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a b s t r a c t

Secret sharing is a fundamental cryptographic task. Motivated by the virtual automata
abstraction and swarm computing, we investigate an extension of the k-secret sharing
scheme, in which the secret shares are changed on the fly, independently and without
(internal) communication, as a reaction to a global external trigger. The changes are made
while maintaining the requirement that k or more secret shares may reconstruct the secret
and no k � 1 or fewer can do so.

The application considered is a swarm of mobile processes, each maintaining a share of
the secret which may change according to common outside inputs, e.g., inputs received by
sensors attached to the process.

The proposed schemes support addition and removal of processes from the swarm, as
well as corruption of a small portion of the processes in the swarm.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

Secret sharing is a basic and fundamental technique
[14]. Motivated by the high level of interest in the
virtual automata abstraction and swarm computing, e.g.,
[4,3,2,5,7], we investigate an extension of the k-secret
sharing scheme, in which the secret shares are modified
on the fly, while maintaining the requirement that k or
more shares may reconstruct the secret and no k � 1 or
fewer can reconstruct it.

There is great interest in pervasive ad hoc and swarm
computing [15], particularly in swarming unmanned aerial
vehicles (UAV) [10,5]. A unit of UAVs that collaborate in a
mission is more robust than a single UAV that has to com-
plete a mission by itself. This is a known phenomenon in
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distributed computing where a single point of failure has
to be avoided. Replicated memory and state machine
abstractions are used as general techniques for capturing
the strength of distributed systems in tolerating faults
and dynamic changes.

In this work we integrate cryptographic concerns into
these abstractions. In particular, we are interested in sce-
narios in which some of the swarm members are compro-
mised and their secret shares are revealed. We would like
the swarm members to execute a global transition without
communicating with each other and therefore without
knowing the secret, before or after the transition. Note that
secure function computation (e.g., [11]) requires commu-
nication whenever inputs should be processed, while we
require transition with no internal communication.
1.1. Our contributions

We define and present four reactive k-secret schemes.
The first three schemes are for the case in which the global
secret of the swarm is some numeric number that can be
modified according to inputs. The fourth scheme is for
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the case of an I/O automaton, implemented by the swarm,
where the current state of the automaton is the actual se-
cret of the swarm. To avoid compromising the global secret
of the swarm, the members maintain only a share of the
secret.

The first polynomial scheme is based on Shamir’s (k,n)-
threshold scheme, the second is based on the Chinese
Remainder Theorem (CRT) and the third is based on the
Vandermonde matrix. The fourth and last solution uses
replication of states for implementing a virtual I/O autom-
aton with unknown state.

In all the solutions we suggest a way to modify the
global secret by modifying only the secret shares without
the need to collect them to reconstruct the global secret.
In the polynomial-based and the CRT-based schemes we
support arithmetic addition and multiplication operations
as a possible modification of the secret. Still, these two
implementations differ. In terms of total space used to
encode the secret, the size of each share in the polyno-
mial-based scheme is of the same order of the secret size,
while the total size of the shares needed to define the
secret in the Chinese remainder scheme is of the secret
order. Also, in the Chinese remainder-based scheme, the
secret share may reveal partial information on the global
secret.

In the Vandermonde-based scheme, a predefined Van-
dermonde matrix is used to define the secret shares. This
scheme is the only one that supports bitwise-xor opera-
tions among the non-automaton schemes.

The last scheme implements a general I/O automaton,
where the transition to the next state is performed accord-
ing to the input event received by the swarm. This scheme
replicates states of a given automaton and distributes
several distinct replicas to each swarm member. The rela-
tive majority of the distributed replicas represent the state
of the swarm. A swarm member changes the states of all
the replicas it maintains according to the global input
received by the swarm. In this case, a general automaton
can be implemented by the swarm, revealing only partial
knowledge on the secret of the swarm.
1.2. Paper organization

The system settings are described in Section 2. The
polynomial-based solution, which supports arithmetic
addition and multiplication is presented in Section 3. The
Chinese remainder-based solution appears in Section 4.
The Vandermonde matrix-based solution appears in Sec-
tion 5. Section 6 describes the I/O automaton implementa-
tion. Finally, conclusions appear in Section 7.
2. Swarm Settings

A swarm is a collection of processes (executed by, say,
Unmanned Aerial Vehicles UAVs, mobile-sensors, processors)
that receive inputs from the outside environment simulta-
neously.1 The swarm as a unit holds a secret, where shares
1 Alternatively, the processes can communicate the inputs to each other
by atomic broadcast or other weaker communication primitive.
of the secret are distributed among swarm members in a
way that at least k are required to reconstruct the secret,
and any fewer than k shares cannot reconstruct it. Yet, in
some of our schemes the shares may imply additional infor-
mation regarding the secret. Obviously, given a secret do-
main, the secret can be guessed with a uniform probability
over the secret domain. We consider both passive adversary
and active (Byzantine) adversary, and present different
schemes used by the processes to cope with them. We as-
sume that at most f of the n processes may be compromised
or corrupted by an adversary, where f < k. Communication
between the swarm members is avoided or performed in a
safe land, alternatives of more expensive secure communi-
cation techniques may be used when communication is
needed [11].

2.1. Reactive k-secret sharing – problem definition

Assume that we have a swarm, which initially consists
of n processes. The task of the swarm is to manage a global
secret and modify it without the need to reconstruct it first.
Each swarm member holds a share of the global secret in a
way that any fewer than k members fail to reconstruct the
secret and at least k members may reconstruct it with
some positive probability. In addition, all members can
reconstruct the secret with probability 1.

