
1

Achieving Secure, Scalable, and Fine-grained Data
Access Control in Cloud Computing

Shucheng Yu∗, Cong Wang†, Kui Ren†, and Wenjing Lou∗
∗Dept. of ECE, Worcester Polytechnic Institute, Email:{yscheng, wjlou}@ece.wpi.edu

†Dept. of ECE, Illinois Institute of Technology, Email:{cong, kren}@ece.iit.edu

Abstract—Cloud computing is an emerging computing
paradigm in which resources of the computing infrastructure
are provided as services over the Internet. As promising as it is,
this paradigm also brings forth many new challenges for data
security and access control when users outsource sensitive data
for sharing on cloud servers, which are not within the same
trusted domain as data owners. To keep sensitive user data
confidential against untrusted servers, existing solutions usually
apply cryptographic methods by disclosing data decryption keys
only to authorized users. However, in doing so, these solutions
inevitably introduce a heavy computation overhead on the data
owner for key distribution and data management when fine-
grained data access control is desired, and thus do not scale
well. The problem of simultaneously achieving fine-grainedness,
scalability, and data confidentiality of access control actually still
remains unresolved. This paper addresses this challenging open
issue by, on one hand, defining and enforcing access policies based
on data attributes, and, on the other hand, allowing the data
owner to delegate most of the computation tasks involved in fine-
grained data access control to untrusted cloud servers without
disclosing the underlying data contents. We achieve this goal by
exploiting and uniquely combining techniques of attribute-based
encryption (ABE), proxy re-encryption, and lazy re-encryption.
Our proposed scheme also has salient properties of user access
privilege confidentiality and user secret key accountability. Exten-
sive analysis shows that our proposed scheme is highly efficient
and provably secure under existing security models.

I. I NTRODUCTION

Cloud computing is a promising computing paradigm which
recently has drawn extensive attention from both academia and
industry. By combining a set of existing and new techniques
from research areas such as Service-Oriented Architectures
(SOA) and virtualization, cloud computing is regarded as such
a computing paradigm in which resources in the computing
infrastructure are provided as services over the Internet.Along
with this new paradigm, various business models are devel-
oped, which can be described by terminology of “X as a
service (XaaS)” [1] where X could be software, hardware,
data storage, and etc. Successful examples are Amazon’s EC2
and S3 [2], Google App Engine [3], and Microsoft Azure [4]
which provide users with scalable resources in the pay-as-you-
use fashion at relatively low prices. For example, Amazon’sS3
data storage service just charges$0.12 to $0.15 per gigabyte-
month. As compared to building their own infrastructures,
users are able to save their investments significantly by migrat-
ing businesses into the cloud. With the increasing development
of cloud computing technologies, it is not hard to imagine that
in the near future more and more businesses will be moved
into the cloud.

As promising as it is, cloud computing is also facing many
challenges that, if not well resolved, may impede its fast
growth. Data security, as it exists in many other applications,
is among these challenges that would raise great concerns
from users when they store sensitive information on cloud
servers. These concerns originate from the fact that cloud
servers are usually operated by commercial providers which
are very likely to be outside of the trusted domain of the users.
Data confidential against cloud servers is hence frequently
desired when users outsource data for storage in the cloud. In
some practical application systems, data confidentiality is not
only a security/privacy issue, but also of juristic concerns. For
example, in healthcare application scenarios use and disclosure
of protected health information (PHI) should meet the require-
ments of Health Insurance Portability and Accountability Act
(HIPAA) [5], and keeping user data confidential against the
storage servers is not just an option, but a requirement.

Furthermore, we observe that there are also cases in which
cloud users themselves are content providers. They publish
data on cloud servers for sharing and need fine-grained data
access control in terms of which user (data consumer) has the
access privilege to which types of data. In the healthcare case,
for example, a medical center would be the data owner who
stores millions of healthcare records in the cloud. It would
allow data consumers such as doctors, patients, researchers
and etc, to access various types of healthcare records under
policies admitted by HIPAA. To enforce these access policies,
the data owners on one hand would like to take advantage of
the abundant resources that the cloud provides for efficiency
and economy; on the other hand, they may want to keep the
data contents confidential against cloud servers.

As a significant research area for system protection, data
access control has been evolving in the past thirty years and
various techniques [6]–[9] have been developed to effectively
implement fine-grained access control, which allows flexibility
in specifying differential access rights of individual users. Tra-
ditional access control architectures usually assume the data
owner and the servers storing the data are in the same trusted
domain, where the servers are fully entrusted as an omniscient
reference monitor [10] responsible for defining and enforcing
access control policies. This assumption however no longer
holds in cloud computing since the data owner and cloud
servers are very likely to be in two different domains. On one
hand, cloud servers are not entitled to access the outsourced
data content for data confidentiality; on the other hand, the
data resources are not physically under the full control of

2

the owner. For the purpose of helping the data owner enjoy
fine-grained access control of data stored on untrusted cloud
servers, a feasible solution would be encrypting data through
certain cryptographic primitive(s), and disclosing decryption
keys only to authorized users. Unauthorized users, including
cloud servers, are not able to decrypt since they do not have
the data decryption keys. This general method actually has
been widely adopted by existing works [11]–[14] which aim
at securing data storage on untrusted servers. One criticalissue
with this branch of approaches is how to achieve the desired
security goals without introducing a high complexity on key
management and data encryption. These existing works, as
we will discuss in section V-C, resolve this issue either by
introducing a per file access control list (ACL) for fine-grained
access control, or by categorizing files into severalfilegroups

for efficiency. As the system scales, however, the complexity
of the ACL-based scheme would be proportional to the number
of users in the system. Thefilegroup-based scheme, on
the other hand, is just able to provide coarse-grained data
access control. It actually still remains open to simultaneously
achieve the goals of fine-grainedness, scalability, and data
confidentiality for data access control in cloud computing.

