Ad Hoc Networks 10 (2012) 1291-1305

Contents lists available at SciVerse ScienceDirect

[ehune]

Ad Hoc Networks

journal homepage: www.elsevier.com/locate/adhoc

Secret swarm unit
Reactive k-secret sharing

Shlomi Dolev®*, Limor Lahiani?, Moti Yung®

2 Department of Computer Science, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
b Department of Computer Science, Columbia University, New York, NY, USA

ARTICLE INFO ABSTRACT

Article history:

Received 21 December 2010
Accepted 29 March 2012
Available online 20 April 2012

Secret sharing is a fundamental cryptographic task. Motivated by the virtual automata
abstraction and swarm computing, we investigate an extension of the k-secret sharing
scheme, in which the secret shares are changed on the fly, independently and without
(internal) communication, as a reaction to a global external trigger. The changes are made
while maintaining the requirement that k or more secret shares may reconstruct the secret

Keywords:

Secret sharing

Mobile computing

Secure multi-party computation

and no k — 1 or fewer can do so.
The application considered is a swarm of mobile processes, each maintaining a share of
the secret which may change according to common outside inputs, e.g., inputs received by

sensors attached to the process.
The proposed schemes support addition and removal of processes from the swarm, as
well as corruption of a small portion of the processes in the swarm.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Secret sharing is a basic and fundamental technique
[14]. Motivated by the high level of interest in the
virtual automata abstraction and swarm computing, e.g.,
[4,3,2,5,7], we investigate an extension of the k-secret
sharing scheme, in which the secret shares are modified
on the fly, while maintaining the requirement that k or
more shares may reconstruct the secret and no k — 1 or
fewer can reconstruct it.

There is great interest in pervasive ad hoc and swarm
computing [15], particularly in swarming unmanned aerial
vehicles (uav) [10,5]. A unit of vavs that collaborate in a
mission is more robust than a single uav that has to com-
plete a mission by itself. This is a known phenomenon in

* Partially supported by the Israeli Ministry of Science, Israel Science
Foundation (Grant Number 428/11), Lynne and William Frankel Center
for Computer Sciences and the Rita Altura Trust Chair in Computer
Sciences. An extended abstract appeared in Indocrypt 2007 [8].

* Corresponding author.

E-mail addresses: dolev@cs.bgu.ac.il (S. Dolev), lahiani@cs.bgu.ac.il (L.
Lahiani), moti@cs.columbia.edu (M. Yung).

1570-8705/$ - see front matter © 2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.adhoc.2012.03.011

distributed computing where a single point of failure has
to be avoided. Replicated memory and state machine
abstractions are used as general techniques for capturing
the strength of distributed systems in tolerating faults
and dynamic changes.

In this work we integrate cryptographic concerns into
these abstractions. In particular, we are interested in sce-
narios in which some of the swarm members are compro-
mised and their secret shares are revealed. We would like
the swarm members to execute a global transition without
communicating with each other and therefore without
knowing the secret, before or after the transition. Note that
secure function computation (e.g., [11]) requires commu-
nication whenever inputs should be processed, while we
require transition with no internal communication.

1.1. Our contributions

We define and present four reactive k-secret schemes.
The first three schemes are for the case in which the global
secret of the swarm is some numeric number that can be
modified according to inputs. The fourth scheme is for

http://dx.doi.org/10.1016/j.adhoc.2012.03.011
mailto:dolev@cs.bgu.ac.il
mailto:lahiani@cs.bgu.ac.il
mailto:moti@cs.columbia.edu
http://dx.doi.org/10.1016/j.adhoc.2012.03.011
http://www.sciencedirect.com/science/journal/15708705
http://www.elsevier.com/locate/adhoc

1292 S. Dolev et al./Ad Hoc Networks 10 (2012) 1291-1305

the case of an I/O automaton, implemented by the swarm,
where the current state of the automaton is the actual se-
cret of the swarm. To avoid compromising the global secret
of the swarm, the members maintain only a share of the
secret.

The first polynomial scheme is based on Shamir’s (k,n)-
threshold scheme, the second is based on the Chinese
Remainder Theorem (CRT) and the third is based on the
Vandermonde matrix. The fourth and last solution uses
replication of states for implementing a virtual I/O autom-
aton with unknown state.

In all the solutions we suggest a way to modify the
global secret by modifying only the secret shares without
the need to collect them to reconstruct the global secret.
In the polynomial-based and the CRT-based schemes we
support arithmetic addition and multiplication operations
as a possible modification of the secret. Still, these two
implementations differ. In terms of total space used to
encode the secret, the size of each share in the polyno-
mial-based scheme is of the same order of the secret size,
while the total size of the shares needed to define the
secret in the Chinese remainder scheme is of the secret
order. Also, in the Chinese remainder-based scheme, the
secret share may reveal partial information on the global
secret.

In the Vandermonde-based scheme, a predefined Van-
dermonde matrix is used to define the secret shares. This
scheme is the only one that supports bitwise-xor opera-
tions among the non-automaton schemes.

The last scheme implements a general I/O automaton,
where the transition to the next state is performed accord-
ing to the input event received by the swarm. This scheme
replicates states of a given automaton and distributes
several distinct replicas to each swarm member. The rela-
tive majority of the distributed replicas represent the state
of the swarm. A swarm member changes the states of all
the replicas it maintains according to the global input
received by the swarm. In this case, a general automaton
can be implemented by the swarm, revealing only partial
knowledge on the secret of the swarm.

1.2. Paper organization

The system settings are described in Section 2. The
polynomial-based solution, which supports arithmetic
addition and multiplication is presented in Section 3. The
Chinese remainder-based solution appears in Section 4.
The Vandermonde matrix-based solution appears in Sec-
tion 5. Section 6 describes the I/O automaton implementa-
tion. Finally, conclusions appear in Section 7.

2. Swarm Settings

A swarm is a collection of processes (executed by, say,
unmanned aerial vehicles uavs, mobile-sensors, processors)
that receive inputs from the outside environment simulta-
neously.! The swarm as a unit holds a secret, where shares

T Alternatively, the processes can communicate the inputs to each other
by atomic broadcast or other weaker communication primitive.

of the secret are distributed among swarm members in a
way that at least k are required to reconstruct the secret,
and any fewer than k shares cannot reconstruct it. Yet, in
some of our schemes the shares may imply additional infor-
mation regarding the secret. Obviously, given a secret do-
main, the secret can be guessed with a uniform probability
over the secret domain. We consider both passive adversary
and active (Byzantine) adversary, and present different
schemes used by the processes to cope with them. We as-
sume that at most f of the n processes may be compromised
or corrupted by an adversary, where f< k. Communication
between the swarm members is avoided or performed in a
safe land, alternatives of more expensive secure communi-
cation techniques may be used when communication is
needed [11].

2.1. Reactive k-secret sharing — problem definition

Assume that we have a swarm, which initially consists
of n processes. The task of the swarm is to manage a global
secret and modify it without the need to reconstruct it first.
Each swarm member holds a share of the global secret in a
way that any fewer than k members fail to reconstruct the
secret and at least k members may reconstruct it with
some positive probability. In addition, all members can
reconstruct the secret with probability 1.

2.2. Reactive k-secret sharing - general solution scheme

Any event sensed by the processes is modeled by a sys-
tem input. The swarm receives inputs and sends outputs to
the outside environment. An input to the swarm arrives at
all processes simultaneously. The output of the swarm is a
function of the swarm state and the system inputs. There
are two possible assumptions concerning the swarm out-
put, the first, called threshold accumulated output, where
the swarm outputs only when at least a predefined num-
ber of processes have this output locally. The second
means of defining the swarm output is based on secure
internal communication within the swarm; the communi-
cation takes place when the local state of a process indi-
cates that a swarm output is possible.? In the sequel, we
assume the threshold accumulated output where the adver-
sary cannot observe outputs below the threshold. Whenever
the output is above the threshold, the adversary may ob-
serve the swarm output together with the outside environ-
ment, and is “surprised” by the non-anticipated output of
the swarm (similar to the secret maturity approach pre-
sented in [6]).

We consider the following input actions, to be imple-
mented by each of our solutions:

e set (x): Sets the secret share with the value x. The value
x is distributed in a secure way among processes of the
swarm, each process receives a secret share x. This oper-
ation is either done in a safe land, or uses encryption
techniques.