2.2. Reactive k-secret sharing – general solution scheme

Any event sensed by the processes is modeled by a sys-
tem input. The swarm receives inputs and sends outputs to
the outside environment. An input to the swarm arrives at
all processes simultaneously. The output of the swarm is a
function of the swarm state and the system inputs. There
are two possible assumptions concerning the swarm out-
put, the first, called threshold accumulated output, where
the swarm outputs only when at least a predefined num-
ber of processes have this output locally. The second
means of defining the swarm output is based on secure
internal communication within the swarm; the communi-
cation takes place when the local state of a process indi-
cates that a swarm output is possible.2 In the sequel, we
assume the threshold accumulated output where the adver-
sary cannot observe outputs below the threshold. Whenever
the output is above the threshold, the adversary may ob-
serve the swarm output together with the outside environ-
ment, and is ‘‘surprised’’ by the non-anticipated output of
the swarm (similar to the secret maturity approach pre-
sented in [6]).

We consider the following input actions, to be imple-
mented by each of our solutions:

� set (x): Sets the secret share with the value x. The value
x is distributed in a secure way among processes of the
swarm, each process receives a secret share x. This oper-
ation is either done in a safe land, or uses encryption
techniques.
2 In this case, one should add ‘‘white noise’’ of constant output
computations to mask the actual output computations.



Fig. 1. Polynomial-based solution with single component share. Program for swarm member i.

3 One may wish to design a swarm in which the members maintain the
population of the swarm; in this case, as an optimization for a mechanism
based on secure heart-beats, a leaving process may notify the other
members of the fact that it is leaving.

4 Note that during a join operation, the communication is not intra-
swarm communication since the swarm members communicate with a
new joining process, which is yet to be a member of the swarm.
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� step(d): Modify the secret share, which results in modi-
fying the global secret. The processes of the swarm
independently receive the input d, which is the modifi-
cation parameter.
� regain consistency request: Request to redistribute the

secret in order to ensure that the processes carry the
current secret value in a consistent manner and to
recover the secret if necessary. Also, the operation is
required in order to cope with future joins, leaves, and
state corruption. We assume that the execution fol-
lowed by this input action is done in a safe land, where
there is no threat of any adversary. The regain consis-
tency mechanism is used to obtain a proactive security
property.
We assume that the number of processes leaving the
swarm between any two successive regain consistency
actions, is bounded by nlp. This number also includes
failed processes since a failed process is considered a
leaving process. The operation taken by a leaving
process is essentially an erase of data related to the
Swarm.3

� regain consistency reply: Reply to regain consistency
request, which includes the updated secret share.
� join request: A process requests to join the swarm and

receives join reply messages from other swarm mem-
bers, to compose its own secret share.
� join reply: A process replies to a join request of another

process, by sending the joining process a secret share.4

We consider two types of adversaries:
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� passive adversary: can compromise at most f < k pro-
cesses and reveal their state.5

� Active (Byzantine) adversary: can reveal and corrupt the
state of at most f < k processes.
Compromising or corruption can be invoked at most
f < k times between any two successive global resets
of the swarm secret. A global reset of the secret can be
implemented by using the set input actions to reset
the secret shares or by executing a regain consistency
operation, which redistributes the secret and may reset
it to some predefined default secret.

3. Reactive k-secret sharing – polynomial-based scheme

Consider a swarm of initially n members and a global
secret, denoted by gs, which is the actual secret of the
swarm. The value of gs can be increased (decreased) by
some integer value or multiplied by some integer factor.
In our polynomial scheme, we use Shamir’s (k,n)-threshold
scheme [14] to encode the value of gs. That is done by
using a polynomial p(x) of degree k � 1 over a finite field,
such that p(x) = a0 + a1x1 + a2x2 + � � � + ak�1xk�1, where a1,
. . ., ak�1 are random and a0 = gs.

A secret component is a pair (x,y), where y = p(x) and
x – 0. A set of n distinct secret components (x1,y1), . . .,
(xn,yn) encodes the swarm’s global secret gs in a way that
any fewer than k secret components cannot reconstruct
the polynomial p(x) and any k secret components or more
can do so and, hence, calculate the swarm’s global secret
gs. A secret share is simply a set (tuple) of distinct secret
components.

Observation 1. As stated in [1], linear operations on a
secret encoded by a polynomial are simple to perform. Let
p(x) be a polynomial of degree k � 1 used to encode a
secret gs. The secret gs is uniquely encoded by a set of k
points (x1,y1), . . ., (xk,yk), where p(xi) = yi for i = 1, . . ., k. The
polynomial q1(x), also of degree k � 1, where q1(xi) = yi + d,
equals to p(x) + d and encodes the secret gs + d. Similarly,
the polynomial q2(x) of degree k � 1, where q2(xi) = yi � l,
equals to p(x) � l and encodes the secret gs � l.

For example, consider the case where p(x) = 5 + 2x + 3x2,
a polynomial of degree 2 that encodes the global secret
gs = 5, among a swarm of n = 5 members. The pairs
(1,10), (2,21), (5,90), (7,166) and (10,325) are possible n
secret components, where each k = 3 components are re-
quired to reconstruct p(x) and calculate gs.

Incrementing the value of gs by d = 3 results in a new
polynomial q(x) = 8 + 2x + 3x2, which is represented by
the following secret components: (1,13), (2,24), (5,93),
(7,169) and (10,328). Similarly, when gs is multiplied by d.

3.1. Polynomial based scheme – secret share of size 1

Assume that each one of the n swarm members holds a
distinct secret share, which contains a single secret compo-
nent h(xi,yi) i, where yi = p(xi) and p(x) is a polynomial of
5 In the sequel we assume that a joining process reveals information
equivalent to a captured process, though, if it happens that the compro-
mising adversary is not present during the join no information is revealed.
degree k � 1 encoding the swarm’s global secret gs.
According to Observation 1, adding d to y1, . . ., yn results
in a new polynomial q(x) where q(x) = p(x) + d. Hence,
increasing (decreasing) all the values yi by d increases (de-
creases) the secret by d as well, since q(0) = p(0) + d. Also,
multiplying the second coordinate by some factor d implies
the multiplication of gs by d. Thus, updating the value gs is
done by internal actions followed by a step input action,
which specifies the arithmetic operation (multiplication
or addition) and the d by which the value of gs is multiplied
or increased.