In this paper, we address this open issue and propose a
secure and scalable fine-grained data access control scheme
for cloud computing. Our proposed scheme is partially based
on our observation that, in practical application scenarios each
data file can be associated with a set of attributes which are
meaningful in the context of interest. The access structureof
each user can thus be defined as a unique logical expression
over these attributes to reflect the scope of data files that
the user is allowed to access. As the logical expression can
represent any desired data file set, fine-grainedness of data
access control is achieved. To enforce these access structures,
we define a public key component for each attribute. Data files
are encrypted using public key components corresponding to
their attributes. User secret keys are defined to reflect their
access structures so that a user is able to decrypt a ciphertext
if and only if the data file attributes satisfy his access structure.
Such a design also brings about the efficiency benefit, as
compared to previous works, in that, 1) the complexity of
encryption is just related the number of attributes associated
to the data file, and is independent to the number of users
in the system; and 2) data file creation/deletion and new user
grant operations just affect current file/user without involving
system-wide data file update or re-keying. One extremely
challenging issue with this design is the implementation of
user revocation, which would inevitably require re-encryption
of data files accessible to the leaving user, and may need
update of secret keys for all the remaining users. If all these
tasks are performed by the data owner himself/herself, it would
introduce a heavy computation overhead on him/her and may
also require the data owner to be always online. To resolve
this challenging issue, our proposed scheme enables the data
owner to delegate tasks of data file re-encryption and user
secret key update to cloud servers without disclosing data
contents or user access privilege information. We achieve our
design goals by exploiting a novel cryptographic primitive,
namely key policy attribute-based encryption (KP-ABE) [15],

and uniquely combine it with the technique of proxy re-
encryption (PRE) [16] and lazy re-encryption [11].

Main contributions of this paper can be summarized as
follows. 1) To the best of our knowledge, this paper is the first
that simultaneously achieves fine-grainedness, scalability and
data confidentiality for data access control in cloud computing;
2) Our proposed scheme enables the data owner to delegate
most of computation intensive tasks to cloud servers without
disclosing data contents or user access privilege information;
3) The proposed scheme is provably secure under the standard
security model. In addition, our proposed scheme is able to
support user accountability with minor extension.

The rest of this paper is organized as follows. Section II
discusses models and assumptions. Section III reviews some
technique preliminaries pertaining to our construction. Section
IV presents our construction. In section V, we analyze our
proposed scheme in terms of its security and performance.
We conclude this paper in Section VI.

II. M ODELS AND ASSUMPTIONS

A. System Models

Similar to [17], we assume that the system is composed of
the following parties: the Data Owner, many Data Consumers,
many Cloud Servers, and a Third Party Auditor if necessary.
To access data files shared by the data owner, Data Consumers,
or usersfor brevity, download data files of their interest from
Cloud Servers and then decrypt. Neither the data owner nor
users will be always online. They come online just on the
necessity basis. For simplicity, we assume that the only access
privilege for users is data file reading. Extending our proposed
scheme to support data file writing is trivial by asking the data
writer to sign the new data file on each update as [12] does.
From now on, we will also call data files byfiles for brevity.
Cloud Servers are always online and operated by the Cloud
Service Provider (CSP). They are assumed to have abundant
storage capacity and computation power. The Third Party
Auditor is also an online party which is used for auditing every
file access event. In addition, we also assume that the data
owner can not only store data files but also run his own code
on Cloud Servers to manage his data files. This assumption
coincides with the unified ontology of cloud computing which
is recently proposed by Youseff et al. [18].

B. Security Models

In this work, we just consider Honest but Curious Cloud
Servers as [14] does. That is to say, Cloud Servers will follow
our proposed protocol in general, but try to find out as much
secret information as possible based on their inputs. More
specifically, we assume Cloud Servers are more interested
in file contents and user access privilege information than
other secret information. Cloud Servers might collude witha
small number of malicious users for the purpose of harvesting
file contents when it is highly beneficial. Communication
channel between the data owner/users and Cloud Servers are
assumed to be secured under existing security protocols such
as SSL. Users would try to access files either within or outside
the scope of their access privileges. To achieve this goal,

3

unauthorized users may work independently or cooperatively.
In addition, each party is preloaded with a public/private key
pair and the public key can be easily obtained by other parties
when necessary.

C. Design Goals

Our main design goal is to help the data owner achieve
fine-grained access control on files stored by Cloud Servers.
Specifically, we want to enable the data owner to enforce a
unique access structure on each user, which precisely des-
ignates the set of files that the user is allowed to access.
We also want to prevent Cloud Servers from being able to
learn both the data file contents and user access privilege
information. In addition, the proposed scheme should be able
to achieve security goals like user accountability and support
basic operations such as user grant/revocation as a general
one-to-many communication system would require. All these
design goals should be achieved efficiently in the sense that
the system is scalable.

III. T ECHNIQUE PRELIMINARIES

A. Key Policy Attribute-Based Encryption (KP-ABE)

KP-ABE [15] is a public key cryptography primitive for
one-to-many communications. In KP-ABE, data are associated
with attributes for each of which a public key component is
defined. The encryptor associates the set of attributes to the
message by encrypting it with the corresponding public key
components. Each user is assigned an access structure which
is usually defined as an access tree over data attributes, i.e.,
interior nodes of the access tree are threshold gates and leaf
nodes are associated with attributes. User secret key is defined
to reflect the access structure so that the user is able to decrypt
a ciphertext if and only if the data attributes satisfy his access
structure. A KP-ABE scheme is composed of four algorithms
which can be defined as follows:
Setup This algorithm takes as input a security parameterκ

and the attribute universeU = {1, 2, . . . , N} of cardinality
N . It defines a bilinear groupG1 of prime orderp with a
generatorg, a bilinear mape : G1 ×G1 → G2 which has the
properties ofbilinearity, computability, and non-degeneracy.
It returns the public keyPK as well as a system master key
MK as follows

PK = (Y, T1, T2, . . . , TN)

MK = (y, t1, t2, . . . , tN)

whereTi ∈ G1 andti ∈ Zp are for attributei, 1 ≤ i ≤ N , and
Y ∈ G2 is another public key component. We haveTi = gti

andY = e(g, g)y, y ∈ Zp. While PK is publicly known to
all the parties in the system,MK is kept as a secret by the
authority party.
Encryption This algorithm takes a messageM , the public key
PK, and a set of attributesI as input. It outputs the ciphertext
E with the following format:

E = (I, Ẽ, {Ei}i∈I)

whereẼ = MY s, Ei = T s
i , ands is randomly chosen from

Zp.

