βi=mi xorαi and sends βi to the verifier

5. prover: signs α1β1α2β2
 .αnβn, sends the signature and the opening to the commitment

6. verifier: checks the signature and checks the maximal time distance between sending αi and
receiving βi (should be within some security bounds), check the commitment

Hijicking attack:

• intercept the signature sent in step 5 (with jamming of the signal to the verifier)

• send own signature over α1β1α2β2
 .αnβn and the opening to the commitment

43

Version based on public key verification (Fiat-Shamir protocol)

(no signatures but proof of knowledge of square root X of Y)

1. prover generates at random n numbers Ri and sends Si=Ri
2modN to the verifier

2. prover chooses at random n bits βi,

3. prover creates a commitment for the bits β1β2
 .βn and sends the commitment to the verifier

4. verifier chooses at random n bits αi,

5. rapid bit exchange: for i=1 to n

• verifier: sends αi to the prover

• prover: immediately responds with βi to the verifier

6. prover: presents an opening to the commitments for β1β2
 .βn, and sends the responses
Xαixor βiRi (which is either X ·Ri or Ri depending whether αi= βi)

7. verifier: checks the response (by squring it and comparing with SiY or Si) and checks the
maximal time distance between sending αi and receiving βi (should be within some security
bounds), check the commitment

Problem of noise and transmission errors

• many transmissions lost, so the protocol might be instable

• asymmetric cryptography

• mafia attack suceeds with pbb 2−n

Hacke-Kuhn

(kind of standard protocol in this area)

• the prover is weak, the verifier is strong (terminal)

• the prover and the verifier share a secret key K

• steps:

1. the verifier sends a nonce NV

2. the prover sends a nonce NP

3. the prover calculates R=h(K,NV , NP), and splits R into two halves: R1, R2,

4. verifier chooses C1,
 ., Cn at random

5. rapid bit exchange: for i=1 to n:

a) the prover sends Ci

44

b) the verifier responds with the ith bit of RCi

6. the verifier checks the bits received

problem: chance of
(3

4

)n
to succeed if the distance is bigger but the adversary knows K: the

answers sent in advance and for about n/2 positions the bits of R0, R1 are the same, only for
1

2
n

bits we need to guess the answer in advance

options:

void slots: the third pseudorandom sequence that determines if in a given time slot to send a
message or not

(asking for a response in a wrong time will be detected)

Swiss-knife:

shared secret x, the reader has a database of the tags and their keys, the protocol achieves mutual
authentication and distance bounding

1. the reader chooses a random nonce NA and transmits it to the tag

2. the tag chooses a random NB, computes a temporary key a= fx(NB, systemparam) using
its permanent secret key x

3. the tag splits his permanent secret key x in two shares by computing Z0= a, Z1= a xor x

4. the tag transmits NB to the reader

5. rapid bit exchange: for i=1 to n perform (the response time measured each time)

i. the reader chooses a bit ci and sends to the tag

ii. the tag responds with ri=Zci
i

6. final phase (it is slow, time not measured):

i. the tag computes tB= fx(c1,
 ., cn, ID, NA, NB)

ii. the tag transmits tB and c1,
 ., cn it received during the rapid bit exchange phase.

iii. the reader searches its database for (ID, x) such that tB= fx(c1,
 ., cn, ID,NA,NB);
it recomputes Z0, Z1.

iv. the reader checks the responses for:

• the number of errors for ci in response of the tag

• the number of bad responses ri

• the number of too slow responses

the total numer should be small. There is a threshold above which the reader rejects

v. the reader responds with tA= fx(NB)

45

vi. the tag checks tA

RFID privacy

purpose: provide a system where a (passive) eavesdropper cannot trace the tags and overwrite
them.