Based on the above, the input actions are implemented
as described in Fig. 1.
3.1.1. Line-by-line code description
The code in Fig. 1 describes input actions of process i. Each

process i has a secret share of a single secret component:
a pair (xi,yi), where yi = p(xi). Each input action includes a
message of the form htype,srcid,destid,parametersi, where
type is the message type indicating the input action type,
srcid is the identifier of the source process, destid the
identifier of the destination process and additional parame-
ters of the input action.

� set: On set, process i receives a message of type set, indi-
cating the set input action, and a secret share, consists of
a single secret component of the form (x,y), where
y = p(x) (line 1). Process i sets xi and yi with the compo-
nent in the received share (lines 2, 3), where getX(-
share, j) and getY(share, j) returns the x and y values,
respectively, of the jth component in the given secret
share.
� step: On step, process i receives a message of type stp,

indicating the step input action, a value d and an opera-
tion type op (line 4). The value d may be negative and
indicates a change in the secret share that affects the
global secret. The operation op may be either ADD or
MUL, which indicates the arithmetic addition and mul-
tiplication operations respectively.
If op is ADD, then yi is incremented by d (lines 5, 6).
Otherwise, the operation is MUL and then yi is multi-
plied by d (lines 7, 8). By Observation 1, incrementing
or multiplying the global secret by d can be done by
incrementing or multiplying each value yi of the secret
component (xi,yi). Therefore, a step input action implies
the addition or multiplication of the global secret gs
by d.
� regainConsistencyRequest: On regainConsistancyRequest,

the processes are assumed to be in a safe place without
the threat of any adversary (alternatively, a global
secure function computation technique is used).

Process i receives a message of type rgn_rqst (line 9),
which triggers a leader election procedure (line 10). Once
a leader is elected, it is responsible for collecting all the
members’ shares, calculating the global secret and redis-
tributing the secret shares amongst the swarm members.

If process i is the leader (lines 11–19), it first listens to
regain consistency reply messages sent by other swarm
members. These reply messages contain the members’
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shares, which are collected into the set of all secret compo-
nents, denoted by allSecretComponents (line 12).

If the number of distinct secret components is fewer
than k, i.e., some of the global secret components are miss-
ing and the secret cannot be reconstructed, then process i
initializes a set allSecretComponents with the set of compo-
nents returned by the method setDefaultSecret() (lines 13,
14). This method sets the values of the global secret gs with
a predefined default value, and returns a set of n distinct
secret components, which is assigned to the set
allSecretComponents.

Having set the global secret components, process i (the
leader) redistributes the secret (lines 15–17). The function
getRandomShare returns a random share of a given size (1
in this case) out of the set allSecretComponents (line 16).
A random share is sent to each swarm member using a
set message to set the share of the member with the ran-
dom one (line 17). After sending the shares to all members,
the leader sets its own share with a random share (line 18).

Finally, after the shares are sent by the leader, the set
allSecretComponents is initialized with an empty set, to
avoid revealing the secret in case the leader is later com-
promised (line 19). In case process i is not the leader, it
sends its share to the leader by sending a rgn_rply message
(lines 20, 21).

� regainConsistencyReply: On regainConsistencyReply, all
processes are assumed to be in a safe place without
the threat of any adversary. Process i receives a message
of type rgn_rply, which includes the secret share of the
sender, identified by srcid (line 22). If process i is the
leader, then it adds the received component to the set
allSecretComponents (lines 23, 24). Otherwise, the mes-
sage is ignored.
� joinRequest: An input message of type join_rqst indicates

a request by a new process with identifier srcid to join
the swarm (line 25). Process i sends its secret compo-
nent to the joining process only if no other reply was
previously sent by another swarm member. For that, it
holds a variable replyWasSent, initialized with false, to
indicate whether a reply of another process was sent
back to the joining process (line 26). It then sets waiting-
Time with a random period of time, which is a number of
time units within the range 1 and maxWaiting(n), where
maxWaiting is a function which depends on the number
of swarm members n and the time unit size (line 27).
During that random period of time, process i listens to
join replies sent by other processes. Each reply includes
a share with a single component, namely, a pair (xj,yj),
where yj = p(xj). If such a reply was sent, then replyWas-
Sent is set with true (lines 28, 29). Whenever that ran-
dom period of time has elapsed, if no reply was sent,
then process i sends its secret component to the joining
process srcid (lines 30, 31).
We assume that at most one sender may succeed in
sending the reply. Moreover, processes know which
secret component is successfully sent. Note that the
secret components can be encrypted. In this case, the
join_rqst message may include a public key. Otherwise,
we regard each join as a process captured by the
adversary.
� joinReply: Process i receives an input message of type
join_rply, which indicates a reply for a join request by
a process joining the swarm. The message includes a
secret component for the joining process (line 32). Pro-
cess i sets its share with the value of the given secret
component (lines 33, 34).

3.1.2. Reconstructing the secret
Let pr(m) denote the probability that a random set of m

secret shares can reconstruct p(x) and calculate gs. On re-
gain consistency operation, the secret shares are collected
from all swarm members, the global secret is recon-
structed and redistributed again amongst the swarm mem-
bers. Assume the number of processes in the swarm
initially (or immediately after a regain consistency opera-
tion) is n. As long as there are no members which join or
leave the swarm, the members hold n distinct secret com-
ponents, where any fewer than k components cannot
reconstruct the secret and any k or more can reconstruct
it with probability 1. In this case, pr(m) = 0 for all m < k
and pr(m) = 1 for all m P k.

Assuming the number nlp of leaving processes between
two successive regain consistency operations is less than
n � k, and the number njp denotes the number of joining
processes, then pr(m) 6 1, since some of the components
appear more than once in the swarm. That probability is
a function of n, k, nlp and njp. Obviously, when all the mem-
bers’ components are given (as on regain consistency), that
probability is 1.

3.1.3. Passive adversary
According to Shamir’s (k,n)-threshold scheme, at least k

distinct secret components are required to reconstruct the
swarm’s global secret gs. Therefore, in any execution in
which an adversary captures at most f < k processes, at
least one component is missing and the secret cannot be
reconstructed.