Key Generation This algorithm takes as input an access tree
T , the master keyMK, and the public keyPK. It outputs
a user secret keySK as follows. First, it defines a random
polynomialpi(x) for each nodei of T in the top-down manner
starting from the root noder. For each non-root nodej,
pj(0) = pparent(j)(idx(j)) where parent(j) representsj’s
parent andidx(j) is j’s unique index given by its parent. For
the root noder, pr(0) = y. Then it outputsSK as follows.

SK = {ski}i∈L

whereL denotes the set of attributes attached to the leaf
nodes ofT andski = g

pi(0)

ti .
Decryption This algorithm takes as input the ciphertextE

encrypted under the attribute setI, the user’s secret key
SK for access treeT , and the public keyPK. It first
computese(Ei, ski) = e(g, g)pi(0)s for leaf nodes. Then, it
aggregates these pairing results in the bottom-up manner using
the polynomial interpolation technique. Finally, it may recover
the blind factorY s = e(g, g)ys and output the messageM if
and only if I satisfiesT .

Please refer to [15] for more details on KP-ABE algorithms.
[19] is an enhanced KP-ABE scheme which supports user
secret key accountability.

B. Proxy Re-Encryption (PRE)

Proxy Re-Encryption (PRE) is a cryptographic primitive in
which a semi-trusted proxy is able to convert a ciphertext
encrypted under Alice’s public key into another ciphertext
that can be opened by Bob’s private key without seeing the
underlying plaintext. More formally, a PRE scheme allows the
proxy, given the proxy re-encryption keyrka↔b, to translate
ciphertexts under public keypka into ciphertexts under public
key pkb and vise versa. Please refer to [16] for more details
on proxy re-encryption schemes.

IV. OUR PROPOSEDSCHEME

A. Main Idea

In order to achieve secure, scalable and fine-grained access
control on outsourced data in the cloud, we utilize and
uniquely combine the following three advanced cryptograh-
phic techniques: KP-ABE, PRE and lazy re-encryption. More
specifically, we associate each data file with a set of attributes,
and assign each user an expressive access structure which is
defined over these attributes. To enforce this kind of access
control, we utilize KP-ABE to escort data encryption keys of
data files. Such a construction enables us to immediately enjoy
fine-grainedness of access control. However, this construc-
tion, if deployed alone, would introduce heavy computation
overhead and cumbersome online burden towards the data
owner, as he is in charge of all the operations of data/user
management. Specifically, such an issue is mainly caused by
the operation of user revocation, which inevitabily requires
the data owner to re-encrypt all the data files accessible to
the leaving user, or even needs the data owner to stay online
to update secret keys for users. To resolve this challenging
issue and make the construction suitable for cloud computing,
we uniquely combine PRE with KP-ABE and enable the

4

����� ���	
�������

�	��
�	��

����
����

��
��
���

������

���������
�������

�����������

�����������

����

�	����������	��

	����������	�����

���

��

�����������

�������������������
�������

������	�������������

	����

�������

���	��	��

 ���

�������!���

Fig. 1: An examplary case in the healthcare scenario

data owner to delegate most of the computation intensive
operations to Cloud Servers without disclosing the underlying
file contents. Such a construction allows the data owner to
control access of his data files with a minimal overhead
in terms of computation effort and online time, and thus
fits well into the cloud environment. Data confidentiality is
also achieved since Cloud Servers are not able to learn the
plaintext of any data file in our construction. For further
reducing the computation overhead on Cloud Servers and thus
saving the data owner’s investment, we take advantage of
the lazy re-encryption technique and allow Cloud Servers to
“aggregate” computation tasks of multiple system operations.
As we will discuss in section V-B, the computation complexity
on Cloud Servers is either proportional to the number of
system attributes, or linear to the size of the user access
structure/tree, which is independent to the number of users
in the system. Scalability is thus achieved. In addition, our
construction also protects user access privilege information
against Cloud Servers. Accoutability of user secret key can
also be achieved by using an enhanced scheme of KP-ABE.

B. Definition and Notation

For each data file the owner assigns a set of meaningful
attributes which are necessary for access control. Different
data files can have a subset of attributes in common. Each
attribute is associated with a version number for the purpose
of attribute update as we will discuss later. Cloud Servers
keep an attribute history listAHL which records the version
evolution history of each attribute and PRE keys used. In
addition to these meaningful attributes, we also define one
dummy attribute, denoted by symbolAttD for the purpose of
key management.AttD is required to be included in every
data file’s attribute set and will never be updated. The access
structure of each user is implemented by an access tree.
Interior nodes of the access tree are threshold gates. Leaf nodes
of the access tree are associated with data file attributes. For
the purpose of key management, we require the root node
to be anAND gate (i.e.,n-of-n threshold gate) with one
child being the leaf node which is associated with the dummy
attribute, and the other child node being any threshold gate.
The dummy attribute will not be attached to any other node in
the access tree. Fig.1 illustrates our definitions by an example.
In addition, Cloud Servers also keep a user listUL which
recordsIDs of all the valid users in the system. Fig.2 gives
the description of notation to be used in our scheme.