EPCGen2 standard

hardware:

• UHF 860-960 MHz

• CRC (cyclic redundancy code), fixed based on polynomial of degree 16,

• a (poor) PRNG (pbb of single 16bit strings close to 2−16, repetition 10.000 tags of the
same pseudorandom sequences < 0.1%, predicting the next 16bits based on previous ones
< 0.025%

• no hash function, half-duplex communication

• basic functions: select tag, inventory, access (reading/writing)

inventory:

1. query to tag - number q in the range [1..15]

2. each tag chooses a q bit random number t

3. the tag waits time t with QUERYrep

4. the tag chooses a random number from RN16

5. reader ack with one RN16

6. the chosen tag responds with EPC data

tag memory: 32 bit kill password, 32 bit write password, EPC id (32-96 bits), CRC bits, TID
memory - parameters for readers, user memory

privacy:

• session unlinkability (two sessions, hard to say if belong to the same tag if the first tag
updated its state in the meantime),

• forward privacy (past interactions are safe if state of the tag revealed after refreshing),

• backward privacy (future interactions after refreshing safe are safe)

EPC global network architecture

→ ONS: Object Naming Service: return address of the EPC issuer

→ EPCDS: EPC Discovery Service: returns addresses of the parties holding events (time,
location, ...) on one EPC

46

→ EPCIS: EPC Information Service - database run by RFID management with events data

essential problem: access to EPCIS data not under strict control

Main security issues:

i. tag/reader mutual authentication

ii. key distribution

iii. path authentication

iv. clone detection

Anti-cloning solutions

OSK Internal Hash Chain

• two hash functions: G and H

• each tag shares a secret with a backend database, entries IDi, ki
1

• secret on the tag updated at each authentication, key stored ki
j

• execution:

i. current password shown G
(

ki
j
)

, backend database searches for a matching entry

ii. secret update: ki
j+1
8 H

(

ki
j
)

Dimitriou

i. the reader chooses r1 at random and sends to the tag

ii. the tag generates r2 at random, transmits H
(

ki
j
)

, r2, Hki
j(r2, r1)

iii. the reader computes ki
j+1
8 G

(

ki
j
)

, and sends Hki
j+1(r2, r1),

iv. the tag verifies Hki
j+1(r2, r1) , if ok, then updates ki

j+1
8 G

(

ki
j
)

against cloning and tracing! But the backend server might be ahead of the tag

Flyweigth protocol

• system holding data loosely synchronized with tags

• for each tag entry in a database

• each tag shares with database a synchronized state of RNG, they share at least one number
at all times

• tag and server get mutually authenticated by sending 3 messages (or at most 5 if something
goes wrong)

47

• tag stores: (RN1 ;RN2 ; IDtag; gtag; K
r;cnt) where gtag is the current state, Kr the key for

refreshing, and a bit flag cnt

• database stores: (RN1cur;RN1next ;RN2 ;RN3 ;RN4 ;RN5 ; IDtag; gtag ;Kr ; cnt’)

• RN1 is either RN1cur or RN1next

• update procedure on the server: cnt′← 0, RN1cur ←RN1next, draw the next numbers from
the RNG: RN2 ;RN3 ;RN4 ;RN5;RN1next

• alarm is a flag for detection of replay attacks on the side of the tag, it takes the value of
the previous cnt

• alarm’ is analogos on the side of the server

• cnt (cnt’ for the server) is a flag that indicates whether the update has finished successfully

1. Reader→Tag : Query

Tag : set alarm← cnt, cnt← 1 . Broadcast RN1.

2. Tag→Reader→ Server: RN1

Server :

i. Check if RN1 is in Database.

ii. If RN1=RN1
cur for an item in Database,

then alarm′←cnt′, cnt′← 1 , and return RN2

else if RN1=RN1
next for an item in Database, then set alarm′← 0,

update, and return RN2

else abort

iii. Server→Reader→Tag: RN2

Tag :

i. Check RN2, if wrong then abort

ii. If RN2 is correct then draw five successive numbers from gtag , assign them to the
variables RN3, RN4, RN5 (volatile), RN1 , RN2, and set cnt← 0

iii. If alarm = 0 then return RN=RN3

iv. Else return RN = RN4

iv. Tag→Reader→ Server: RN

Server :

a) If RN=RN3 and alarm′=0, then update and

accept the tag as the authorized Tag

b) Elseif RN=RN4, then return RN3 , store RN5 and update.