3.1.4. Active (Byzantine) adversary and error correcting
In the presence of an active adversary, which has the

ability to corrupt the state of at most f swarm members,
we design a scheme that is robust to faults. Having m dis-
tinct points of a polynomial p(x) of degree k � 1, the Ber-
lekamp-Welch decoder [16] can reconstruct the secret as
long as the number of errors f is less than (m � k + 1)/2. If
there are no join operations, all shares are distinct, then
in the case of f errors (or corrupted state members), any
set of m > 2f + k � 1 shares can reconstruct the secret. Note
that the Berlekamp-Welch decoder refer to errors in the yi

values, but the active adversary can corrupt the xi values as
well. This fact does not affect the correctness of using the
decoder, since for any value xi, the value yi = p(xi) may be
regarded as erroneous. If there were join operations, then
some of the shares may be duplicated and, hence, a set of
m > 2f + k � 1 may reconstruct the secret with some posi-
tive probability.

3.2. Polynomial based scheme – secret share of size > 1

Previously we assumed that the number nlp of leaving
processes is at most n � k between any two successive glo-
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bal resets of the secret. Here we assume that neither the
number of leaving nor the number of joining processes is
limited, but the number of processes in the swarm at any
given time is at least k.

Under this assumption, consider the following sce-
nario. Processes left and joined the swarm in a way that
caused the swarm to be in a critical state, namely a
state in which the number of processes is larger than
k, there are exactly k distinct shares distributed
amongst the swarm members and there is a share sharei

of process i, which uniquely appears in the swarm. If
process i leaves the swarm, there are k � 1 distinct
shares (k � 1 polynomial points) and the secret cannot
be reconstructed. In order to increase the probability
of overcoming a critical state, we use secret share which
consists of s (uniformal chosen) secret components
rather than a single component. That way, on the next
join operation, before the process i with the unique
share leaves, the probability of the joining process to
get a share which includes the component in sharei is
s times larger. Motivated by the above scenario, we
use a polynomial p(x) of degree t � 1 > k to encode the
secret by Shamir’s (t, t)-threshold scheme. A secret share
is a tuple of s secret components (points), where s = t/k.
In this scheme we do not use n distinct polynomial
points but rather t.

The implementation of the input actions has slightly
changed, as shown in Fig. 2.

3.2.1. Code description
The code in Fig. 2 describes input actions of process i,

when a secret share is a tuple of s distinct secret compo-
nents. A secret share hðxi1 ; yi1 Þ; ðxi2 ; yi2 Þ; . . . ; ðxis ; yis Þi of pro-
cess i is represented by two arrays, Xi[1. . .s] and Yi[1. . .s],
where Xi[j] and Yi[j] match xij and yij

respectively. The fol-
lowing describes the code changes between Figs. 1 and 2.

� set: On set (line 1), process i sets its secret share with
the received one (lines 2–4).
� step: On step (line 5), process i, according to the received

arithmetic operation op (line 6), increments or multi-
plies each value Yi[j], j = 1. . .s by d. When done for all
secret shares, this modification of the shares implies
the modification of the global secret gs by d.
� regainConsistencyRequest: On regainConsistencyRequest,

executed in a safe place, process i receives a message
of type rgn_rqst (line 12). Handling the request is done
similarly to what is described in Fig. 1, Except the ran-
dom share which is sent back to each swarm member
consists of s secret components rather than 1 (lines
18–21).
� regainConsistencyReply: On regainConsistencyReply, exe-

cuted in a safe place, the leader adds all the components
of the received share into the set allSecretComponents
(lines 25–27).
� joinRequest: An input message of type join_rqst indi-

cates a request by a new process with identifier srcid
to join the swarm (line 28). Process i waits a random
period of time, during which it listens to join replies
of other swarm members. If the number of distinct
secret components, sent by other swarm members as
join replies, is less than s, then it sends a secret compo-
nent to the joining process. That secret component is
randomly chosen out of the secret components in the
secret share of process i.
The join procedure is designed to restrict the shares
that may be revealed by the passive adversary. For
that, process i initializes an empty set sentComponents
of secret components, which were sent by swarm
members (line 29). While the number of sent secret
components is less than s, process i does the following
(line 30). It sets waitingTime with a random period of
time, as specified in Section 3.2 (line 31). During that
random period of time, process i listens to join replies
sent by other processes, each reply includes a secret
component. While listening, process i adds the sent
components to its sentComponents set (lines 32–34).
After the waitingTime has elapsed, if the number of dis-
tinct secret components, which were sent to the join-
ing process srcid, is less than 1, then process i sends
a join reply to process srcid. This reply message
includes a secret component, randomly chosen out of
the secret components in its share that are not in sent-
Components (lines 35–37). It is done by calling the
function getRandomComponent(Xi[1. . .s],Yi[1. . .s],sent-
Components), which returns a randomly chosen com-
ponent out of the share that does not appear in
sentComponents.
� joinReply: On joinReply, process i receives an input mes-

sage of type join_rply, which contains a secret compo-
nent. If the current size of its secret share is smaller
than s (lines 39, 40), and the received secret component
was not previously received by process i (line 43), then
the received secret component is added to the share of
process i (lines 44, 45).

3.2.2. Reconstructing the secret
When using t distinct secret components and share size

of size s > 1, the probability prm to reconstruct the secret,
given m shares, randomly chosen out of the n secret shares,
is in fact, the probability that all the t secret components of
gs are present in that set of m secret shares.

Clearly, for 0 6m < k it holds that prm = 0, since at least
one secret component is missing. Whereas, for m P k it
holds that prm = [1 � (1 � p)m]t, where p is the probability
of a secret component to be chosen for a secret share. As
the components are chosen with equal probability out of
the t components of gs, it holds that p ¼ s

t ¼ 1
k, assuming k

divides t. The probability that a certain secret component
appears in one of the m secret shares is 1 � (1 � p)m.
Hence, the probability that no component is missing is
[1 � (1 � p)m]t. Therefore, the expected number m of re-
quired secret shares is a function of m, t and k.