Notation Description
PK,MK system public key and master key
Ti public key component for attributei
ti master key component for attributei
SK user secret key
ski user secret key component for attributei
Ei ciphertext component for attributei
I attribute set assigned to a data file
DEK symmetric data encryption key of a data file
P user access structure
LP set of attributes attached to leaf nodes ofP

AttD the dummy attribute
UL the system user list
AHLi attribute history list for attributei
rki↔i′ proxy re-encryption key for attributei from

its current version to the updated versioni′

δO,X the data owner’s signature on messageX

Fig. 2: Notation used in our scheme description

C. Scheme Description

For clarity we will present our proposed scheme in two
levels: System Leveland Algorithm Level. At system level,
we describe the implementation of high level operations, i.e.,
System Setup, New File Creation, New User Grant, andUser
Revocation, File Access, File Deletion, and the interaction
between involved parties. At algorithm level, we focus on the
implementation of low level algorithms that are invoked by
system level operations.

1) System Level Operations:System level operations in our
proposed scheme are designed as follows.
System SetupIn this operation, the data owner chooses a
security parameterκ and calls the algorithm level interface
ASetup(κ), which outputs the system public parameterPK

and the system master keyMK. The data owner then signs
each component ofPK and sendsPK along with these
signatures to Cloud Servers.
New File Creation Before uploading a file to Cloud Servers,
the data owner processes the data file as follows.

• select a uniqueID for this data file;
• randomly select a symmetric data encryption key

DEK
R
← K, whereK is the key space, and encrypt the

data file usingDEK;
• define a set of attributeI for the data file and en-

crypt DEK with I using KP-ABE, i.e., (̃E, {Ei}i∈I)
← AEncrypt(I,DEK,PK).

header
︷ ︸︸ ︷

body
︷ ︸︸ ︷

ID I, Ẽ, {Ei}i∈I {DataF ile}DEK

Fig. 3: Format of a data file stored on the cloud

Finally, each data file is stored on the cloud in the format
as is shown in Fig.3.
New User Grant When a new user wants to join the system,
the data owner assigns an access structure and the correspond-
ing secret key to this user as follows.

5

// to revoke userv
// stage 1: attribute update.

The Data Owner Cloud Servers
1. D ← AMinimalSet(P), whereP is v’s access structure; removev from the system user listUL;
2. for each attributei in D for each attributei ∈ D

(t′i, T
′
i , rki↔i′)← AUpdateAtt(i,MK);

Att
−−−−−→ store (i, T ′

i , δO,(i,T ′

i
));

3. sendAtt = (v,D, {i, T ′
i , δO,(i,T ′

i
), rki↔i′}i∈D). addrki↔i′ to i’s history listAHLi.

// stage 2: data file and user secret key update.
Cloud Servers User(u)

1. on receivingREQ, proceed ifu ∈ UL;
2. get the tuple (u, {j, skj}j∈LP \AttD); 1. generate data file access requestREQ;

for each attributej ∈ LP \AttD
REQ

←−−−−−− 2. wait for the response from Cloud Servers;
sk′j ← AUpdateSK(j, skj , AHLj);

for each requested filef in REQ 3. on receivingRESP , verify eachδO,(j,T ′

j
)

for each attributek ∈ If
RESP
−−−−−−−→ andsk′j ; proceed if all correct;

E′
k ← AUpdateAtt4File(k,Ek, AHLk); 4. replace eachskj in SK with sk′j ;

3. sendRESP = ({j, sk′j , T
′
j , δO,(j,T ′

j
)}j∈LP \AttD , FL). 5. decrypt each file inFL with SK.

Fig. 4: Description of the process of user revocation

• assign the new user a unique identityw and an access
structureP ;

• generate a secret keySK for w, i.e., SK ←
AKeyGen(P,MK);

• encrypt the tuple (P, SK,PK, δO,(P,SK,PK)) with user
w’s public key, denoting the ciphertext byC;

• send the tuple (T,C, δO,(T,C)) to Cloud Servers, where
T denotes the tuple (w, {j, skj}j∈LP \AttD).

On receiving the tuple (T,C, δO,(T,C)), Cloud Servers pro-
cesses as follows.

• verify δO,(T,C) and proceed if correct;
• storeT in the system user listUL;
• forwardC to the user.

On receivingC, the user first decrypts it with his private
key. Then he verifies the signatureδO,(P,SK,PK). If correct,
he accepts (P, SK,PK) as his access structure, secret key,
and the system public key.

As described above, Cloud Servers store all the secret key
components ofSK except for the one corresponding to the
dummy attributeAttD. Such a design allows Cloud Servers
to update these secret key components during user revocation
as we will describe soon. As there still exists one undisclosed
secret key component (the one forAttD), Cloud Servers can
not use these known ones to correctly decrypt ciphertexts.
Actually, these disclosed secret key components, if given to
any unauthorized user, do not give him any extra advantage
in decryption as we will show in our security analysis.
User Revocation We start with the intuition of the user
revocation operation as follows. Whenever there is a user to
be revoked, the data owner first determines a minimal set of
attributes without which the leaving user’s access structure
will never be satisfied. Next, he updates these attributes by
redefining their corresponding system master key components
in MK. Public key components of all these updated attributes
in PK are redefined accordingly. Then, he updates user secret

keys accordingly for all the users except for the one to be
revoked. Finally,DEKs of affected data files are re-encrypted
with the latest version ofPK. The main issue with this
intuitive scheme is that it would introduce a heavy computation
overhead for the data owner to re-encrypt data files and
might require the data owner to be always online to provide
secret key update service for users. To resolve this issue, we
combine the technique of proxy re-encryption with KP-ABE
and delegate tasks of data file re-encryption and user secret
key update to Cloud Servers. More specifically, we divide the
user revocation scheme into two stages as is shown in Fig.4.