48

c) else abort

v. Server→Reader→Tag: RN3

Tag :

a) Check RN3

b) If RN3 is correct and alarm = 1 then return RN5

c) else abort

vi. Tag→Reader→ Server: RN5

Server :

a) Check RN5

b) If RN5 is correct then update and accept the tag as the authorized Tag

c) else abort

Lightweight devices

Practical limitations

traget devices – electronic Product codes etc:

• price $0.05 to $0.10

• Application-specific Integrated Circuits (ASICs)

• printed, designed with tools Hardware Description Languages

• usually passively powered

• like Electronic Product Codes (EPCs)

area:

• a lot of depends on interconnections, however ...

• Measured in Gate Equivalents (GEs): 1 GE = area of a two-input NAND gate.

• higher area - negative and positive influence on the speed

• higher area ⇒ higher cost

• 2000 GEs an upper limit for really simple devices

49

• examples: AES 3400 GE. More lightweight encryption: below 1000GEs

Nonvolatile non-permanent memory:

• EEPROM is expensive

• limit 2K

Power

• passive devices, limit 10 µW

• big differences depending on particular solutions

• temperature constraints, electromagnetic constraints (e.g healthcare devices)

Clock

• limit 100 kHz

• ⇒ number of clock cycles per session 150.000

Communication

• animal ID: 30-300 kHz, bandwidth <10kBit/s, distance 0.1-0.5 m

• contactless payment: 300kHz -3Mhz, bandwidth<50kbit/s

• access control: 3-30Mhz, bandwidth<100kbit/s

• range counting: 300Mhz-3GHz, bandwidth<200kbit/s

• vehicle identification, toll gates: 3GHz-30GHz, bandwidth<200kbit/s, distance 10 m

RNG

• even if randomness is cheap, still we need circuits to handle it (testing entropy ...)

• no verifiable data

• at most 128 bits per authentication session is a good estimate

Conventional protocol (implementable)

− a key K shared by the reader and the tag

− challenge-response: reader sends a random nonce a, the tag returns EncK(a), the reader
decrypts and compares with a

− implementaion: less than 1000GEs, 2.5µW power, 500 clock cycles,

− communication 128 bits

− memory 80 bits

− no RNG needed

50

A warning: LPN “lightweight protocols”:

• secrets: x, y

• round:

i. prover to verifier: b

ii. verifier to prover: challenge a

iii. prover to verifier: z= a ·x+ b · y+ error-vector

iv. verifier: Checks the Hamming weight of z − a ·x+ b · y

• based on LPN problem: Learning Parity with Noise

• key storage: 2K (ok)

• random bits: over 200K to insure many rounds (disaster)

• communication complexity: over 200K, practical bound at about 30K

Lightweight encryption example: Trivium

• stream cipher, 80 bits key, 80 bits initialization vector, 288 bits of the internal state

• phases: initialization, state update+output of bits

• generation pseudorandom bits:

for i=1 to T do

t18 s66+ s93

t28 s162+ s177

t38 s243+ s288

zi8 t1+ t2+ t3

t18 t1+ s91 · s92+ s171

t28 t2+ s175 · s176+ s264

t38 t3+ s286 · s287+ s69

(s1, s2,
 ., s93)8 (t3, s1,
 , s92)

(s94, s95,
 ., s177)8 (t1, s94,
 , s176)

(s178, s179,
 ., s288)8 (t1, s178,
 , s287)

• initialization:

− 4 full cycles (4*288 rounds) without giving the output

− initial state: (s1,
 , s93)8 (K3,
 ,K80,0,
 ,0), (s94,
 , s177)8 (IV1,
 , IV80,0,
 ,0),
(s178,
 , s288)8 (0,
 , 0, 1, 1, 1)

51

Figure 1.