3.2.3. Passive adversary
According to Shamir’s (t, t)-threshold scheme, at least t

distinct secret components are required to reveal the
swarm’s global secret gs. Here, each process has a secret
share with s distinct secret components, where s = t/k.
Therefore, compromising at most f < k processes ensures
that at least one component is missing and therefore the
polynomial p(x) cannot be calculated.



Fig. 2. Polynomial-based solution with multiple component share, program for swarm member i.
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3.2.4. Active adversary and error correcting
Similarly to the case of a secret share of size 1, if m

members were corrupted, then at most max{m � s, t} com-
ponents are corrupted. The Berlekamp-Welch decoder
[16] can reconstruct p(x) as long as the number of errors
f is less than (m � s � k + 1)/2 and m � s < t.

4. Reactive k-secret sharing – the Chinese remainder-
based scheme

Here, the representation of the global secret gs is based
on the Chinese Remainder Theorem (CRT). Given a set of
relatively prime numbers p1 < p2 < � � � < pk;Nk ¼

Qt
i¼1pi
and an integer m such that 0 6m < Nk, m is uniquely spec-
ified by its residues modulo p1 < � � � < pk. If we use n > k rel-
atively prime numbers p1 < � � � < pk < pk+1 < � � � < pn, then m
can be calculated out of any k pairs (pi,ri), where
ri = mmodpi.

Therefore, the global secret gs can be represented by a
set of n such pairs (pi,ri), where gs < Nk. A secret component
then, is a pair (pi,ri), where ri = gsmodpi and pi 2 P. A secret
share is a set of distinct secret components, as in the poly-
nomial-based scheme. We distribute the global secret gs
amongst the n processes in a way that k or more members
may reconstruct the secret with some probability, yet any
fewer than k members fail to do so.
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Lemma 1. Given a set P = {p1,p2, . . . , pk, . . . , pn} of n relatively
prime numbers, and Nk ¼

Qk
i¼1pi. According to the CRT, an

integer 0 6m < Nk is uniquely defined by a set of distinct pairs
ðpi1 ; ri1

Þ; . . . ; ðpik
; rik
Þ, where rij ¼ m modpij and pij 2 P. Then,

(m + d)mod Nk is uniquely defined by the set ðpi1
; ðri1

þ dÞ
modpi1 Þ; . . . ; ðpi1 ; ðrik þ dÞmodpik Þ.
Proof. For every pair (pi,ri), where ri = mmodpi, by defini-
tion, $q: m = ri + q � pi. Note that m, m + d < Nk. Therefore,
m + d = ri + d + q � pi. If ri + d < pi, then clearly m + d = (ri + d) -
mod pi. Otherwise, let r0i ¼ ðri þ dÞmodpi. By definition,
9q0 : ri þ d ¼ r0i þ q0 � pi. Therefore, mþ d ¼ r0i þ ðq0 þ qÞ�
pi:mþ d ¼ r0i modpi ¼ ðri þ dÞmodpi. h
Lemma 2. Given a set P = p1, p2, . . ., pk, . . ., pn of n relatively
prime numbers, and Nk ¼

Qk
i¼1pi. According to the CRT, an

integer 0 6m < Nk is uniquely defined by a set of distinct pairs
ðpi1 ; ri1 Þ; . . . ; ðpik

; rik Þ, where rij ¼ m modpij
and pij

2 P. Then,
(m � d)modNk is uniquely defined by the set ðpi1 ; ðri1 � dÞmod
pi1 Þ; . . . ; ðpi1 ; ðrik � dÞmodpik

Þ.
Proof. For every pair (pi,ri), where ri = mmodpi, by defini-
tion, $q: m = ri + q � pi. Note that m, m � d < Nk. Therefore,
m � d = ri � d + q � d � pi. If ri � d < pi, then clearly m
� d = ri � dmodpi. Otherwise, let r0i ¼ ðri � dÞmodpi. By defini-
tion, 9q0 : ri � d ¼ r0i þ q0 � pi. Therefore, m � d ¼ r0i þ ðq0 þ qÞ�
pi:m � d ¼ r0i modpi ¼ ri � d modpi. h

Note that if ri = gsmodpi for every pi 2 P, then
ri + d = (gs + d)modpi for every pi 2 P. Therefore, adding d
to gs can be done by adding d to each residue ri modulo
pi. Similarly, multiplying gs by some d, is done by multiply-
ing each residue ri by d modulo pi.

For example, let P = {2,3,5,7} (p1 = 2,p2 = 3,p3 = 5,
p4 = 7), k = 3, n = 4 and gs = 0. Also, 0 6 gs < Nk, where
Nk = 2 � 3 � 5 = 30. Assume gs is initially zero. Hence, the
CRT-representation of gs = 0, using P, is h(2,0), (3,0), (5,0),
(7,0)i. After incrementing the value of gs by d = 1 it holds
that the CRT-representation of gs = 1 is h(2,1), (3,1), (5,1),
(7,1)i. Incrementing gs by d = 5 again, results in gs = 6, rep-
resented by h(2,0), (3,0), (5,1), (7,6)i. Incrementing gs by
d = 4, results in gs = 10, represented by h(2,0), (3,1), (5,0),
(7,3)i. Multiplying gs by 2 results in gs = 20 represented
by h(2,0), (3,2), (5,0), (7,6)i.
4.1. Chinese remainder-based scheme – secret share of size 1

Assume a set of n relatively prime numbers P = {p1, . . . ,
pk, . . . ,pn}, where p1 < p2 < � � � < pk < � � � < pn. The productQk

i¼1pi is denoted by Nk and 0les gs < Nk. According to the
CRT, any k pairs (pi,ri) where pi 2 P can reconstruct gs.
Yet, any fewer than k pairs cannot reconstruct it. Therefore,
in this scheme, each swarm member holds a secret share of
one secret component (pi,ri).

In this case, the implementation of the input actions is
very similar to that of the polynomial-based scheme, Only
here we use a secret component of the form (pi,ri), where
ri = gsmodpi, rather than (xi,yi), where yi = p(x). Also, this
solution does not support arithmetic multiplication of gs.