2 In this case, one should add “white noise” of constant output
computations to mask the actual output computations.

S. Dolev et al./Ad Hoc Networks 10 (2012) 1291-1305 1293

1 set;((set,srcid, i, share))
2 x; «— getX(share, 1)
3 y; < getY (share, 1)
4 step;((stp,srcid, i, op, d))
5 if op==ADD

6 Yi—— yi+9

7 else

8 Yi —— Yi *x 0

11 if leaderId = 1 then

23 if leaderId = 1 then

26 replyWasSent «—— false

33 z; «— getX(component)
34 y; «— getY (compoent)

9 regainConsistencyRequest;({rgn_rqgst, srcid, i))
10 leaderId «— leaderElection()

12 allSecretComponents; «—— listen All({rgn_rply, j, i, share))

13 if size(allSecretComponents;) < k then

14 allSecretComponents; «— setDefaultSecret()

15 for every process id j in the swarm do:

16 new_share «— getRandomShare(allSecretComponents, 1)
17 send((set, 1, j, new_share))

18 ((zs,y:)) < getRandomShare(allSecretComponents, 1)

19 allSecretComponents; «—

20 else

21 send((rgn_rply, i,leaderId, ((zi,y:))))

22 regainConsistencyReply;((rgn_rply, srcid, i, share))
24 allSecretComponents; «— allSecretComponents; U share
25 joinRequest;((join_rgst, srcid, i))

27 waitingTime «—— random([1..mazW aiting(n))])
28 while waitingTime not elapsed do

29 replyWasSent «—— listen((join_rply, j, srcid, component))
30 if replyWasSent = false then
31 send({join_rply, i, srcid, (zi,yi)))

32 joinReply; ((join_rply, srcid, i, component))

Fig. 1. Polynomial-based solution with single component share. Program for swarm member i.

o step(d): Modify the secret share, which results in modi-
fying the global secret. The processes of the swarm
independently receive the input J, which is the modifi-
cation parameter.

regain consistency request: Request to redistribute the
secret in order to ensure that the processes carry the
current secret value in a consistent manner and to
recover the secret if necessary. Also, the operation is
required in order to cope with future joins, leaves, and
state corruption. We assume that the execution fol-
lowed by this input action is done in a safe land, where
there is no threat of any adversary. The regain consis-
tency mechanism is used to obtain a proactive security
property.

We assume that the number of processes leaving the
swarm between any two successive regain consistency
actions, is bounded by ny,. This number also includes
failed processes since a failed process is considered a
leaving process. The operation taken by a leaving

process is essentially an erase of data related to the
Swarm.?

e regain consistency reply: Reply to regain consistency
request, which includes the updated secret share.

e join request: A process requests to join the swarm and
receives join reply messages from other swarm mem-
bers, to compose its own secret share.

e join reply: A process replies to a join request of another
process, by sending the joining process a secret share.*
We consider two types of adversaries:

3 One may wish to design a swarm in which the members maintain the

population of the swarm; in this case, as an optimization for a mechanism
based on secure heart-beats, a leaving process may notify the other
members of the fact that it is leaving.

4 Note that during a join operation, the communication is not intra-
swarm communication since the swarm members communicate with a
new joining process, which is yet to be a member of the swarm.

1294 S. Dolev et al./Ad Hoc Networks 10 (2012) 1291-1305

e passive adversary: can compromise at most f<k pro-
cesses and reveal their state.®

e Active (Byzantine) adversary: can reveal and corrupt the
state of at most f < k processes.
Compromising or corruption can be invoked at most
f<k times between any two successive global resets
of the swarm secret. A global reset of the secret can be
implemented by using the set input actions to reset
the secret shares or by executing a regain consistency
operation, which redistributes the secret and may reset
it to some predefined default secret.

3. Reactive k-secret sharing - polynomial-based scheme

Consider a swarm of initially n members and a global
secret, denoted by gs, which is the actual secret of the
swarm. The value of gs can be increased (decreased) by
some integer value or multiplied by some integer factor.
In our polynomial scheme, we use Shamir’s (k,n)-threshold
scheme [14] to encode the value of gs. That is done by
using a polynomial p(x) of degree k — 1 over a finite field,
such that p(x)=ag+ax' +ax?+---+a,_x*"!, where aj,
..., a_1 are random and ag = gs.

A secret component is a pair (x,y), where y =p(x) and
x# 0. A set of n distinct secret components (x1,y1), -- -
(xn,yn) encodes the swarm’s global secret gs in a way that
any fewer than k secret components cannot reconstruct
the polynomial p(x) and any k secret components or more
can do so and, hence, calculate the swarm’s global secret
gs. A secret share is simply a set (tuple) of distinct secret
components.

Observation 1. As stated in [1], linear operations on a
secret encoded by a polynomial are simple to perform. Let
p(x) be a polynomial of degree k — 1 used to encode a
secret gs. The secret gs is uniquely encoded by a set of k
points (x1,y1), - - -, (XkYx), Where p(x;) =y;fori=1, ..., k. The
polynomial q(x), also of degree k — 1, where q,(x;) =y; + 9,
equals to p(x)+ 6 and encodes the secret gs + 6. Similarly,
the polynomial g,(x) of degree k — 1, where qx(x;)=y; - i,
equals to p(x) - 1 and encodes the secret gs - u.

For example, consider the case where p(x) = 5 + 2x + 3x?,
a polynomial of degree 2 that encodes the global secret
gs=5, among a swarm of n=5 members. The pairs
(1,10), (2,21), (5,90), (7,166) and (10,325) are possible n
secret components, where each k =3 components are re-
quired to reconstruct p(x) and calculate gs.

Incrementing the value of gs by é =3 results in a new
polynomial q(x)=8+2x+3x?, which is represented by
the following secret components: (1,13), (2,24), (5,93),
(7,169) and (10,328). Similarly, when gs is multiplied by 4.

3.1. Polynomial based scheme - secret share of size 1

Assume that each one of the n swarm members holds a
distinct secret share, which contains a single secret compo-
nent {(x;,y;)), where y; = p(x;) and p(x) is a polynomial of

5 In the sequel we assume that a joining process reveals information
equivalent to a captured process, though, if it happens that the compro-
mising adversary is not present during the join no information is revealed.

degree k—1 encoding the swarm’s global secret gs.
According to Observation 1, adding § to y, ..., ¥, results
in a new polynomial g(x) where q(x)=p(x)+é. Hence,
increasing (decreasing) all the values y; by é increases (de-
creases) the secret by ¢ as well, since g(0) = p(0) + 6. Also,
multiplying the second coordinate by some factor ¢ implies
the multiplication of gs by é. Thus, updating the value gs is
done by internal actions followed by a step input action,
which specifies the arithmetic operation (multiplication
or addition) and the 6 by which the value of gs is multiplied
or increased.

Based on the above, the input actions are implemented
as described in Fig. 1.

3.1.1. Line-by-line code description

The codeinFig. 1 describes input actions of process i. Each
process i has a secret share of a single secret component:
a pair (x;,y;), where y; = p(x;). Each input action includes a
message of the form (type,srcid,destid,parameters), where
type is the message type indicating the input action type,
srcid is the identifier of the source process, destid the
identifier of the destination process and additional parame-
ters of the input action.

e set: On set, process i receives a message of type set, indi-
cating the set input action, and a secret share, consists of
a single secret component of the form (x,y), where
y =p(x) (line 1). Process i sets x; and y; with the compo-
nent in the received share (lines 2, 3), where getX(-
share,j) and getY(share,j) returns the x and y values,
respectively, of the jth component in the given secret
share.

step: On step, process i receives a message of type stp,
indicating the step input action, a value 6 and an opera-
tion type op (line 4). The value 6 may be negative and
indicates a change in the secret share that affects the
global secret. The operation op may be either ADD or
MUL, which indicates the arithmetic addition and mul-
tiplication operations respectively.

If op is ADD, then y; is incremented by ¢ (lines 5, 6).
Otherwise, the operation is MUL and then y; is multi-
plied by ¢ (lines 7, 8). By Observation 1, incrementing
or multiplying the global secret by 6 can be done by
incrementing or multiplying each value y; of the secret
component (x;,y;). Therefore, a step input action implies
the addition or multiplication of the global secret gs
by 4.

regainConsistencyRequest: On regainConsistancyRequest,
the processes are assumed to be in a safe place without
the threat of any adversary (alternatively, a global
secure function computation technique is used).

Process i receives a message of type rgn_rgst (line 9),
which triggers a leader election procedure (line 10). Once
a leader is elected, it is responsible for collecting all the
members’ shares, calculating the global secret and redis-
tributing the secret shares amongst the swarm members.