Side channel analysis

conventional cryptanalysis: input-output data, black-box model (internal values not known,
even the code)

side channel cyptanalysis: other data indirectly leaked from the device used as well

side channel information:

− execution time (e.g. the if-branches may have different execution time)

− electromagnetic radiation (electromagnetic field created by current in a wire, depends on
direction)

− power consumption (e.g. consumtion depends on instructions and changes of contents)

− heat

− light, noise, ...

− frequency change and errors (some operations may not finish on time)

− ...

coverage by industrial standards and requirements:

− frequently mentioned

− proprietary countermeasures, patents

− standards such as FIPS are behind the attacks state-of-the-art

52

TIMING ATTACKS

example: password verification

− propose passwords of the type (b,0,0,...0)

− for the right b the error message comes slightly later

− then proceed with the correctly guessed bytes and guess the next ones

example: RSA

− time depends on the number of multiplications

− the multiplication executed e.g. by Montgomery method that creates the output modulo
2N and not N . Subtraction necessary in some cases

− when dk−1,
 ., dk−n+1 already known we try to derive dk−n

− guess dk−n

− L0= {m: computingR08 R0 ·R1 does not require subtraction}

L1= {m: computingR08 R0 ·R1 requires subtraction},

− τi= average time for Li ,

− if τ0≈ τ1 then the guess was wrong, but we learn dk−n

SIMPLE POWER ANALYSIS

− measuring power consumption: probe+resistor+oscilloscope on power supply or ground

− easy for smart cards etc with external power supply

53

− models of power consumption:

− Hamming distance model: consumption= number of changes the bits stored in the
memory

− Hamming weight model: consumption= Hamming weigth of the values stored after
the operation

Applications:

− power traces of operations, reverse engineering the code executed

− trace signatures for operation arguments

example: RSA

− computation starts with squaring a 1 (low consumption)

− multiplication has higher consumption then squaring, so visible if low+high or only high
consumption. So the bit of the key derived

example: DES key schedule

− Kt=Ct||Dt, where Ct8 Ct−1≪ b, Dt8 Dt−1≪ b, where b depends on the round

−

−

− step 6 is executed or not!

DIFFERENTIAL POWER ANALYSIS

− statistical difference for power consumption depending on whether at a given moment 0 or
1 processed

− building a statistical model

− testing

54

Example: AES

− message m and key K are 4x4 matrices

− AddRoundKey and then 10 rounds of: SubBytes, ShiftRows, MixRows, AddRoundKey

− guess the round key ku,v of the first round and check power consumption of Subbytes

− classes corresponding to result of XOR with the key – consumption by SubBytes at (u, v)

− a lot of noise from other operations

More involved statistical tests: checking correlations, ...

FAULT ATTACKS

example RSA with Chinese Remainder Theorem

− instead of mdmodN for N = p · q:

− compute c1=mdmod p and c2=mdmod q

− reconstruct md as c1 · q · (q
−1mod p)+c2 · (p · (p

−1mod q)modN

− error in computation of c1: the result differs from the correct one by a multiply of p

COUNTERMEASURES

• reducing the side channel signal

• artificial noise of the side channel signal: wait states, dummy opearations, compiling from
equivalent subblocks but different characteristics

• unstable clock

• masking: e.g. instead of computing Hash(m)dmodN compute

(Hash(m) + r1 ·N)d+r2·φ(N)mod r3N)modN

• avoid key dependant branching

• checking the output before outputting

SUBVERSION MODEL

• assume the adversary may manipulate software on the embedded device, no way to check it:

− the problems might be already on the hardware level,

− restricted access to memory (due to security issues)

− no testing circuit (due to security issues)

− logic of the circuit may cheat about the memory contents

55

− protection against invasive methods

− ... but a tiny change may subvert the software into a malicious one

• narrow kleptographic channel in order to leak a secret key K

− requires some randomness in the protocol and a secret P known to the adversary
and the software

− during the ith protocol execution, choose randomness r (visible to outsiders)

− compute (
 , b, a): =Hash(r, P)

− if the ith bit of K is b, then proceed, else choose randomness again

• countermeasures:

− no randomness for protocol execution (hard, the designers love to use randomness as
it simplifies the design very much. Major rethinking needed)