The implementation is described in Fig. 3.
Reconstructing gs is similar to the polynomial-based
scheme.

4.1.1. Passive adversary
Similarly to the polynomial-based scheme, at least k

distinct secret components are required to reveal the
swarm’s global secret gs. Therefore, in any execution in
which an adversary compromises at most f < k processes,
it cannot reveal the secret. Moreover, we assume that there
is a lower bound p0 R P on the relatively prime numbers in
P such that p0 < p1 < p2 < � � � <pn. The use of n > k relatively
prime numbers, where only k are required naturally yields
an error correcting code [9]. An adversary which compro-
mises at most f < k swarm members is missing at least
one pair, denoted by (pj,rj). Had it known the prime, the
probability of the adversary to guess the secret was uni-
form over the values 0, 1, . . ., pj � 1, which is bounded by 1

p0
.

4.1.2. Active (Byzantine) adversary and error correcting
In the presence of an active adversary, which has the

ability to corrupt the state of at most f < k swarm members,
we design a scheme that is robust to faults. The global se-
cret gs < Nk is uniquely specified by its residue modulo
p1 < � � � < pk. Our scheme uses n � k redundant primes
pk+1 < � � � < pn for representing gs. Note that on the presence
of errors, the primes may also be faulty, but similar to the
polynomial-based scheme, an error in a prime pi may be
regarded as an error in the residue ri. The only problem is
that the erroneous prime pi may not be relatively prime
with pj 2 P, where j – i. For that, we assume that in the
presence of an active adversary the set P = {p1,p2, . . . ,pn}
is a set of n prime numbers (in particular, a set of n rela-
tively prime numbers). On regaining consistency, any pair
(pi,ri) which is received by the leader is discarded if pi is not
prime. Under this assumption, we can update the regain-
Consistency input action, so that the processes first agree
on P by a simple majority function. Then, any residue
paired with a prime in P may be chosen. Then, they can
use Mandelbaum’s technique [13] in order to correct the
errors and reconstruct gs. In this case, the number of Byz-
antine values or errors, modeled by f, is required to be less
than the majority and less than (n � k)/2. By this tech-
nique, at most n � k errors can be detected and (n � k)/2
can be corrected.

4.2. Chinese remainder-based scheme – secret share of size >1

Motivated by the need to decrease the probability of a
critical state, as described in Section 3.2, we design a
scheme in which each secret share is a tuple of s secret
components rather than a single component.

Here, we use a set P = {p1 < p2 < � � � < pt} of t > k relatively
prime numbers {p1 < p2 < � � � < pt}. The global secret gs is
bounded by Nt ¼

Qt
i¼1 and a secret share is a tuple of s se-

cret components (points), where s = t/k. In this solution we
do not use n distinct components but rather t.

The implementation of the input actions is similar to
the polynomial-based scheme described in Section 3.2,
see Fig. 4. A secret share hðpi1

; ri1 Þ; . . . ; ðpis ; ris Þi is repre-
sented by two arrays Pi[1. . .s] and Ri[1. . .s] of process i,
where pij

¼ Pi½j� and rij ¼ Ri½j�.



Fig. 3. Chinese remainder-based solution with single component share, program for swarm member i.
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4.2.1. Reconstructing the secret
As in the polynomial-based scheme, the probability prm

that a random set of m random secret shares can recon-
struct the secret gs is 0 for m < k and [1 � (1 � p)m]t for
m P t.

4.2.2. Passive adversary
According to the CRT, at least t distinct secret compo-

nents are required to reconstruct gs. Similarly to the poly-
nomial-based scheme, if an adversary compromises at
most f < k swarm members then it reveals at most
(k � 1)s = (k � 1)t/k distinct secret components. Namely,
at least one secret component is missing.

Theorem 1. In any execution in which the adversary
captures at most f < k processes, the probability of the
adversary guessing the global secret, i.e., guessing the value
of gs, is bounded by 1

pmin
.

Proof. In any execution in which the adversary captures at
most f < k processes, there is at least one missing secret
component, say (p,r). Assume that the adversary knows
the missing prime p. In this case, the adversary has p pos-
sible values {0,1,2, . . . ,p � 1} for r, out of which only one is
the correct value. Therefore, in the case of knowing the
missing prime p, the probability to reveal the secret is
1
p <

1
pmin

.

Moreover, when the adversary does not know the value
of p, the probability to guess the secret is even less than

1
pmin

. h
4.2.3. Active adversary and error correcting
We now turn to considering the case of an active (Byz-

antine) adversary, in which some errors take place, such as
input not received by all swarm members. Similarly to the
Chinese remainder-based scheme with a secret share of



Fig. 4. Chinese remainder-based solution with multiple component share. Program for swarm member i.
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size 1, Mandelbaum’s technique can be used to cope with
errors.
5. Reactive k-secret sharing – Vandermonde matrix-
based scheme

Here we consider a global secret gs, which is updated
using bitwise-xor operations for the limited case in which
t = k = n � 1. A random Vandermonde matrix Mn�k of n
rows and k = n � 1 columns is used to encode the global
secret gs, where 0 6 gs < 2k. The matrix M, known to all
swarm members, is over a binary field and any k rows
out of n are independent. Note that M can be created by
using any k � k matrix with linearly independent rows
and an additional row that is thier sum. The global secret
is, in fact, a binary vector gs of size k.

Given a binary vector v of m bits, let v[j] denote the jth
bit of v, where j = 1, . . ., m. Similarly, the jth row of a matrix
M is denoted by the vector M[j]. A secret component is a pair
(j,bj), where bj is the xor of all the bits gs[l], where
M[j][l] = 1 and M[j][l] denotes the lth bit in the jth row of M.
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For example, let n = 4, k = 3 and gs = (101), i.e., the value
of the global secret is 5.