If process i is the leader (lines 11-19), it first listens to
regain consistency reply messages sent by other swarm
members. These reply messages contain the members’

S. Dolev et al./Ad Hoc Networks 10 (2012) 1291-1305 1295

shares, which are collected into the set of all secret compo-
nents, denoted by allSecretComponents (line 12).

If the number of distinct secret components is fewer
than k, i.e., some of the global secret components are miss-
ing and the secret cannot be reconstructed, then process i
initializes a set allSecretComponents with the set of compo-
nents returned by the method setDefaultSecret() (lines 13,
14). This method sets the values of the global secret gs with
a predefined default value, and returns a set of n distinct
secret components, which is assigned to the set
allSecretComponents.

Having set the global secret components, process i (the
leader) redistributes the secret (lines 15-17). The function
getRandomShare returns a random share of a given size (1
in this case) out of the set allSecretComponents (line 16).
A random share is sent to each swarm member using a
set message to set the share of the member with the ran-
dom one (line 17). After sending the shares to all members,
the leader sets its own share with a random share (line 18).

Finally, after the shares are sent by the leader, the set
allSecretComponents is initialized with an empty set, to
avoid revealing the secret in case the leader is later com-
promised (line 19). In case process i is not the leader, it
sends its share to the leader by sending a rgn_rply message
(lines 20, 21).

o regainConsistencyReply: On regainConsistencyReply, all
processes are assumed to be in a safe place without
the threat of any adversary. Process i receives a message
of type rgn_rply, which includes the secret share of the
sender, identified by srcid (line 22). If process i is the
leader, then it adds the received component to the set
allSecretComponents (lines 23, 24). Otherwise, the mes-
sage is ignored.

joinRequest: An input message of type join_rgst indicates
a request by a new process with identifier srcid to join
the swarm (line 25). Process i sends its secret compo-
nent to the joining process only if no other reply was
previously sent by another swarm member. For that, it
holds a variable replyWasSent, initialized with false, to
indicate whether a reply of another process was sent
back to the joining process (line 26). It then sets waiting-
Time with a random period of time, which is a number of
time units within the range 1 and maxWaiting(n), where
maxWaiting is a function which depends on the number
of swarm members n and the time unit size (line 27).
During that random period of time, process i listens to
join replies sent by other processes. Each reply includes
a share with a single component, namely, a pair (x;,;),
where y; = p(x;). If such a reply was sent, then replyWas-
Sent is set with true (lines 28, 29). Whenever that ran-
dom period of time has elapsed, if no reply was sent,
then process i sends its secret component to the joining
process srcid (lines 30, 31).

We assume that at most one sender may succeed in
sending the reply. Moreover, processes know which
secret component is successfully sent. Note that the
secret components can be encrypted. In this case, the
join_rgst message may include a public key. Otherwise,
we regard each join as a process captured by the
adversary.

e joinReply: Process i receives an input message of type
join_rply, which indicates a reply for a join request by
a process joining the swarm. The message includes a
secret component for the joining process (line 32). Pro-
cess i sets its share with the value of the given secret
component (lines 33, 34).

3.1.2. Reconstructing the secret

Let pr(m) denote the probability that a random set of m
secret shares can reconstruct p(x) and calculate gs. On re-
gain consistency operation, the secret shares are collected
from all swarm members, the global secret is recon-
structed and redistributed again amongst the swarm mem-
bers. Assume the number of processes in the swarm
initially (or immediately after a regain consistency opera-
tion) is n. As long as there are no members which join or
leave the swarm, the members hold n distinct secret com-
ponents, where any fewer than k components cannot
reconstruct the secret and any k or more can reconstruct
it with probability 1. In this case, pr(m)=0 for all m<k
and pr(m)=1forallm > k.

Assuming the number ny, of leaving processes between
two successive regain consistency operations is less than
n —k, and the number n;, denotes the number of joining
processes, then pr(m) < 1, since some of the components
appear more than once in the swarm. That probability is
a function of n, k, nj, and nj,. Obviously, when all the mem-
bers’ components are given (as on regain consistency), that
probability is 1.

3.1.3. Passive adversary

According to Shamir’s (k,n)-threshold scheme, at least k
distinct secret components are required to reconstruct the
swarm'’s global secret gs. Therefore, in any execution in
which an adversary captures at most f<k processes, at
least one component is missing and the secret cannot be
reconstructed.

3.1.4. Active (Byzantine) adversary and error correcting

In the presence of an active adversary, which has the
ability to corrupt the state of at most f swarm members,
we design a scheme that is robust to faults. Having m dis-
tinct points of a polynomial p(x) of degree k — 1, the Ber-
lekamp-Welch decoder [16] can reconstruct the secret as
long as the number of errors f is less than (m — k + 1)/2. If
there are no join operations, all shares are distinct, then
in the case of f errors (or corrupted state members), any
set of m > 2f + k — 1 shares can reconstruct the secret. Note
that the Berlekamp-Welch decoder refer to errors in the y;
values, but the active adversary can corrupt the x; values as
well. This fact does not affect the correctness of using the
decoder, since for any value x;, the value y; = p(x;) may be
regarded as erroneous. If there were join operations, then
some of the shares may be duplicated and, hence, a set of
m > 2f+k — 1 may reconstruct the secret with some posi-
tive probability.

3.2. Polynomial based scheme - secret share of size >1

Previously we assumed that the number ny, of leaving
processes is at most n — k between any two successive glo-

1296 S. Dolev et al./Ad Hoc Networks 10 (2012) 1291-1305

bal resets of the secret. Here we assume that neither the
number of leaving nor the number of joining processes is
limited, but the number of processes in the swarm at any
given time is at least k.

Under this assumption, consider the following sce-
nario. Processes left and joined the swarm in a way that
caused the swarm to be in a critical state, namely a
state in which the number of processes is larger than
k, there are exactly k distinct shares distributed
amongst the swarm members and there is a share share;
of process i, which uniquely appears in the swarm. If
process i leaves the swarm, there are k—1 distinct
shares (k —1 polynomial points) and the secret cannot
be reconstructed. In order to increase the probability
of overcoming a critical state, we use secret share which
consists of s (uniformal chosen) secret components
rather than a single component. That way, on the next
join operation, before the process i with the unique
share leaves, the probability of the joining process to
get a share which includes the component in share; is
s times larger. Motivated by the above scenario, we
use a polynomial p(x) of degree t — 1>k to encode the
secret by Shamir’s (t,t)-threshold scheme. A secret share
is a tuple of s secret components (points), where s = t/k.
In this scheme we do not use n distinct polynomial
points but rather t.

The implementation of the input actions has slightly
changed, as shown in Fig. 2.

3.2.1. Code description

The code in Fig. 2 describes input actions of process i,
when a secret share is a tuple of s distinct secret compo-
nents. A secret share ((xi,,y;,), (Xi,,¥s,), - - -, (X, ;) of pro-
cess i is represented by two arrays, Xj[1...s] and Yj[1.. s],
where X;[j] and Yi[j] match x; and i respectively. The fol-
lowing describes the code changes between Figs. 1 and 2.

e set: On set (line 1), process i sets its secret share with
the received one (lines 2-4).
e step: On step (line 5), process i, according to the received
arithmetic operation op (line 6), increments or multi-
plies each value Yi[j], j=1...s by 6. When done for all
secret shares, this modification of the shares implies
the modification of the global secret gs by é.
regainConsistencyRequest: On regainConsistencyRequest,
executed in a safe place, process i receives a message
of type rgn_rgst (line 12). Handling the request is done
similarly to what is described in Fig. 1, Except the ran-
dom share which is sent back to each swarm member
consists of s secret components rather than 1 (lines
18-21).
regainConsistencyReply: On regainConsistencyReply, exe-
cuted in a safe place, the leader adds all the components
of the received share into the set allSecretComponents
(lines 25-27).
joinRequest: An input message of type join_rgst indi-
cates a request by a new process with identifier srcid
to join the swarm (line 28). Process i waits a random
period of time, during which it listens to join replies
of other swarm members. If the number of distinct
secret components, sent by other swarm members as

join replies, is less than s, then it sends a secret compo-
nent to the joining process. That secret component is
randomly chosen out of the secret components in the
secret share of process i.