− different key material for each device

EXAMPLE: smart meters case in Spain:

− communication between a smart meter and a power grid protected with a
secret key

− symmetric crypto used due to price issues

− the same key used for all smart meters

− it suffices to break into one device

− software updates in smart meters secured with this key

− how to do it properly:

→ system key K

→ a device with the serial number i holds a key Hash(i, K), the infra-
structure recomputes the key when needed

→ a hierarchy of keys possible

− open specification necessary (see BSI Richtlinie)

− key evolution:

− devices A and B change their shared key after each successful session

− the change: K:=F (K,i) where K is the key and i is the parameter depending
on the session (e.g. the session key), F is a “one-way function”

− the adversary has to observe most/all interactions to keep track on the key
changes. If not, then the shared key becomes invisible again

− key evolution for RSA: e8 e · δ (as integers, public key), d8 d/δ mod φ(n)
(private decryption key)

56

− key pool: random key predistribution: a large pool K, a device holds a subset of
cardinality k.

− projection space with |K | elements, each point holds a key

− each device holds keys corresponding to points from a line

− each two lines intersect in exactly one point

− compromising t devices makes at most t points compromised from a line of a
different user

• the problem of key generation:

− must be randomized in order to avoid key guessing. So the general recommendation
does not work

− the generation process may be focused on a subspace of P such that:

− for an observer it is infeasible to detect that we are using the keys form a
subspace (example: exponents x such that hxmod p is odd while h is secret)

− the subspace may enable an attack

− example: attack against RSA

− countermeasures:

− ”cliptography”:

− standard procedure: secret key generated as k8 E(r, params), where
r is the random parameter

− cliptographic: r chosen at random, then r ′ = Hash(r), and k 8 E(r ′,
params)

− intuition: key derivation may try to get a key from a subset of “weak
keys” or “keys with a trapdoor”. Difficult to hit such a subset after
hashing

− does not work against bounded size of probability space for r (brute
force still works)

− ”co-generation”: the user himself can modify the key:

− for DL based systems: instead of x chosen at random by device and
public key gx

→ the device chooses x1 and declares the public key y1= gx1

→ the user chooses x2, sends x2 to the device, the public key should
be y= y

1

x2. Private key x= x1x2

− example: for Pseudonymous Signature from BSI specification:

→ the key is x1, x2 such that x=x1+x2 · zmod q for some system

secrets x and z.

57

→ the device has two pairs preinstalled: (x1
′ , x2

′) and (x1
′′, x2

′′) and
takes their linear combination

α · (x1
′ , x2

′)+ β · (x1
′′, x2

′′) for α+ β=1mod q

→ perfectly secure, since a subspace of dimension 1 in a linear space
of dimension 1!

→ verifiable that the device follows the procedure

− multiple devices:

→ protocol executed by more than one device on the side of the user,
devices from different providers

→ example: electornic signature from Schnorr scheme:

1. the 1st device computes r18 gk1 for a random k1

2. the 2nd device computes r28 gk2 for a random k2

3. exchange r1 and r2,

4. compute r8 r1 · r2

5. e8 hash(r,M) for a message M to be signed

6. the 1st device computes s18 k1 −x1 · e

7. the 2nd device computes s28 k2 − x2 · e

8. compose the signature (r, s) where s8 s1+ s2

− hardware separation:

→ case of CAM:

→ compute Y 8 gy for a random y, derive DH key K8 YA
y , then

compute and send w8 y/x, the recipient can check that Xw=Y

→ choose y at random, Y 8 Xy, derive DH key K8 (YA
y)x , send

w= y, the recipient can check that Xw= Y

advantage: the second option may implement x in a unit that only
answers by raising to power x

model of encapsulated subunits (“Forbidden City”)

POWER GRID

• threat: large scale autonomous systems providing stabilization of the power supply network

• difficult issue of balancing the power consumption and production

• local safety measures may create a blackout on a global scale

• poor design of security, black-box solutions, proprietary

• major threat (not only for cyber war)

• recommendation: self-stabilization, local systems that survive

58