In the first stage, the data owner determines the minimal set
of attributes, redefinesMK andPK for involved attributes,
and generates the corresponding PRE keys. He then sends
the user’sID, the minimal attribute set, the PRE keys, the
updated public key components, along with his signatures on
these components to Cloud Servers, and can go off-line again.
Cloud Servers, on receiving this message from the data owner,
remove the revoked user from the system user listUL, store
the updated public key components as well as the owner’s
signatures on them, and record the PRE key of the latest
version in the attribute history listAHL for each updated
attribute.AHL of each attribute is a list used to record the
version evolution history of this attribute as well as the PRE
keys used. Every attribute has its ownAHL. With AHL,
Cloud Servers are able to compute a single PRE key that
enables them to update the attribute from any historical version
to the latest version. This property allows Cloud Servers to
update user secret keys and data files in the “lazy” way as
follows. Once a user revocation event occurs, Cloud Servers
just record information submitted by the data owner as is
previously discussed. If only there is a file data access request
from a user, do Cloud Servers re-encrypt the requested files
and update the requesting user’s secret key. This statistically
saves a lot of computation overhead since Cloud Servers are

6

able to “aggregate” multiple update/re-encryption operations
into one if there is no access request occurring across multiple
successive user revocation events.
File AccessThis is also the second stage of user revocation. In
this operation, Cloud Servers respond user request on data file
access, and update user secret keys and re-encrypt requested
data files if necessary. As is depicted in Fig. 4, Cloud Servers
first verify if the requesting user is a valid system user in
UL. If true, they update this user’s secret key components
to the latest version and re-encrypt theDEKs of requested
data files using the latest version ofPK. Notably, Cloud
Servers will not perform update/re-encryption if secret key
components/data files are already of the latest version. Finally,
Cloud Servers send updated secret key components as well as
ciphertexts of the requested data files to the user. On receiving
the response from Cloud Servers, the user first verifies if
the claimed version of each attribute is really newer than
the current version he knows. For this purpose, he needs to
verify the data owner’s signatures on the attribute information
(including the version information) and the corresponding
public key components, i.e., tuples of the form (j, T ′

j) in Fig. 4.
If correct, the user further verifies if each secret key component
returned by Cloud Servers is correctly computed. He verifies
this by computing a bilinear pairing betweensk′j andT ′

j and
comparing the result with that between the oldskj and Tj

that he possesses. If verification succeeds, he replaces each
skj of his secret key withsk′j and updateTj with T ′

j . Finally,
he decrypts data files by first callingADecrypt(P, SK,E) to
decryptDEK ’s and then decrypting data files usingDEK ’s.
File Deletion This operation can only be performed at the
request of the data owner. To delete a file, the data owner
sends the file’s uniqueID along with his signature on this
ID to Cloud Servers. If verification of the owner’s signature
returns true, Cloud Servers delete the data file.

2) Algorithm level operations:Algorithm level operations
include eight algorithms:ASetup, AEncrypt, AKeyGen,
ADecrypt, AUpdateAtt, AUpdateSK, AUpdateAtt4File,
and AMinimalSet. As the first four algorithms are just
the same asSetup, Encryption, Key Generation, and
Decryption of the standard KP-ABE respectively, we focus
on our implementation of the last four algorithms. Fig.5
depicts two of the four algorithms.

AUpdateAtt(i,MK)

randomly pickt′i
R
← Zp;

computeT ′
i ← gt

′

i , andrki↔i′ ←
t′i
ti

;
output t′i, T

′
i , andrki↔i′ .

AUpdateAtt4File(i, Ei, AHLi)
if i has the latest version, exit;
searchAHLi and locate the old version ofi;
// assume the latest definition ofi in MK is ti(n) .

rki↔i(n) ← rki↔i′ · rki′↔i′′ · · · rki(n−1)↔i(n) =
t
i(n)

ti
;

computeE(n)
i ← (Ei)

rk
i↔i(n) = gti(n)s;

outputE(n)
i .

Fig. 5: Pseudo-code of algorithm level algorithms

AUpdateAtt This algorithm updates an attribute to a new
version by redefining its system master key and public key
component. It also outputs a proxy re-encryption key between
the old version and the new version of the attribute.
AUpdateAtt4File This algorithm translates the ciphertext

component of an attributei of a file from an old version into
the latest version. It first checks the attribute history list of
this attribute and locates the position of the old version. Then
it multiplies all the PRE keys between the old version and the
latest version and obtains a single PRE key. Finally it apply
this single PRE key to the ciphertext componentEi and returns
E

(n)
i which coincides with the latest definition of attributei.
AUpdateSK This algorithm translates the secret key com-

ponent of attributei in the user secret keySK from an old
version into the latest version. Its implementation is similar
to AUpdateAtt4File except that, in the last step it applies
(rki↔i(n))−1 to SKi instead ofrki↔i(n) . This is becauseti
is the denominator of the exponent part ofSKi while in Ei

it is a numerator.
AMinimalSet This algorithm determines a minimal set of

attributes without which an access tree will never be satisfied.
For this purpose, it constructs the conjunctive normal form
(CNF) of the access tree, and returns attributes in the shortest
clause of the CNF formula as the minimal attribute set.

D. Summary

In our proposed scheme, we exploit the technique of hy-
brid encryption to protect data files, i.e., we encrypt data
files using symmetricDEKs and encryptDEKs with KP-
ABE. Using KP-ABE, we are able to immediately enjoy
fine-grained data access control and efficient operations such
as file creation/deletion and new user grant. To resolve the
challenging issue of user revocation, we combine the technique
of proxy re-encryption with KP-ABE and delegate most of the
burdensome computational task to Cloud Servers. We achieve
this by letting Cloud Servers keep a partial copy of each
user’s secret key, i.e., secret key components of all but one
(dummy) attributes. When the data owner redefines a certain
set of attributes for the purpose of user revocation, he also
generates corresponding proxy re-encryption keys and sends
them to Cloud Servers. Cloud Servers, given these proxy
re-encryption keys, can update user secret key components
and re-encrypt data files accordingly without knowing the
underlying plaintexts of data files. This enhancement releases
the data owner from the possible huge computation overhead
on user revocation. The data owner also does not need to
always stay online since Cloud Servers will take over the
burdensome task after having obtained the PRE keys. To
further save computation overhead of Cloud Servers on user
revocation, we use the technique of lazy re-encryption and
enable Cloud Servers to “aggregate” multiple successive secret
key update/file re-encryption operations into one, and thus
statistically save the computation overhead.