The join procedure is designed to restrict the shares
that may be revealed by the passive adversary. For
that, process i initializes an empty set sentComponents
of secret components, which were sent by swarm
members (line 29). While the number of sent secret
components is less than s, process i does the following
(line 30). It sets waitingTime with a random period of
time, as specified in Section 3.2 (line 31). During that
random period of time, process i listens to join replies
sent by other processes, each reply includes a secret
component. While listening, process i adds the sent
components to its sentComponents set (lines 32-34).
After the waitingTime has elapsed, if the number of dis-
tinct secret components, which were sent to the join-
ing process srcid, is less than 1, then process i sends
a join reply to process srcid. This reply message
includes a secret component, randomly chosen out of
the secret components in its share that are not in sent-
Components (lines 35-37). It is done by calling the
function getRandomComponent(X;[1...s],Yi[1...s],sent-
Components), which returns a randomly chosen com-
ponent out of the share that does not appear in
sentComponents.

joinReply: On joinReply, process i receives an input mes-
sage of type join_rply, which contains a secret compo-
nent. If the current size of its secret share is smaller
than s (lines 39, 40), and the received secret component
was not previously received by process i (line 43), then
the received secret component is added to the share of
process i (lines 44, 45).

3.2.2. Reconstructing the secret

When using t distinct secret components and share size
of size s> 1, the probability pr,, to reconstruct the secret,
given m shares, randomly chosen out of the n secret shares,
is in fact, the probability that all the t secret components of
gs are present in that set of m secret shares.

Clearly, for 0 < m <k it holds that pr,, = 0, since at least
one secret component is missing. Whereas, for m > k it
holds that pr, =[1 — (1 — p)™]', where p is the probability
of a secret component to be chosen for a secret share. As
the components are chosen with equal probability out of
the t components of gs, it holds that p =£=1, assuming k
divides t. The probability that a certain secret component
appears in one of the m secret shares is 1 —(1—p)™
Hence, the probability that no component is missing is
[1 — (1 —p)™]". Therefore, the expected number m of re-
quired secret shares is a function of m, t and k.

3.2.3. Passive adversary

According to Shamir’s (t,t)-threshold scheme, at least t
distinct secret components are required to reveal the
swarm'’s global secret gs. Here, each process has a secret
share with s distinct secret components, where s = t/k.
Therefore, compromising at most f< k processes ensures
that at least one component is missing and therefore the
polynomial p(x) cannot be calculated.

S. Dolev et al./Ad Hoc Networks 10 (2012) 1291-1305 1297

1 set;((set,srcid, i, share))

2 for j =1..s do

3 X;[j] < getX(share, j)
4 Y;[j] < getY (share, j)
5 step;((stp,srcid, i, op,d))

6 if op == ADD

7 for j =1..s do

8 Yili] — Yiljl + 6
9 else

10 for j =1..s do

1 Yilj] — Yilj] + 8

13 leaderId «— leader Election()
14 if leaderId =i then

26 if leaderId = i then

28 joinRequest;((join_rgst, srcid, i))
29 sentComponents «— ()
30 while |sentComponents| < s do

39 size «— sizeof(X;)
40 if size < s then

41 x «—— getX (component)
42 y «— getY (component)
43 if x ¢ X;[1..size] then
44 X;[size +1] «— =z
45 Yi[size +1] —y

12 regainConsistencyRequest;((rgn_rgst, srcid, i))

15 allSecretComponents; «— listenAll({rgn_rply, i, j, share))

16 if size(allSecretComponents;) < t then

17 allSecretComponents; «— setDefaultSecret()

18 for every process id j in the swarm do:

19 new_share «—— getRandomShare(allSecretComponents, s)
20 send((set, i, j, new_share))

21 (X;[1..s], Y;[1..s]) «— getRandomShare(allSecretComponents, s)
22 allSecretComponents; «— ()

23 else

24 send((rgn_rply, i,leaderld, (X;[1..s], Y;[1..5])))

25 regainConsistencyReply;({rgn_rply, srcid, i, share))

27 allSecretComponents; «—— allSecretComponents; U {share}

31 waitingTime «— random([1..mazW aiting(n)])

32 while waitingTime not elapsed do

33 listen((join_rply, i, pid, component))

34 sentComponents «— sentComponents U {component}

35 if |sentComponents| < s then

36 random_component «— get RandomComponent(X;[1..s], Y;[1..s], sentComponents)
37 send({join_rply, i, srcid, randomcomponent))

38 joinReply;((join_rply, srcid, i, component))

Fig. 2. Polynomial-based solution with multiple component share, program for swarm member i.

3.2.4. Active adversary and error correcting

Similarly to the case of a secret share of size 1, if m
members were corrupted, then at most max{m - s,t} com-
ponents are corrupted. The Berlekamp-Welch decoder
[16] can reconstruct p(x) as long as the number of errors
fislessthan(m-s—k+1)2and m-s<t.

4. Reactive k-secret sharing - the Chinese remainder-
based scheme

Here, the representation of the global secret gs is based
on the Chinese Remainder Theorem (CRT). Given a set of
relatively prime numbers p; < p, < --- < Py, Nk = [T, P;

and an integer m such that 0 < m < N,, m is uniquely spec-
ified by its residues modulo p; < - - - < py. If we use n > k rel-
atively prime numbers p; <--- <pg<pr+1 <--- <Py, then m
can be calculated out of any k pairs (p,r;), where
r;=mmodp;.

Therefore, the global secret gs can be represented by a
set of n such pairs (p;,r;), where gs < N,. A secret component
then, is a pair (p;r;), where r; = gsmod p; and p; € P. A secret
share is a set of distinct secret components, as in the poly-
nomial-based scheme. We distribute the global secret gs
amongst the n processes in a way that k or more members
may reconstruct the secret with some probability, yet any
fewer than k members fail to do so.

1298 S. Dolev et al./Ad Hoc Networks 10 (2012) 1291-1305

Lemma 1. Given aset P={p,ps,...,Pw-..,Pn} Of n relatively
prime numbers, and N) = Hf—‘zlp,». According to the CRT, an
integer 0 < m < N, is uniquely defined by a set of distinct pairs
(pi,»14,), - -+ (P, Ty,), where 1, = m modp; and p; € P. Then,
(m +a)mod Ny is uniquely deﬁned by the set (p,l,(r,, +9)
modp;,), ..., (py,, (1, + 0)modp,).

Proof. For every pair (p;r;), where r; = mmodp;, by defini-
tion, 3q: m=r;+q - p;. Note that m, m + § < N,. Therefore,
m+d=r;+5+q-p.lfr;+5<p;,then clearly m+ 5= (r; + 6)-
mod p;. Otherwise, let r; = (r; + 6)modp;. By definition,
3q :ri+d=r;+q -p;. Therefore, m+d=r;+(q +q)
p;im+ 6 =rimodp; = (r; +é)modp;. O

Lemma 2. Given a set P=py, ps, ..., P - .. Pn Of n relatively
prime numbers, and N = Hﬁ‘:] p;- According to the CRT, an
integer 0 < m < Ny is uniquely defined by a set of distinct pairs
(Pi, i) - (p,k,rlk) where ry=m modp, and p; € P. Then,
(m- 6)mode is uniquely deﬁned by the set (b, (r,1 - d)mod
ph)) (pn (rlk :)modp,k)

Proof. For every pair (p;,1;), where r; = mmodp;, by defini-
tion, 3q: m=r;+q - p;.. Note that m, m - § < N,. Therefore,
m-6=r;-6+q- o-p. If r;-6<p; then clearly m
-0 =r;- dmodp;. Otherwise, let r; = (r; - §)) mod p;. By defini-
tion, 3¢ : r;- 6 =1+ q - p;. Therefore, m-5 =r{+(q' +q)-
pim-é=rimodp; =r;-4 modp;. O
Note that if r;=gsmodp; for every p;eP, then
=(gs+dJ)modp; for every p; € P. Therefore, adding ¢
to gs can be done by adding ¢ to each residue r; modulo
pi. Similarly, multiplying gs by some 6, is done by multiply-
ing each residue r; by § modulo p;.

For example, let P={2,3,5,7} (p1=2,p>=3,p3=5,
p4=7), k=3, n=4 and gs=0. Also, 0<gs<N,, where
Ni=2-3-5=30. Assume gs is initially zero. Hence, the
CRT-representation of gs =0, using P, is ((2,0), (3,0), (5,0),
(7,0)). After incrementing the value of gs by 6 =1 it holds
that the CRT-representation of gs=1 is {(2,1), (3,1), (5,1),
(7,1)). Incrementing gs by ¢ = 5 again, results in gs = 6, rep-
resented by ((2,0), (3,0), (5,1), (7,6)). Incrementing gs by
& =4, results in gs = 10, represented by ((2,0), (3,1), (5,0),
(7,3)). Multiplying gs by 2 results in gs =20 represented
by ((2,0), (3,2), (5,0), (7,6)).