Let Mn�k be the following matrix, for which every three
rows are linearly independent:

M ¼

1 1 0
1 0 1
0 1 0
0 0 1

0
BBB@

1
CCCA:

Note that a row in M that include a single bit with value
1 reveals a bit of gs. Thus, we suggest to xor the secret with
a random string and set the shares as shares of the result-
ing masked secret. Then, on regain consistency, when the
swarm is in a safe land, the random string may be used
again to reconstruct the secret. The pairs (1,1), (2,0),
(3,0) and (4,1) are secret components of the global secret
gs. The first row M[1] of M is a binary vector that defines
which bits of the vector gs are xored to compute b1. In this
case, the first and second bits of gs are xored and the result
is b1 = 1.

Note that given a binary vector v of k bits, updating the
global secret gs = gs � v is done by updating each secret

component (j,bj) to be j; b0j
� �

, where b0j is the value bj xored

with all the bits v[l], where M[j][l] = 1.
For example, for the specified gs and M, let v = (010).

The above secret components are updated to be the
following: 1;b01

� �
¼ð1;1�0�1Þ¼ ð1;0Þ; 2;b02

� �
¼ð2;0�0

�0Þ¼ð2;0Þ; 3;b03
� �

¼ð3;0�1Þ¼ð3;1Þ and 4;b04
� �

¼ð4;1�0Þ¼
ð4;1Þ.

Assume that each one of the n swarm members holds a
distinct secret share, which contains a single secret compo-
nent h(j,bj)i, as specified, where Mn�k encodes the global
secret gs, and 0 6 gs < 2k.

The input actions are implemented as described in
Fig. 5. A secret share with single secret component h(j,bj)i
of process i is represented by an index rowi = j and a bit
biti = bj.
5.0.4. Reconstructing the secret

Assume the number of processes in the swarm initially
(or immediately after a global reset) is n. As long as there
are no members which join or leave the swarm, the mem-
bers hold n distinct secret components. Any k = n � 1 or
more components can reconstruct the secret, as they can
create a k � k matrix of k independent rows which un-
iquely encodes the binary vector gs. In this case, the prob-
ability prm to reconstruct the secret out of m secret
components is 0 for m < k and 1 for m P k.
5.0.5. Passive adversary

At least k rows of M are required to reconstruct the bin-
ary vector gs, hence, at least k distinct secret components
are required to reconstruct gs. Therefore, in any execution
in which an adversary captures at most f < k processes, at
least one component is missing and hence gs cannot be
reconstructed.
6. Virtual automaton

We would like the swarm members to implement a vir-
tual automaton where the state is unknown. Thus, if at
most f swarm members are compromised, the global state
is not known and the swarm task is not revealed. In this
section we present the scheme assuming possible errors,
as the error free is a straightforward special case.

We assume that our automaton is modeled as an I/O
automaton [12] and described as a five-tuple:

� An action signature sig(A), formally a partition of the set
acts(A) of actions into three disjoint sets in(acts(A)),
out(acts(A)) and int(acts(A)) of input actions, output
actions, and internal actions. The set of local controlled
actions is denoted by local(A) = out(A) [ int(A).
� A set states(A) of states.
� A non-empty set start(A) # states(A) of initial states.
� A transition relation stepsðAÞ : statesðAÞ � actsðAÞ !

statesðAÞ, where for every state s 2 states(A) and an
input action p there is a transition (s,p,s0) 2 steps(A).
� An equivalence relation part(A) partitioning the set

local(A) into at most a countable number of equivalence
classes.
We assume that the swarm implements a given I/O
automaton A as specified. The swarm’s global state is
the current state in the execution of A and is, in fact,
The swarms actual global secret. A secret component
is a state s 2 states(A) and a secret share is simply a
tuple of m states hsi1 ; si2 ; . . . ; sim i of m distinct states,
where sij 2 statesðAÞ for all j = 1. . .m and at most one
of the m states is the swarm’s global state. Formally,
the swarm’s global state is defined as the state which
appears in at least threshold T out of n state tuples
(T 6 n). If there is more than one such state, then the
swarm’s global state is a predefined default state.

The output of process i is a tuple outi ¼ hoi1 ; oi2 ; . . . ; oim i
of m output actions, where oij 2 outðactsðAÞÞ for all j = 1,
. . ., m. The swarm’s global output is defined to be the result
of the output action which appears in at least threshold T
out of n members’ output.

We assume the existence of devices (sensors, for exam-
ple) which receive the output of swarm members (maybe
in the form of directed laser beams) and thus can be ex-
posed to identify the swarm’s global output by a threshold
of the members outputs.

We assume an adversary which can compromise at
most f < T processes between two successive global re-
set operations of the swarm’s global state. We assume
that the adversary knows the automaton A and the
threshold T. Therefore, when compromising f processes,
it can sample the state tuples of the compromised pro-
cesses and assume that the most common state, i.e.,
appears the most frequently in the compromised state
tuples, is most likely to be the global state of the
swarm.

Consider the case in which f = 1 and T = bn/2 + 1c. The
secret share of process i is denoted by state_tuplei. If the
jstate_tupleij = 1, i.e., the secret share includes a single
state, then an adversary which compromises process i



Fig. 5. Vandermonde matrix-based solution with single component share. Program for swarm member i.
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knows the secret share state tuplei ¼ hsi1 i. The probability
that si1 is the swarm’s global state is at least T

n and since T
is a lower bound, the probability may reach 1 when all
shares are identical. If jstate_tupleij = 2, then an adversary
which compromises process i, reveals the secret share
state tuplei ¼ hsi1 ; si2 i. The probability that either one of
the states si1 or si2 is the swarm’s global state is at least T

n.
Since there is no information on which of the two states
is most likely to be the swarm’s global state, the only op-
tion for an adversary is to arbitrarily choose one of the
two states with equal probability. Therefore, the probabil-
ity of revealing the swarm’s global state is at least T

2n and at
most T

n in that case. Generally, if jstate_tupleij = m, then the
probability of revealing the swarm’s global state is at least

T
m�n, and at most T

ðm�1Þ�n for f = 1. As the number of states in
state_tuplei increases, the probability to reveal the swarm’s
global state decreases.