V. A NALYSIS OF OUR PROPOSEDSCHEME

A. Security Analysis

We first analyze security properties of our proposed scheme,
starting with the following immediately available properties.

7

1) Fine-grainedness of Access Control:In our proposed
scheme, the data owner is able to define and enforce expressive
and flexible access structure for each user. Specifically, the
access structure of each user is defined as a logic formula
over data file attributes, and is able to represent any desired
data file set.

2) User Access Privilege Confidentiality:Our proposed
scheme just discloses the leaf node information of a user
access tree to Cloud Servers. As interior nodes of an access
tree can be any threshold gates and are unknown to Cloud
Servers, it is hard for Cloud Servers to recover the access
structure and thus derive user access privilege information.

3) User Secret Key Accountability:This property can be
immediately achieved by using the enhanced construction of
KP-ABE [19] which can be used to disclose the identities of
key abusers.

Now we analyze data confidentiality of our proposed
scheme by giving a cryptographic security proof.

4) Data Confidentiality:We analyze data confidentiality of
our proposed scheme by comparing it with an intuitive scheme
in which data files are encrypted using symmetricDEKs,
and DEKs are direclty encrypted using standard KP-ABE.
In this intuitive scheme just ciphertexts of data files are given
to Cloud Servers. Assuming the symmetric key algorithm is
secure, e.g., using standard symmtric key algorithm such as
AES, security of this intuitive scheme is merely relied on
the security of KP-ABE. Actually, the standard KP-ABE is
provably secure under the attribute-based Selective-Set model
[15] given the Decisional Bilinear Diffie-Hellman (DBDH)
problem is hard. Therefore, the intuitive scheme is secure
under the same model. Our goal is to show that our proposed
scheme is as secure as the intuitive scheme. As compared to
the intuitive scheme, our scheme discloses the following extra
information to Cloud Servers: a partial set of user secret key
components (except for the one for the dummy attribute which
is required for each decryption), and the proxy re-encryption
keys. Based on this observation, we sketch the security proof
of our proposed scheme using a series of games as follows.

Game 0:This is the security game of the intuitive scheme.
Game 1:The difference between this game andGame 0is

that, in this game more than one (MK, PK) pairs are defined,
and the adversary is given thePK ’s as well as the secret keys
for each access structure he submits. In addition, the adversary
is also given the proxy re-encryption keys (between any two
(MK, PK) pairs).

Game 2:This game is for our proposed scheme. The only
difference between this game andGame 1is that, in this game
the partial set of user secret key components are disclosed to
the adversary.

Lemma 5.1:The advantage of the adversary inGame 1is
the same as that inGame 0.

Proof: Our first goal is to show that, if there is a
polynomial time algorithmA that wins the semantic security
game ofGame 1with non-negligible advantage, we can use
it to build a polynomial time algorithmB to win the semantic
security game ofGame 0, i.e., the game under the attribute-
based Selective-Set model. In the semantic security game, the
adversary submits two equal length challenge messagem0

and m1. The challenger flips a random coinb ← {0, 1}
and encryptsmb. The challenge cihpertextE is then given
to the adversary. The adversary is asked to output his guess
b′ of the random coinb. If b′ = b the adversary wins.
During this game, the adversary is given public parameters
and allowed to query many user secret keys except for the
one for the challenge ciphertext. Assuming the algorithmA
(i.e., the adversary) can win the semantic security game, i.e.,
b ← A(EA, {PKi}1≤i≤k, {SKj}1≤j≤qS , {rk}), with non-
negligible advantage, where{PKi} and {SKj} denotes the
set of all PK ’s and the set of all the secret keys given to
A respectively,{rk} representing the set of all the proxy re-
encryption keys,qS denoting the number of secret key queries,
and k representing the number ofPK ’s, A polynomial time
algorithmB can be built as is shown in Fig.6. Therefore, the
advantage of the adversary inGame 1is not higher than that
in Game 0. However, the advantage of the adversary inGame
1 can not be lower than that inGame 0since the adversary is
given more information inGame 1than inGame 0. Therefore,
the advantages in the two games are the same.

B(EB , PK, {SK ′
j}1≤j≤qS)

assumePK = (Y, T1, T2, · · · , TN);
EB = (I, Ẽ, {Ej}j∈I);
SK ′

j = {skj,i}i∈L for all j ∈ {1, · · · , qS};
for u from 1 to k:

for v from 1 toN :

random chooseruv
R
← Zp;

if u > 1, rku−1↔u =
r(u−1)v

ruv
;

addrku−1↔u to {rk};
PKu = (Y, T ru1

1 , T ru2
2 , · · · , T ruN

N);

EA ← (I, Ẽ, {E
ruj

j }j∈I), whereu
R
← {1, · · · , k} ;

SKj = {(skj,i)
1

rui }i∈L, u is the same as above;
b′ ← A(EA, {PKi}1≤i≤k, {SKj}1≤j≤qS , {rk}).

Fig. 6: Construction of AlgorithmB from A

Notably, the chosen ciphertext security of our proposed
scheme can also be proved similarly since any decryption
oracle submitted byA can be forwarded byB to the challenger
of Game 0, and the answers can be then forwarded toA.

Lemma 5.2:The advantage of the adversary inGame 2is
the same as that inGame 1.

Proof: As described previously, the extra information
disclosed to the adversary inGame 2are the partial user secret
keys. These partial user secret keys are actually equivalent to
the secret keys queried by the adversary inGame 1. Therefore,
the view of the adversary in the two games are the same. This
proves this lemma.