4.1. Chinese remainder-based scheme - secret share of size 1

Assume a set of n relatively prime numbers P = {p4,...,
Dks---»Dn}, Where p;<py<---<py<---<p, The product
Hf-‘zlpi is denoted by N, and Oles gs < N,. According to the
CRT, any k pairs (p;r;) where p; € P can reconstruct gs.
Yet, any fewer than k pairs cannot reconstruct it. Therefore,
in this scheme, each swarm member holds a secret share of
one secret component (p;1;).

In this case, the implementation of the input actions is
very similar to that of the polynomial-based scheme, Only
here we use a secret component of the form (p;,r;), where

= gsmod p;, rather than (x;y;), where y; = p(x). Also, this
solution does not support arithmetic multiplication of gs.

The implementation is described in Fig. 3.

Reconstructing gs is similar to the polynomial-based
scheme.

4.1.1. Passive adversary

Similarly to the polynomial-based scheme, at least k
distinct secret components are required to reveal the
swarm’s global secret gs. Therefore, in any execution in
which an adversary compromises at most f< k processes,
it cannot reveal the secret. Moreover, we assume that there
is a lower bound pg ¢ P on the relatively prime numbers in
P such that pg < p; <ps <--- <p,. The use of n > k relatively
prime numbers, where only k are required naturally yields
an error correcting code [9]. An adversary which compro-
mises at most f<k swarm members is missing at least
one pair, denoted by (p;1;). Had it known the prime, the
probability of the adversary to guess the secret was uni-
form over the values 0, 1, ..., p; — 1, which is bounded by i

4.1.2. Active (Byzantine) adversary and error correcting

In the presence of an active adversary, which has the
ability to corrupt the state of at most f < k swarm members,
we design a scheme that is robust to faults. The global se-
cret gs <N is uniquely specified by its residue modulo
p1<---<pk. Our scheme uses n—k redundant primes
Dik+1 < - -+ < p, for representing gs. Note that on the presence
of errors, the primes may also be faulty, but similar to the
polynomial-based scheme, an error in a prime p; may be
regarded as an error in the residue r;. The only problem is
that the erroneous prime p; may not be relatively prime
with p; e P, where j #i. For that, we assume that in the
presence of an active adversary the set P={p1,pa,...,Pn}
is a set of n prime numbers (in particular, a set of n rela-
tively prime numbers). On regaining consistency, any pair
(pi,1;) which is received by the leader is discarded if p; is not
prime. Under this assumption, we can update the regain-
Consistency input action, so that the processes first agree
on 2 by a simple majority function. Then, any residue
paired with a prime in P may be chosen. Then, they can
use Mandelbaum’s technique [13] in order to correct the
errors and reconstruct gs. In this case, the number of Byz-
antine values or errors, modeled by f, is required to be less
than the majority and less than (n — k)/2. By this tech-
nique, at most n — k errors can be detected and (n — k)/2
can be corrected.

4.2. Chinese remainder-based scheme - secret share of size >1

Motivated by the need to decrease the probability of a
critical state, as described in Section 3.2, we design a
scheme in which each secret share is a tuple of s secret
components rather than a single component.

Here, we useaset P={p; <p, <---<p;oft>krelatively
prime numbers {p; <p,<---<p}. The global secret gs is
bounded by N; = [];_, and a secret share is a tuple of s se-
cret components (points), where s = t/k. In this solution we
do not use n distinct components but rather t.

The implementation of the input actions is similar to
the polynomial-based scheme described in Section 3.2,
see Fig. 4. A secret share ((p;,ri,),...,(Dy,Ti)) is repre-
sented by two arrays Pj[1...s] and Rj[1...s] of process i,
where p; = Pi[j] and r;, = Ri[j].

S. Dolev et al./Ad Hoc Networks 10 (2012) 1291-1305 1299

—

set;((set, srcid, i, share))
2 p; < getP(share, 1)

3 r; «—— getR(share, 1)

4 step;((stp,srcid, i, op, d))

5 if op==ADD

6 ri «— (r; +9) mod p;
7 else

8 r; «— (r; * §) mod p;

11 if leaderId = 7 then

23 if leaderld = 1 then

26 replyWasSent «—— false

33 p; «— getP(component)
34 r; < getR(compoent)

9 regainConsistencyRequest;((rgn_rqgst, srcid, i))
10 leaderId «— leaderElection()

12 allSecretComponents; «—— listen All({rgn_rply, j, 1, share))

13 if size(allSecretComponents;) < k then

14 allSecretComponents; «— setDefaultSecret()

15 for every process id j in the swarm do:

16 new_share «— getRandomShare(allSecretComponents, 1)
17 send((set, i, j, new_share))

18 ((pi,ri)) < getRandomShare(allSecretComponents, 1)

19 allSecretComponents; «—

20 else

21 send((rgn_rply,i,leaderId, ((pi,7:))))

22 regainConsistencyReply;((rgn_rply, srcid, i, share))
24 allSecretComponents; «— allSecretComponents; U share
25 joinRequest;((join_rgst, srcid, i))

27 waitingTime «— random([1..mazW aiting(n))])
28 while waitingTime not elapsed do

29 replyWasSent «—— listen((join_rply, j, srcid, component))
30 if replyWasSent = false then
31 send({join_rply, i, srcid, (pi,r:)))

32 joinReply; ((join_rply, srcid, i, component))

Fig. 3. Chinese remainder-based solution with single component share, program for swarm member i.

4.2.1. Reconstructing the secret

As in the polynomial-based scheme, the probability pr,,
that a random set of m random secret shares can recon-
struct the secret gs is 0 for m<k and [1 — (1 — p)™]* for
m>=t

4.2.2. Passive adversary

According to the CRT, at least t distinct secret compo-
nents are required to reconstruct gs. Similarly to the poly-
nomial-based scheme, if an adversary compromises at
most f<k swarm members then it reveals at most
(k—1)s=(k — 1)t/k distinct secret components. Namely,
at least one secret component is missing.

Theorem 1. In any execution in which the adversary
captures at most f<k processes, the probability of the
adversary guessing the global secret, i.e., guessing the value

of gs, is bounded by p,,l,m'

Proof. In any execution in which the adversary captures at
most f<k processes, there is at least one missing secret
component, say (p,r). Assume that the adversary knows
the missing prime p. In this case, the adversary has p pos-
sible values {0,1,2,...,p — 1} for r, out of which only one is
the correct value. Therefore, in the case of knowing the

missing prime p, the probability to reveal the secret is
1 1
P> Puin’

Moreover, when the adversary does not know the value

of p, the probability to guess the secret is even less than
1

Prmin”

4.2.3. Active adversary and error correcting

We now turn to considering the case of an active (Byz-
antine) adversary, in which some errors take place, such as
input not received by all swarm members. Similarly to the
Chinese remainder-based scheme with a secret share of

1300 S. Dolev et al./Ad Hoc Networks 10 (2012) 1291-1305

14 if leaderId = i then

26 if leaderId = i then

39 size «— sizeof(X;)
40 if size < s then

41 x «— getP(component)
42 y «— getR(component)
43 if z ¢ P;[1..size] then
44 P;[size + 1] «— x
45 R;[size+ 1] «— y

1 set;((set,srcid, i,share))

2 for j=1..s do

3 P;[j] < getP(share,j)

4 R;[j] < getR(share, j)

5 step;((stp,srcid, i, op,J))

6 if op == ADD

7 for j =1..s do

8 Ri[j] «— (Ri[j] + &) mod P;[j]
9 else

10 for j =1..s do

11 Ri[j] «— (Ri[j] * §) mod P;[j]

12 regainConsistencyRequest;({rgn_rqgst, srcid, i))
13 leaderId «— leader Election()

15 allSecretComponents; <« listen All({rgn_rply, i, j, share))

16 if size(allSecretComponents;) < t then

17 allSecretComponents; < setDefaultSecret()

18 for every process id j in the swarm do:

19 new_share «— getRandomShare(allSecretComponents, s)
20 send((set, i, j, new_share))

21 (P;[1..s], R;[1..s]) «— getRandomShare(allSecretComponents, s)
22 allSecretComponents; «—— ()

23 else

24 send((rgn_rply, i,leaderId, (P;[1..s], R;[1..s])))

25 regainConsistencyReply;((rgn_rply, srcid, i, share))
27 allSecretComponents; < allSecretComponents; U {share}

28 joinRequest;((join_rgst, srcid, i))

29 sentComponents «—— ()

30 while |sentComponents| < s do

31 waitingTime «—— random([1..maxW aiting(n)])

32 while waitingTime not elapsed do

33 listen((join_rply, i, pid, component))

34 sentComponents «— sentComponents U {component}

35 if |[sentComponents| < s then

36 randomcomponentget RandomComponent(P;[1..s], R;[1..s])
37 send((join_rply, i, srcid, randomcomponent))

38 joinReply;((join_rply, srcid, i, component))

Fig. 4. Chinese remainder-based solution with multiple component share. Program for swarm member i.

size 1, Mandelbaum'’s technique can be used to cope with
errors.

