EMBEDDED SECURITY SYSTEMS 2015

Mirosław Kutyłowski

&grades: 40% lecture, 60% lab

exam, no tests during the course, exam in English unless...

short problems, skills examined not knowledge

lower bound: 40% 3, 50% 3.5, 60% 4, 70 % 4.5 80% 5.0

Objectives

presentation of architecture, limitations and functionalities of embedded systems used in security area C2 developing programming skills concerning cryptographic smart cards and FPGA

- 1. smart cards ≈ 6 hours
- 2. security printing ≈ 2 hours
- 3. telecommunication systems ≈ 2 hours
- 4. HSM, TPM, remote attestation ≈ 4 hours
- 5. FPGA ≈ 2
- 6. sensor systems ≈ 2 hours
- 7. RFID tags ≈ 4 hours
- 8. CUDA and parallel programming ≈ 4 hours
- 9. smart meters ≈ 2 hours

1. SMART CARDS

cards of no-smart solutions:

- embossed credit cards: reading does not require electricity, elementary protection only
- magnetic: ≈1000 bits, 3 tracks, track 1: 79 6bit chars, track 2: 40 4bit chars, track 3: 107
 4-bit chars, limited density (movement in reader against the head), standard data on tracks
 1 2, track 3 for read-write, no physical protection, cheap readers, accidental erasure by a nearby magnet, horror as ATM cards (obsolete in EU but still in use in some countries)

data stored in financial cards: Track 1, Format B:

- start character
- format character
- PAN primary account number up to 19 characters. e.g. credit card number
- separator character
- name: 2 to 26 characters

- separator character ('^')
- expirationYYMM.
- service code 3 characters
- discretionary data: may include Pin Verification Key Indicator (PVKI, 1 character), PIN Verification Value (PVV, 4 characters), Card Verification Value or Card Verification Code (CVV or CVC, 3 characters)
- end sentinel (generally '?')
- one character validity character (over other data on the track).

smart cards: classification

• memory cards (with security logic and without)

usually memory: non-volatile EEPROM, serial communication, control logic: where you can write. Cheap. E.g. prepayed telephone cards

- processor: with coprocessor or without (as bad as: RSA in 20 minutes)
- contact or wireless

processor cards:

I/O —— CPU — flash memory RAM ROM

NPU (numerical processing unit)

Contactless cards:

- energy: inductive (low!)
- small range (typicaly 10 cm)
- a reader may activate it from distance
- response with low energy, recognizable from a short distance only
- memory: kilobytes
- well sealed against corrosion
- main parts:
 - antenna (most area of the card)

- electronic part: modulation, demodulation, clock generator, voltage regulation, reset generation
- interface between RF interface and memory chip
- access logic
- application data: EEPROM, ROM

contacts:

- 8 fields, normally 6 used (2 for future applications), places for contacts strictly determined in standard
- 8 connections, 2 auxiliary and can be omitted or used e.g. for USB

connections:

- C1: Vcc voltage supply
- C2: RST reset
- C3 CLK clock
- C4 AUX1
- C5 GDN ground
- C6 SPU standard or proprietary use (SWP)
- C7 I/O
- C8 AUX2

- |C1 C5 |
- |C2 C6|
- |C3 C7|
- |C4 C8|

- easy to destroy
- corrosion, mechanical scratches, not for intensive use

security tokens:

- type 1: USB tokens contact interface like in USB, insert into a port after breaking out of a card
- type 2: small display (eg. 4 digits). input also possible: e.g. a card with 2 buttons (each one side of the card), battery inserted

optical:

- writing technique like CD (linear and not circular)
- area designated field according to standards, may leave place for contact interface of a chip and magnetic strip, less place for graphical part on the card
- megabytes ($\approx 6 \text{MB storage}$)
- redundancy, therefore not easy to destroy information
- usage: e.g. border control cards (Mexico-USA)

Physical properties:

standard format: $85.6\mathrm{x}54$ mm (ID-1), other formats for SIM cards (in larger ID-1 cards with stamping),

parameters:

• mechanical robustness (card and contacts)

- temperature resistance
- surface
- electrostatic discharge
- electromagnetic susceptibility
- ultraviolet radiation
- X-ray radiation

Material: trade-off with different properties

 $\rm PVC:$ polivinyl chloride, credit cards, cheap, problems with low and high temperatures, injection molding impossible, lifetime 2 years, cost factor: 1

ABS: a common thermoplastic polymer, mobile, termally stable up to 100 C, laser engraving poor, lifetime 3 years, cost factor: 2

PC: polycarbonate, ID cards, durable, 160 C, problems with hot stamping, lifetime 5 years, cost factor: 7, low scratch resistance,

PET: health cards, mechanical: very good resistance, lifetime 3 years, cost factor: 2.5

Electrical properties:

- max 60 mA for 5V, max ambient temperature 50 degrees, 350 μA per megaherz, power consumption too low to cause overheating, power reduction e.g. for SIM in different phases of activity (low if the phone is not transmitting and using cryptoprocesor)
- contact C6 was for EEPROM erasing but not needed anymore, used for Single Wire Protocol
- voltage is a problem: 3V for SIM cards (batteries for smarphones weight optimization), 5V needed for EEPROM erasure. charge pumps applied
- no internal clock supply (this is a potential risk: adversary may increase the clock frequency to create faults, fault cryptanalysis)
- problems with collisions on I/O line (too high currents would destroy interface components)
- protection against out of range voltages, electrostatic charges, precisely defined activation and deactivation sequences: first ground, then voltage, then clock, warm reset when voltage increases on the reset line

Chip modules:

• the chip too fragile and too thick to be laminated on the surface. the chip is inserted inside

- electrical connections are the problem, automatic bonding of the gold wires to the back of contacts with ultrasonic welding
- Chip-on flex modules, stages of production:
 - tape with empty modules
 - gluing the dice into modules
 - bonding the dice
 - encapsulating the dice
- lead-frame: chip produced together with contacts and the simply inserted by a robot into the card body and glued

Microcontrollers:

- area: manufacturing costs and durability (bending, torsion), typically 10mm², square shape
- must be integrated, "standard components" are not well suited due to size of the resulting circuit,
- native designs are proprietary, even a crime to check the layout
- semiconductor technology -> density increases -> chip area drops . But some problems: error probability, necessity to decrease voltage, ...
- extremely high reliability needed. So behind the "state-of-the-art" which is frequently instable
- memory small (e.g. 100KB), a 8-bit processor ok for less than 64KB, then extensions, usually CISC (complex instruction set computer) instruction over a number of steps, some based on RISC (reduced instruction set computer), also 32 bit processors that needed also for interpreter based architectures (Java Card)

MEMORY

Memory types:

non volatile:

EPROM - UV erasure, not suited for smart cards,

EEPROM - electrical erasure, cell capacitors, discharged state=0, charged state=1, erase state - > non-erased (single bit), non-erased-> erased: page or sector, both slow, size 1.14 μ m, 100.000-1.000.000 erasures, 2-10ms, tunneling effect - if there are electrons on the floating gate then they prevent flow in the substrate

flash - a different technique for writing: hot electron injection, write time "flash", erase like EEPROM, size 0.47, 10.000-100.000 erasures, very fast writing, lower voltage (12V) than EEPROM (17V), NOR flash: free read of individual cells, but complicated circuits, or NAND flash: dense but reading full blocks