According to the above two lemmas, we can conclude that
our proposed scheme is as secure as the intuitive scheme,
which is provably secure. This proves data confidentiality of
our proposed scheme, even under collusion attacks between
Cloud Servers and malicious users. This is because in our
security game, the adversaryA has the same capability as
Cloud Servers who are given many secret keys of unauthorized

8

users.

B. Performance Analysis

This section numerically evaluates the performance of our
proposed scheme in terms of the computation overhead intro-
duced by each operation as well as the ciphertext size.

1) Computation Complexity:We analyze the computation
complexity for the following six operations:system setup, new
file creation, file deletion, new user grant, user revocation, and
file access.

System SetupIn this operation, the data owner needs to
define underlying bilinear groups, and generatePK and
MK. As is described in Section III-A, the main computation
overhead for the generation ofPK andMK is introduced by
theN group multiplication operations onG1.

New File CreationThe main computation overhead of this
operation is the encryption of the data file using the symmetric
DEK as well as the encryption of theDEK using KP-
ABE. The complexity of the former depends on the size of
the underlying data file and inevitable for any cryptographic
method. The computation overhead for the latter consists of|I|
multiplication operations onG1 and 1 multiplication operation
on G2, whereI denotes the attribute setI of the data file. All
these operations are for the data owner.

File Deletion This operation just involves the data owner
and Cloud Servers. The former needs to compute one signature
and the latter verifies this signature.

New User GrantThis operation is executed interactively by
the data owner, Cloud Servers, and the user. The computation
overhead for the data owner is mainly composed of the
generation of the user secret key and encryption of the user
secret key using the user’s public key. The former accounts
for |L| multiplication operations onG1, whereL denotes the
set of leaf nodes of the access tree. The latter accounts for one
PKC operation, e.g., RSA encryption. The main overhead for
Cloud Servers is one signature verification. The user needs to
do two PKC operations, one for data decryption and the other
for signature verification.

User RevocationThis operation is composed of two stages.
The second stage can actually be amortized as the file access
operation. Here we just counts the operation overhead for
the first stage. That for the second stage will be included in
the file access operation. The first stage occurs between the
data owner and Cloud Servers. The computation overhead for
the data owner is caused by the execution ofAMinimalSet

andAUpdateAtt as well as the generation of his signatures
for the public key components. The complexity of algorithm
AMinimalSet is actually mainly contributed by the CNF
conversion operation which can be efficiently realized by
existing algorithms such as [20] (with the complexity linear
to the size of the access structure). Assuming the size of the
minimal set returned byAMinimalSet is D, D ≤ N , the
computation overhead forAUpdateAtt is mainly contributed
by D multiplication operations onG1. In addition, the data
owner also needs to computeD signatures on public key
components. The computation overhead on Cloud Servers in
this stage is negligible. When counting the complexity of user

revocation, we useN instead of the size of the access structure
since in practical scenariosAMinimalSet is very efficient if
we limit the size of access structure (without affecting system
scalability), but each signature or multiplication operation on
G1 is expensive.

File AccessThis operation occurs between Cloud Servers
and the user. For Cloud Servers, the main computation over-
head is caused by the execution of algorithmAUpdateSK and
algorithmAUpdateAtt4File. In the worst case, the algorithm
AUpdateSK would be called|L|−1 times, which represents
|L|−1 multiplication operations onG1. Each execution of the
algorithmAUpdateAtt4File accounts for one multiplication
operation onG1. In the worst case, Cloud Servers need to
call AUpdateAtt4File N times per file access. Our lazy re-
encryption solution will greatly reduce the average system-
wide call times of these two algorithms from statistical point
of view. File decryption needs|L| bilinear pairing in the worst
case. Fig.7 summarizes the computation complexity of our
proposed scheme.

Operation Complexity
File Creation O(|I|)
File Deletion O(1)
User Grant O(|L|)
User Revocation O(N)
File Access O(max(|L|, N))

Fig. 7: Complexity of our proposed scheme

2) Ciphertext Size:As is depicted in Section IV-C, the
ciphertext is composed of an ID, a header, and a body. The
body is just the data block. The header for each data file is
composed of an attribute setI, one group element onG2, and
|I| group elements onG1.

C. Related Work

Existing work close to ours can be found in the areas of
“shared cryptographic file systems” and “access control of
outsourced data”.

In [11], Kallahalla et al proposed Plutus as a cryptographic
file system to secure file storage on untrusted servers. Plutus
groups a set of files with similar sharing attributes as a
file-group and associates each file-group with a symmetric
lockbox-key. Each file is encrypted using a unique file-blcok
key which is further encrypted with the lockbox-key of the file-
group to which the file belongs. If the owner wants to share a
file-group, he just delivers the corresponding lockbox-keyto
users. As the complexity of key management is proportional
to the total number of file-groups, Plutus is not suitable for
the case of fine-grained access control in which the number
of possible “file-groups” could be huge.

In [12], Goh et al proposed SiRiUS which is layered over
existing file systems such as NFS but provides end-to-end
security. For the purpose of access control, SiRiUS attaches
each file with a meta data file that contains the file’s access
control list (ACL), each entry of which is the encryption of

9

the file’s file encryption key (FEK) using the public key of an
authorized user. The extension version of SiRiUS uses NNL
broadcast encryption algorithm [21] to encrypt the FEK of
each file instead of encrypting it with each individual user’s
public key. As the complexity of the user revocation solution in
NNL is proportional to the number of revoked users, SiRiUS
has the same complexity in terms of each meta data file’s size
and the encryption overhead, and thus is not scalable.

Ateniese et al [13] proposed a secure distributed storage
scheme based on proxy re-encryption. Specifically, the data
owner encrypts blocks of content with symmetric content keys.
The content keys are all encrypted with a master public key,
which can only be decrypted by the master private key kept by
the data owner. The data owner uses his master private key and
user’s public key to generate proxy re-encryption keys, with
which the semi-trusted server can then convert the ciphertext
into that for a specific granted user and fulfill the task of access
control enforcement. The main issue with this scheme is that
collusion between a malicious server and any single malicious
user would expose decryption keys of all the encrypted data
and compromise data security of the system completely. In
addition, user access privilege is not protected from the proxy
server. User secret key accountability is neither supported.