5. Reactive k-secret sharing - Vandermonde matrix-
based scheme

Here we consider a global secret gs, which is updated
using bitwise-xor operations for the limited case in which
t=k=n—1. A random Vandermonde matrix M of n
rows and k=n — 1 columns is used to encode the global

secret gs, where 0 < gs <2* The matrix M, known to all
swarm members, is over a binary field and any k rows
out of n are independent. Note that M can be created by
using any k x k matrix with linearly independent rows
and an additional row that is thier sum. The global secret
is, in fact, a binary vector gs of size k.

Given a binary vector v of m bits, let 7[j] denote the jth
bit of », where j =1, ..., m. Similarly, the jth row of a matrix
M is denoted by the vector M[j]. A secret component is a pair
(,bj), where b; is the xor of all the bits gs[l], where
M[j][1] = 1 and M[j][!] denotes the Ith bit in the jth row of M.

S. Dolev et al./Ad Hoc Networks 10 (2012) 1291-1305 1301

For example, let n =4, k=3 and gs = (101), i.e., the value
of the global secret is 5.

Let M"** be the following matrix, for which every three
rows are linearly independent:

0

O = =

1
0
1

—_ O =

00

Note that a row in M that include a single bit with value
1 reveals a bit of gs. Thus, we suggest to xor the secret with
a random string and set the shares as shares of the result-
ing masked secret. Then, on regain consistency, when the
swarm is in a safe land, the random string may be used
again to reconstruct the secret. The pairs (1,1), (2,0),
(3,0) and (4,1) are secret components of the global secret
gs. The first row M[1] of M is a binary vector that defines
which bits of the vector gs are xored to compute b;. In this
case, the first and second bits of gs are xored and the result
is b1 =1.

Note that given a binary vector v of k bits, updating the
global secret gs=gs @ v is done by updating each secret
component (j, b;) to be (j, bj’) where b} is the value b; xored
with all the bits [l], where M[j][I] = 1.

For example, for the specified gs and M, let v=(010).
The above secret components are updated to be the
following: (1,b})=(1,19041)=(1,0),(2,b;) =(2,080
®0)=(2,0),(3,b5)=(3,081)=(3,1) and (4,b;)=(4,100)=
(4,1).

Assume that each one of the n swarm members holds a
distinct secret share, which contains a single secret compo-
nent ((j,b;)), as specified, where M™¥ encodes the global
secret gs, and 0 < gs < 2K,

The input actions are implemented as described in
Fig. 5. A secret share with single secret component ((j, b;))
of process i is represented by an index row;=j and a bit
bit; = b;.

5.0.4. Reconstructing the secret

Assume the number of processes in the swarm initially
(or immediately after a global reset) is n. As long as there
are no members which join or leave the swarm, the mem-
bers hold n distinct secret components. Any k=n —1 or
more components can reconstruct the secret, as they can
create a k x k matrix of k independent rows which un-
iquely encodes the binary vector gs. In this case, the prob-
ability pr, to reconstruct the secret out of m secret
components is 0 for m<k and 1 for m > k.

5.0.5. Passive adversary

At least k rows of M are required to reconstruct the bin-
ary vector gs, hence, at least k distinct secret components
are required to reconstruct gs. Therefore, in any execution
in which an adversary captures at most f < k processes, at
least one component is missing and hence gs cannot be
reconstructed.

6. Virtual automaton

We would like the swarm members to implement a vir-
tual automaton where the state is unknown. Thus, if at
most f swarm members are compromised, the global state
is not known and the swarm task is not revealed. In this
section we present the scheme assuming possible errors,
as the error free is a straightforward special case.

We assume that our automaton is modeled as an I/O
automaton [12] and described as a five-tuple:

e An action signature sig(A), formally a partition of the set
acts(A) of actions into three disjoint sets in(acts(A)),
out(acts(A)) and int(acts(A)) of input actions, output
actions, and internal actions. The set of local controlled
actions is denoted by local(A) = out(A) U int(A).

A set states(A) of states.

A non-empty set start(A) C states(A) of initial states.

A transition relation steps(A) : states(A) x acts(A) —
states(A), where for every state s e states(A) and an
input action =« there is a transition (s, 7,s’) € steps(A).
An equivalence relation part(A) partitioning the set
local(A) into at most a countable number of equivalence
classes.

We assume that the swarm implements a given /O
automaton A as specified. The swarm’s global state is
the current state in the execution of A and is, in fact,
The swarms actual global secret. A secret component
is a state s e states(A) and a secret share is simply a
tuple of m states (s;,si,,...,S;,) of m distinct states,
where s; € states(A) for all j=1...m and at most one
of the m states is the swarm’s global state. Formally,
the swarm'’s global state is defined as the state which
appears in at least threshold T out of n state tuples
(T < n). If there is more than one such state, then the
swarm'’s global state is a predefined default state.

The output of process i is a tuple out; = (0;,,0,, ..., 0;,)
of m output actions, where o; € out(acts(A)) for all j=1,
..., m. The swarm’s global output is defined to be the result
of the output action which appears in at least threshold T
out of n members’ output.

We assume the existence of devices (sensors, for exam-
ple) which receive the output of swarm members (maybe
in the form of directed laser beams) and thus can be ex-
posed to identify the swarm'’s global output by a threshold
of the members outputs.

We assume an adversary which can compromise at
most f<T processes between two successive global re-
set operations of the swarm'’s global state. We assume
that the adversary knows the automaton A and the
threshold T. Therefore, when compromising f processes,
it can sample the state tuples of the compromised pro-
cesses and assume that the most common state, i.e.,
appears the most frequently in the compromised state
tuples, is most likely to be the global state of the
swarm.

Consider the case in which f=1 and T=|n/2 +1]|. The
secret share of process i is denoted by state_tuple;. If the
|state_tuple;| = 1, i.e., the secret share includes a single
state, then an adversary which compromises process i

1302

S. Dolev et al./Ad Hoc Networks 10 (2012) 1291-1305

1 set;((set,srcid, i, share))
2 row; «— getRow(share, 1)
3 b; <« getBit(share, 1)

W~

step; ((stp, srcid, i, v))
bi — b, ®vlj1] @ ... B vlj], where M[row;][j1] = ... = Mrow;][5;] =1

t

6 regainConsistencyRequest;((rgn_rqgst,srcid, i))
7 leaderId «—— leader Election()
8 if leaderId = i then

20 if leaderId = i then

22 joinRequest;((join_rqgst, srcid, i))
23 sentComponents «— ()
24 while |sentComponents| < 1 do

32 row; «— getRow(component)
33 b; «— getBit(compoent)

9 allSecretComponents; «— listen All({rgn_rply, j, i, share))

10 if size(allSecretComponents;) < k then

11 allSecretComponents; «— setDefaultSecret()

12 for every process id j in the swarm do:

13 new_share «— getRandomShare(allSecretComponents, 1)
14 send((set, i, j, new_share))

15 ((row;, b)) «— getRandomShare(allSecretComponents, 1)

16 allSecretComponents; < ()

17 else

18 send({rgn_rply, i, leaderId, ((row;,b;))))

19 regainConsistencyReply; ({rgn_rply, srcid, i, share))

21 allSecretComponents; «— allSecretComponents; U share

25 waitingTime «—— random([1..mazW aiting(n)])

26 while waitingTime not elapsed do

27 listen({join_rply, j, srcid, component))

28 sentComponents «—— sentC'omponents U {component}
29 if |sentComponents| < 1 then

30 send({join_rply, i, srcid, ((row;, b;){))

31 joinReply;((join_rply, srcid, i, component}))

Fig. 5. Vandermonde matrix-based solution with single component share. Program for swarm member i.