The input actions are implemented as follows:

� set (hsi1 ; . . . ; sim i): Sets the secret share state_tuplei with
the given share (tuple). The tuples are distributed in a
way that at least T + f + nlp of them contain the swarm’s
global state immediately after a global reset of the
secret or a regain consistency execution. Thus, even if
f shares are corrupted and nlp processes have left the
swarm, the swarm threshold is respected. Moreover,
in order to ensure the uniqueness of the global state
in the presence of corruptions and joins, any other state
should have fewer than T � f replicas.
� step(d): Simulates a step of the automaton for each of

the states in the secret share. By the end of the simula-
tion, each process has an updated output tuple. Here, d
is any possible input of the simulated automaton. Note
that it is possible that transition reduces the number of
distinct states in the tuple, in such a case, the process
replaces copies of a state that already exists by a dis-
tinct state that is randomly chosen out of the states
not in state_tuplei.
� regain consistency: Ensures that there are at least

T + f + nlp members i, where state_tuplei includes the
swarm’s global state and any other state has fewer than
T � f replicas.
� join: A process joins the swarm and constructs its secret

share by collecting states from other processes. These
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shares are randomly chosen out of the secret shares of
these processes.

Note that the scheme benefits from smooth joins, since
the number f that includes the join operations is taken into
consideration while calculating the swarm’s global state
upon regain consistency operation. That is, a threshold of T
is required for a state in order to be the swarm’s global state.
Therefore, in case swarm members maintain the population
of the swarm (updated by joins, leaves and possibly by peri-
odic heart beats) a join may be simply done by sending a join
request message, specifying the identifier of the joining pro-
cess. However, the consistency of the swarm will definitely
benefit if shares are uniformly chosen for the newcomers. In
this way, if the adversary was not listening during the join
Fig. 6. Virtual automaton, progr
procedure, there is high probability that the joining pro-
cesses will assist in encoding the current secret.

The code in Fig. 6 describes input actions of process i,
when a secret share is a tuple of m distinct states in state-
s(A) and at most one state is the swarm’s global state. A se-
cret share hsi1 ; si2 ; . . . ; sim i of process i is denoted by an array
state_tuplei[1. . .m], where state_tuplei[j] matches sij for all
j = 1. . .m. Similarly, an output tuple hoi1 ; oi2 ; . . . ; oimi of pro-
cess i is represented by an array outputi[1. . .m], where out-
puti[j] matches oij for all j = 1. . .m.

6.1. Code description

� set: On input action set, process i receives a message
of type set and a secret share of m distinct states in
am for swarm member i.
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states(A) (line 1). It then sets its share state_tuplei with
the received share, using the function getState(share, j)
which returns the jth state in the given share
(lines 2, 3).
� step: On input action step, process i receives a message

of type stp and d, which is an input parameter for the I/O
automaton (line 4). For every state state_tuplei[j], pro-
cess i simulates the automaton A by executing a single
transaction on state_tuplei[j] and the input d (lines 5,
6). As a result, the state state_tuplei[j] and the output
outputi[j] are updated with the new state and output
action according to the executed transition. If there
exists j1 – j2, where state_tuplei[j1] and state_tuplei[j2]
were updated with the same state, say s. Then, state_tu-
plei[j2] is set with a random state, not in state_tuplei

(lines 7, 8). Finally, process i executes the output actions
in outputi (line 9).
� regainConsistencyRequest: On input action regainConsis-

tency the processes are assumed to be in a safe land
with no threat of any adversary. Process i receives a
message of type rgn_rqst from process identified by
srcid (line 10). The method leaderElection() returns the
process identifier of the elected leader (line 11). If pro-
cess i is the leader, then it should distribute state tuples
using set input actions in a way that at least T + f swarm
members have tuples that include the global state and
all other states appear no more than T times. Possibly
by randomly choosing shares to members, such that
the probability for assigning the global state share to a
process is equal to, or slightly greater than, (T/n) + (f/
n) while the probability of any other state to be
assigned to a process is the same (smaller) probability.
First, the leader collects secret components states in
states (A) by listening to join replies of other swarm
members (line 13). It then, executes the methodmost-
PopularStates() in order to find the candidates to be
the swarm’s global state (line 14). If there is a single
candidate (line 15), then it is the global state and glob-
alState is set with the first (and only) state in candidates
(line 16). In case there is more than one candidate (line
17), the leader sets globalState with a predefined default
global state (line 18). The leader then distributes the
state tuples (line 19) and deletes both the collected
tuples allStateTuples and the candidates for the global
state candidates (lines 20, 21). If process i is not the lea-
der, then it sends its secret share state_tuplei to the lea-
der (lines 22, 23).
� regainConsistencyReply: On input action regainConsisten-

cyReply the processes are also assumed to be in a safe
land. Process i receives a message of type rgn_rply,
which is a part of the regain consistency procedure.
The message includes the identifier srcid of the sender
and the sender’s state tuple (line 24). If process i is
the leader, then it adds the received tuple to the set all-
StateTuplesi of already received tuples (lines 25, 26).
Otherwise, it ignores the message.
� joinRequest: On input action, joinRequest process i

receives a message of type join_rqst from a process
identified by srcid, which is asking to join the swarm
(line 27). This operation is done much like the polyno-
mial-based solution described in Fig. 6.
� joinReply: On input action joinReply process i receives a
message of type join_rply from the process identified by
srcid (line 37). Similarly to the polynomial-based solu-
tion, it collects m distinct secret components to com-
pose a secret share.

7. Conclusions

We have presented four schemes for reactive k-secret
sharing that require no internal communication to perform
a transition.

The first three solutions maybe combined as part of the
reactive automaton to define a share of the state, for exam-
ple to enable an output of the automaton whenever a share
value of the secret is prime. Thus the operator of the
swarm may control the output of each process by manipu-
lating the secret value, e.g., making sure that secret shares
are never prime, until a sufficient number and combination
of events occurs. And last, the similarity in usage of Man-
delbaum and Berlekamp-Welch techniques may call for
arithmetic generalization of the concepts.
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