In [14], Vimercati et al proposed a solution for securing data
storage on untrusted servers based on key derivation methods
[22]. In this proposed scheme, each file is encrypted with a
symmetric key and each user is assigned a secret key. To grant
the access privilege for a user, the owner creates corresponding
public tokens from which, together with his secret key, the
user is able to derive decryption keys of desired files. The
owner then transmits these public tokens to the semi-trusted
server and delegates the task of token distribution to it. Just
given these public tokens, the server is not able to derive
the decryption key of any file. This solution introduces a
minimal number of secret key per user and a minimal number
of encryption key for each file. However, the complexity of
operations of file creation and user grant/revocation is linear
to the number of users, which makes the scheme unscalable.
User access privilege accountability is also not supported.

D. Discussion

According to the above analysis, we can see that our pro-
posed scheme is able to realize the desired security goals, i.e.,
fine-grained access control, data confidentiality, user access
privilege confidentiality, and user secret key accountability.
The goal of scalability is also achieved since the complexity
for each operation of our proposed scheme, as is shown in
Fig. 7, is no longer dependent to the nunber of users in
the system. Therefore, our proposed scheme can serve as
an ideal candidate for data access control in the emerging
cloud computing environment. On the contrary, existing access
control schemes in related areas either lack scalability [12],
[14] and fine-grainedness [11], or do not provide adequate
proof of data confidentiality [13].

VI. CONCLUSION

This paper aims at fine-grained data access control in cloud
computing. One challenge in this context is to achieve fine-

grainedness, data confidentiality, and scalability simultane-
ously, which is not provided by current work. In this paper
we propose a scheme to achieve this goal by exploiting KP-
ABE and uniquely combining it with techniques of proxy
re-encryption and lazy re-encryption. Moreover, our proposed
scheme can enable the data owner to delegate most of com-
putation overhead to powerful cloud servers. Confidentiality
of user access privilege and user secret key accountabilitycan
be achieved. Formal security proofs show that our proposed
scheme is secure under standard cryptographic models.

ACKNOWLEDGMENTS

This work was supported in part by the US National Science
Foundation under grants CNS-0716306, CNS-0831628, CNS-
0746977, and CNS-0831963.

REFERENCES

[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A.Kon-
winski, G. Lee, D. A. Patterson, A. Rabkin, I. Stoica, and M. Zaharia,
“Above the clouds: A berkeley view of cloud computing,” University of
California, Berkeley, Tech. Rep. USB-EECS-2009-28, Feb 2009.

[2] Amazon Web Services (AWS), Online at http://aws. amazon.com.
[3] Google App Engine, Online at http://code.google.com/appengine/.
[4] Microsoft Azure, http://www.microsoft.com/azure/.
[5] 104th United States Congress, “Health Insurance Portability and Ac-

countability Act of 1996 (HIPPA),” Online at http://aspe.hhs.gov/
admnsimp/pl104191.htm, 1996.

[6] H. Harney, A. Colgrove, and P. D. McDaniel, “Principles of policy in
secure groups,” inProc. of NDSS’01, 2001.

[7] P. D. McDaniel and A. Prakash, “Methods and limitations ofsecurity
policy reconciliation,” inProc. of SP’02, 2002.

[8] T. Yu and M. Winslett, “A unified scheme for resource protection in
automated trust negotiation,” inProc. of SP’03, 2003.

[9] J. Li, N. Li, and W. H. Winsborough, “Automated trust negotiation using
cryptographic credentials,” inProc. of CCS’05, 2005.

[10] J. Anderson, “Computer Security Technology Planning Study,” Air
Force Electronic Systems Division, Report ESD-TR-73-51, 1972, http:
//seclab.cs.ucdavis.edu/projects/history/.

[11] M. Kallahalla, E. Riedel, R. Swaminathan, Q. Wang, and K.Fu,
“Scalable secure file sharing on untrusted storage,” inProc. of FAST’03,
2003.

[12] E. Goh, H. Shacham, N. Modadugu, and D. Boneh, “Sirius: Securing
remote untrusted storage,” inProc. of NDSS’03, 2003.

[13] G. Ateniese, K. Fu, M. Green, and S. Hohenberger, “Improved proxy
re-encryption schemes with applications to secure distributed storage,”
in Proc. of NDSS’05, 2005.

[14] S. D. C. di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and
P. Samarati, “Over-encryption: Management of access controlevolution
on outsourced data,” inProc. of VLDB’07, 2007.

[15] V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-based en-
cryption for fine-grained access control of encrypted data,” in Proc. of
CCS’06, 2006.

[16] M. Blaze, G. Bleumer, and M. Strauss, “Divertible protocols and atomic
proxy cryptography,” inProc. of EUROCRYPT ’98, 1998.

[17] Q. Wang, C. Wang, J. Li, K. Ren, and W. Lou, “Enabling public
verifiability and data dynamics for storage security in cloudcomputing,”
in Proc. of ESORICS ’09, 2009.

[18] L. Youseff, M. Butrico, and D. D. Silva, “Toward a unifiedontology of
cloud computing,” inProc. of GCE’08, 2008.

[19] S. Yu, K. Ren, W. Lou, and J. Li, “Defending against key abuse attacks
in kp-abe enabled broadcast systems,” inProc. of SECURECOMM’09,
2009.

[20] D. Sheridan, “The optimality of a fast CNF conversion andits use with
SAT,” in Proc. of SAT’04, 2004.

[21] D. Naor, M. Naor, and J. B. Lotspiech, “Revocation and tracing schemes
for stateless receivers,” inProc. of CRYPTO’01, 2001.

[22] M. Atallah, K. Frikken, and M. Blanton, “Dynamic and efficient key
management for access hierarchies,” inProc. of CCS’05, 2005.