knows the secret share state_tuple; = (s;,). The probability
that s;, is the swarm’s global state is at least g and since T
is a lower bound, the probability may reach 1 when all
shares are identical. If |state_tuple;| = 2, then an adversary
which compromises process i, reveals the secret share
state_tuple; = (s;,,si,). The probability that either one of
the states s;, or s;, is the swarm’s global state is at least %
Since there is no information on which of the two states
is most likely to be the swarm’s global state, the only op-
tion for an adversary is to arbitrarily choose one of the
two states with equal probability. Therefore, the probabil-
ity of revealing the swarm’s global state is at least - and at
most I in that case. Generally, if |state_tuple;] = m, then the
probability of revealing the swarm’s global state is at least
i and at most 1y for f= 1. As the number of states in
state_tuple; increases, the probability to reveal the swarm'’s
global state decreases.
The input actions are implemented as follows:

e set ((si,,---,Si,)): Sets the secret share state_tuple; with
the given share (tuple). The tuples are distributed in a
way that at least T + f + ny, of them contain the swarm’s

global state immediately after a global reset of the
secret or a regain consistency execution. Thus, even if
f shares are corrupted and ny, processes have left the
swarm, the swarm threshold is respected. Moreover,
in order to ensure the uniqueness of the global state
in the presence of corruptions and joins, any other state
should have fewer than T — f replicas.

e step(s): Simulates a step of the automaton for each of
the states in the secret share. By the end of the simula-
tion, each process has an updated output tuple. Here, §
is any possible input of the simulated automaton. Note
that it is possible that transition reduces the number of
distinct states in the tuple, in such a case, the process
replaces copies of a state that already exists by a dis-
tinct state that is randomly chosen out of the states
not in state_tuple;.

e regain consistency: Ensures that there are at least
T+f+n, members i, where state_tuple; includes the
swarm'’s global state and any other state has fewer than
T — f replicas.

e join: A process joins the swarm and constructs its secret
share by collecting states from other processes. These

S. Dolev et al./Ad Hoc Networks 10 (2012) 1291-1305 1303

shares are randomly chosen out of the secret shares of
these processes.

Note that the scheme benefits from smooth joins, since
the number f that includes the join operations is taken into
consideration while calculating the swarm'’s global state
upon regain consistency operation. That is, a threshold of T
is required for a state in order to be the swarm'’s global state.
Therefore, in case swarm members maintain the population
of the swarm (updated by joins, leaves and possibly by peri-
odic heart beats) a join may be simply done by sending a join
request message, specifying the identifier of the joining pro-
cess. However, the consistency of the swarm will definitely
benefitif shares are uniformly chosen for the newcomers. In
this way, if the adversary was not listening during the join

procedure, there is high probability that the joining pro-
cesses will assist in encoding the current secret.

The code in Fig. 6 describes input actions of process i,
when a secret share is a tuple of m distinct states in state-
s(A) and at most one state is the swarm’s global state. A se-
cret share (s, S;,, . . .,Si,) of process i is denoted by an array
state_tuplei[1...m], where state_tuple;[j] matches s; for all
j=1...m. Similarly, an output tuple (o;,,0;,, . .., 0;,) of pro-
cess i is represented by an array output;[1...m], where out-
put;[j] matches o; for all j=1...m.

6.1. Code description

e set: On input action set, process i receives a message
of type set and a secret share of m distinct states in

1 set;((set,srcid, i,share))
2 for j =1..m do
3

step; ((stp, srcid, i,))
for j =1..m do

executeOQutput Actions(output_acts)

11 leaderId «— leader Election()
12 if leaderId = i then

25 if leaderId = i then

27 joinRequest;({join_rgst, srcid, i))
28 sentComponents «— ()
29 while |sentComponents| < m do

38 size «—— state_tuple;
39 if size < m then

40 s «— getState(component)
41 if s ¢ state_tuple; then
42 state_tuple;[size + 1] «— s

state_tuple;[j] < getState(share, j)

if exists j1 # j2 such that states;[j1] = states;[jz]

4
5
6 (state;[j], output;[j]) «— follow the transaction in steps(A) for state_tuple;[j] and §
7
8 state_tuple;[j2] «—— getRandomState(states(A)\states;)

9

10 regainConsistencyRequest;((rgn._rgst, srcid, i))

13 allStateTuples «— listen All({rgn_rply, i, j, share))
14 candidates «— mostPopularStates(allStateTuples)
15 if |candidates| == 1 then

16 globalState «— first(candidates)

17 else

18 globalState «—— setDefaultState

19 distributeStateTuples(global State)

20 allStateTuples «—— ()

21 delete candidates

22 else

23 send((rgn_rply,i,leaderId, state_tuple;,))

24 regainConsistencyReply;((rgn_rply, srcid, i, share))

26 allSecretComponents; —— allSecretComponents; U {share}

30 waitingTime «—— random([1..mazW aiting(n)])

31 while waitingT'ime not elapsed do

32 listen((join_rply, i, pid, component))

33 sentComponents «—— sentComponents U {component}

34 if |sentComponents| < m then

35 random_component «—— get RandomComponent(state_tuple;, sentComponents)
36 send({join_rply, i, srcid, random.omponent))

37 joinReply;((join_rply, srcid, i, component))

Fig. 6. Virtual automaton, program for swarm member i.

1304

states(A) (line 1). It then sets its share state_tuple; with
the received share, using the function getState(share,j)
which returns the jth state in the given share
(lines 2, 3).

step: On input action step, process i receives a message
of type stp and 6, which is an input parameter for the [/O
automaton (line 4). For every state state_tuple;[j], pro-
cess i simulates the automaton A by executing a single
transaction on state_tuple;[j] and the input § (lines 5,
6). As a result, the state state_tuple;[j] and the output
output;[j] are updated with the new state and output
action according to the executed transition. If there
exists ji # jo, where state_tuple;[j;] and state_tuple;[j»]
were updated with the same state, say s. Then, state_tu-
pleilj»] is set with a random state, not in state_tuple;
(lines 7, 8). Finally, process i executes the output actions
in output; (line 9).

regainConsistencyRequest: On input action regainConsis-
tency the processes are assumed to be in a safe land
with no threat of any adversary. Process i receives a
message of type rgn_rgst from process identified by
srcid (line 10). The method leaderElection() returns the
process identifier of the elected leader (line 11). If pro-
cess i is the leader, then it should distribute state tuples
using set input actions in a way that at least T + f swarm
members have tuples that include the global state and
all other states appear no more than T times. Possibly
by randomly choosing shares to members, such that
the probability for assigning the global state share to a
process is equal to, or slightly greater than, (T/n) + (f/
n) while the probability of any other state to be
assigned to a process is the same (smaller) probability.
First, the leader collects secret components states in
states (A) by listening to join replies of other swarm
members (line 13). It then, executes the methodmost-
PopularStates() in order to find the candidates to be
the swarm'’s global state (line 14). If there is a single
candidate (line 15), then it is the global state and glob-
alState is set with the first (and only) state in candidates
(line 16). In case there is more than one candidate (line
17), the leader sets globalState with a predefined default
global state (line 18). The leader then distributes the
state tuples (line 19) and deletes both the collected
tuples allStateTuples and the candidates for the global
state candidates (lines 20, 21). If process i is not the lea-
der, then it sends its secret share state_tuple; to the lea-
der (lines 22, 23).

regainConsistencyReply: On input action regainConsisten-
cyReply the processes are also assumed to be in a safe
land. Process i receives a message of type rgn_rply,
which is a part of the regain consistency procedure.
The message includes the identifier srcid of the sender
and the sender’s state tuple (line 24). If process i is
the leader, then it adds the received tuple to the set all-
StateTuples; of already received tuples (lines 25, 26).
Otherwise, it ignores the message.

joinRequest: On input action, joinRequest process i
receives a message of type join_rgst from a process
identified by srcid, which is asking to join the swarm
(line 27). This operation is done much like the polyno-
mial-based solution described in Fig. 6.

S. Dolev et al./Ad Hoc Networks 10 (2012) 1291-1305

e joinReply: On input action joinReply process i receives a

message of type join_rply from the process identified by
srcid (line 37). Similarly to the polynomial-based solu-
tion, it collects m distinct secret components to com-
pose a secret share.

7. Conclusions

We have presented four schemes for reactive k-secret

sharing that require no internal communication to perform
a transition.

The first three solutions maybe combined as part of the

reactive automaton to define a share of the state, for exam-
ple to enable an output of the automaton whenever a share
value of the secret is prime. Thus the operator of the
swarm may control the output of each process by manipu-
lating the secret value, e.g., making sure that secret shares
are never prime, until a sufficient number and combination
of events occurs. And last, the similarity in usage of Man-
delbaum and Berlekamp-Welch techniques may call for
arithmetic generalization of the concepts.

References

[1] M. Ben-Or, S. Goldwasser, A. Wigderson, Completeness theorems for

2

i3

[4

[5

(6

17

8

]

]

]

]

non-cryptographic fault-tolerant distributed computation, in: Proc.
of the Twentieth Annual ACM Symposium on Theory of Computing,
Chicago, 1988, pp. 1-10.

S. Dolev, S. Gilbert, L. Lahiani, N. Lynch, T. Nolte, Virtual stationary
automata for mobile networks, in: Proc. of the 2005 International
Conference On Principles Of Distributed Systems, (OPODIS), LNCS
3974, 2005 (Also invited paper in Forty-Third Annual Allerton
Conference on Communication, Control, and Computing; Also, Brief
announcement in Proc. of the 24th Annual ACM Symp. on Principles
of Distributed Computing, (PODC 2005), 2005, pp. 323; Technical
Report MIT-LCS-TR-979, Massachusetts Institute of Technology,
2005).

S. Dolev, S. Gilbert, A.N. Lynch, E. Schiller, A. Shvartsman,]J. Welch,
Virtual mobile nodes for mobile ad hoc networks, in: International
Conference on Principles of DIStributed Computing (DISC 2004),
2004, pp. 230-244 (Also Brief announcement in Proc. of the 23th
Annual ACM Symp. on Principles of Distributed Computing (PODC
2004), 2004).

S. Dolev, S. Gilbert, N.A. Lynch, A. Shvartsman, J. Welch, GeoQuorum:
implementing atomic memory in ad hoc networks, Distributed
Computing 18 (2) (2005) 125-155. special issue of selected paper
from DISC 2003.

S. Dolev, S. Gilbert, E. Schiller, A. Shvartsman, J. Welch, Autonomous
virtual mobile nodes, in: Third ACM/SIGMOBILE Workshop on
Foundations of Mobile Computing (DIALM/POMC), 2005, pp. 62-69
(Brief Announcement in Proc. of the 17th International Conference
on Parallelism in Algorithms and Architectures (SPAA 2005), 2005,
pp. 215; Technical Report MIT-LCS-TR-992, Massachusetts Institute
of Technology, 2005).

S. Dolev, T. Herman, L. Lahiani, Polygonal broadcast, secret maturity
and the firing sensors, Ad Hoc Networks Journal 4 (4) (2006) 447-
486.

S. Dolev, L. Lahiani, N. Lynch, T. Nolte, Self-stabilizing mobile location
management and message routing, in: Proc. of the 7th International
Symposium on Self-Stabilizing Systems (SSS 2005), LNCS 3764, 2005,
pp. 96-112 (Also Technical Report MIT-LCS-TR-999, Massachusetts
Institute of Technology, 2005).

S. Dolev, L. Lahiani, M. Yung, Secret swarm unit - reactive k-secret
sharing, in: Proc. of the 8th International Conference on Cryptology,
LNCS 4859, (INDOCRYPT 2007), December 2007, pp. 123-137
(Technical Report #12 2007, Department of Computer Science,
Ben-Gurion University, September 2007).

[9] O. Goldrich, D. Ron, M. Sudan, Chinese remaindering with errors, in:

Proc. of 31st STOC, ACM, 1999.

[10] E. Kivelevich, P. Gurfil, UAV flock taxonomy and mission execution

performance, in: Proc. of the 45th Israeli Conference on Aerospace
Sciences, 2005.

S. Dolev et al./Ad Hoc Networks 10 (2012) 1291-1305 1305

[11] J. Kilian, E. Kushilevitz, S. Micali, R. Ostrovsky, Reducibility and
completeness in multi-party private computations, in: Proceedings
of Thirty-fifth Annual IEEE Symposium on the Foundations of
Computer Science (FOCS-94), 2000, pp. 1189-1208 (Journal
version in SIAM J. Comput. 29(4)).

[12] N. Lynch, M. Tuttle, An introduction to input/output automata, in:
Centrum voor Wiskunde en Informatica, Amsterdam, The
Netherlands, vol. 2(3), September 1989, pp. 219-246 (Also Tech.
Memo MIT/LCS/TM-373).

[13] D. Mandelbaum, On a class of arithmetic and a decoding algorithm,
IEEE Transactions on Information Theory 21 (1) (1976) 85-88.

[14] A. Shamir, How to share a secret, CACM 22 (11) (1979) 612-613.

[15] M. Weiser, The Computer for the 21th Century, Scientific American,
1991.

[16] L. Welch, E.R. Berlekamp, Error Correcting for Algebraic Block Codes,
U.S. Patent 4633470, September 1983.

Shlomi Dolev received his B.Sc. in Engineer-
ing and B.A. in Computer Science in 1984 and
1985, and his M.Sc. and D.Sc. in computer
Science in 1990 and 1992 from the Technion
Israel Institute of Technology. From 1992 to
1995 he was at Texas A&M University postdoc
of Jennifer Welch. In 1995 he joined the
Department of Mathematics and Computer
Science at Ben-Gurion University where he is
now an full professor. He was a visiting
researcher/professor at MIT, DIMACS, and LRI,
for several periods during summers. He is the
author of the book “self-stabilization” published by the MIT Press. He
published two hundrends journal and conference scientific articles, and
patents. He served in the program committee of more than sixty con-
ferences including: the ACM Symposium on Principles of Distributed
Computing, and the International Symposium on DIStributed Computing.
He is an associate editor of the IEEE Transactions on Computers, the AIAA
Journal of Aerospace Computing, Information and Communication and a
guest editor of the Distributed Computing Journal and the Theoretical
Computer Science Journal. His research grants include IBM faculty
awards, Intel academic grants, and the NSF. He is the founding chair of the

computer science department at Ben-Gurion university, where he now
holds the Rita Altura trust chair in computer science. His current research
interests include distributed computing, distributed systems, security and
cryptography and communication networks; in particular the self-sta-
bilization property of such systems. Recently, he is involved in optical
computing research

Limor Lahiani received her Ph.D. in Com-
puter Science degree from Ben-Gurion Uni-
versity of the Negev in 2008 and is with
Microsoft since then. Her research interests
include distributed algorithms, communica-
tion networks and algorithm for communica-
tion in sensor networks. Limor received her
B.Sc. and M.Sc. in mathematics and computer
science from the Ben-Gurion University of the
Negev in 2002 and 2004, repectively.

Moti Yung is a Research Scientist with Goo-
gle. He is also an Adjunct Senior Research
Faculty in the computer science department
of Columbia University. Before that, he was a
technology consultant to leading companies
and governments, a member of RSA Labs, a
Chief Scientist of CertCo Inc. (originally,
Bankers Trust Electronic Commerce), and a
member of IBM Research. His main current
research interests are in the areas of security,
cryptography, and privacy.

	Secret swarm unit
	1 Introduction
	1.1 Our contributions
	1.2 Paper organization

	2 Swarm Settings
	2.1 Reactive k-secret sharing – problem definition
	2.2 Reactive k-secret sharing – general solution scheme

	3 Reactive k-secret sharing – polynomial-based scheme
	3.1 Polynomial based scheme – secret share of size 1
	3.1.1 Line-by-line code description
	3.1.2 Reconstructing the secret
	3.1.3 Passive adversary
	3.1.4 Active (Byzantine) adversary and error correcting

	3.2 Polynomial based scheme – secret share of size >1
	3.2.1 Code description
	3.2.2 Reconstructing the secret
	3.2.3 Passive adversary
	3.2.4 Active adversary and error correcting

	4 Reactive k-secret sharing – the Chinese remainder-based scheme
	4.1 Chinese remainder-based scheme – secret share of size 1
	4.1.1 Passive adversary
	4.1.2 Active (Byzantine) adversary and error correcting

	4.2 Chinese remainder-based scheme – secret share of size >1
	4.2.1 Reconstructing the secret
	4.2.2 Passive adversary
	4.2.3 Active adversary and error correcting

	5 Reactive k-secret sharing – Vandermonde matrix-based scheme
	5.0.4 Reconstructing the secret
	5.0.5 Passive adversary

	6 Virtual automaton
	6.1 Code description

	7 Conclusions
	References

