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Abstract—Using Cloud Storage, users can remotely store their data and enjoy the on-demand high quality applications and services
from a shared pool of configurable computing resources, without the burden of local data storage and maintenance. However, the
fact that users no longer have physical possession of the outsourced data makes the data integrity protection in Cloud Computing
a formidable task, especially for users with constrained computing resources. Moreover, users should be able to just use the cloud
storage as if it is local, without worrying about the need to verify its integrity. Thus, enabling public auditability for cloud storage is of
critical importance so that users can resort to a third party auditor (TPA) to check the integrity of outsourced data and be worry-free.
To securely introduce an effective TPA, the auditing process should bring in no new vulnerabilities towards user data privacy, and
introduce no additional online burden to user. In this paper, we propose a secure cloud storage system supporting privacy-preserving
public auditing. We further extend our result to enable the TPA to perform audits for multiple users simultaneously and efficiently.
Extensive security and performance analysis show the proposed schemes are provably secure and highly efficient. Our preliminary
experiment conducted on Amazon EC2 instance further demonstrates the fast performance of the design.
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1 INTRODUCTION

C LOUD Computing has been envisioned as the next-
generation information technology (IT) architecture

for enterprises, due to its long list of unprecedented
advantages in the IT history: on-demand self-service,
ubiquitous network access, location independent re-
source pooling, rapid resource elasticity, usage-based
pricing and transference of risk [2]. As a disruptive
technology with profound implications, Cloud Comput-
ing is transforming the very nature of how businesses
use information technology. One fundamental aspect of
this paradigm shifting is that data is being centralized
or outsourced to the Cloud. From users’ perspective,
including both individuals and IT enterprises, storing
data remotely to the cloud in a flexible on-demand
manner brings appealing benefits: relief of the burden for
storage management, universal data access with location
independence, and avoidance of capital expenditure on
hardware, software, and personnel maintenances, etc [3].

While Cloud Computing makes these advantages
more appealing than ever, it also brings new and chal-
lenging security threats towards users’ outsourced data.
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Since cloud service providers (CSP) are separate admin-
istrative entities, data outsourcing is actually relinquish-
ing user’s ultimate control over the fate of their data.
As a result, the correctness of the data in the cloud is
being put at risk due to the following reasons. First of all,
although the infrastructures under the cloud are much
more powerful and reliable than personal computing
devices, they are still facing the broad range of both
internal and external threats for data integrity [4]. Ex-
amples of outages and security breaches of noteworthy
cloud services appear from time to time [5], [6], [7].
Secondly, there do exist various motivations for CSP to
behave unfaithfully towards the cloud users regarding
their outsourced data status. For examples, CSP might
reclaim storage for monetary reasons by discarding data
that has not been or is rarely accessed, or even hide
data loss incidents to maintain a reputation [8], [9],
[10]. In short, although outsourcing data to the cloud is
economically attractive for long-term large-scale storage,
it does not immediately offer any guarantee on data
integrity and availability. This problem, if not properly
addressed, may impede the success of cloud architecture.

As users no longer physically possess the storage of
their data, traditional cryptographic primitives for the
purpose of data security protection cannot be directly
adopted [11]. In particular, simply downloading all the
data for its integrity verification is not a practical solu-
tion due to the expensiveness in I/O and transmission
cost across the network. Besides, it is often insufficient
to detect the data corruption only when accessing the
data, as it does not give users correctness assurance for
those unaccessed data and might be too late to recover
the data loss or damage. Considering the large size of
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the outsourced data and the user’s constrained resource
capability, the tasks of auditing the data correctness in a
cloud environment can be formidable and expensive for
the cloud users [12], [8]. Moreover, the overhead of using
cloud storage should be minimized as much as possible,
such that a user does not need to perform too many
operations to use the data (in additional to retrieving the
data). In particular, users may not want to go through
the complexity in verifying the data integrity. Besides,
there may be more than one user accesses the same
cloud storage, say in an enterprise setting. For easier
management, it is desirable that cloud only entertains
verification request from a single designated party.

To fully ensure the data integrity and save the cloud
users’ computation resources as well as online burden,
it is of critical importance to enable public auditing
service for cloud data storage, so that users may resort
to an independent third party auditor (TPA) to audit the
outsourced data when needed. The TPA, who has exper-
tise and capabilities that users do not, can periodically
check the integrity of all the data stored in the cloud
on behalf of the users, which provides a much more
easier and affordable way for the users to ensure their
storage correctness in the cloud. Moreover, in addition
to help users to evaluate the risk of their subscribed
cloud data services, the audit result from TPA would
also be beneficial for the cloud service providers to
improve their cloud based service platform, and even
serve for independent arbitration purposes [10]. In a
word, enabling public auditing services will play an
important role for this nascent cloud economy to become
fully established, where users will need ways to assess
risk and gain trust in the cloud.

Recently, the notion of public auditability has been
proposed in the context of ensuring remotely stored data
integrity under different system and security models [9],
[13], [11], [8]. Public auditability allows an external party,
in addition to the user himself, to verify the correct-
ness of remotely stored data. However, most of these
schemes [9], [13], [8] do not consider the privacy protec-
tion of users’ data against external auditors. Indeed, they
may potentially reveal user’s data to auditors, as will be
discussed in Section 3.4. This severe drawback greatly
affects the security of these protocols in Cloud Comput-
ing. From the perspective of protecting data privacy, the
users, who own the data and rely on TPA just for the
storage security of their data, do not want this auditing
process introducing new vulnerabilities of unauthorized
information leakage towards their data security [14],
[15]. Moreover, there are legal regulations, such as the
US Health Insurance Portability and Accountability Act
(HIPAA) [16], further demanding the outsourced data
not to be leaked to external parties [10]. Simply exploit-
ing data encryption before outsourcing [15], [11] could
be one way to mitigate this privacy concern of data
auditing, but it could also be an overkill when employed
in the case of unencrypted/public cloud data (e.g.,
outsourced libraries and scientific datasets), due to the

unnecessary processing burden for cloud users. Besides,
encryption does not completely solve the problem of
protecting data privacy against third-party auditing but
just reduces it to the complex key management domain.
Unauthorized data leakage still remains possible due to
the potential exposure of decryption keys.

Therefore, how to enable a privacy-preserving third-
party auditing protocol, independent to data encryption,
is the problem we are going to tackle in this paper. Our
work is among the first few ones to support privacy-
preserving public auditing in Cloud Computing, with
a focus on data storage. Besides, with the prevalence
of Cloud Computing, a foreseeable increase of auditing
tasks from different users may be delegated to TPA.
As the individual auditing of these growing tasks can
be tedious and cumbersome, a natural demand is then
how to enable the TPA to efficiently perform multiple
auditing tasks in a batch manner, i.e., simultaneously.

To address these problems, our work utilizes the tech-
nique of public key based homomorphic linear authenti-
cator (or HLA for short) [9], [13], [8], which enables TPA
to perform the auditing without demanding the local
copy of data and thus drastically reduces the commu-
nication and computation overhead as compared to the
straightforward data auditing approaches. By integrating
the HLA with random masking, our protocol guarantees
that the TPA could not learn any knowledge about
the data content stored in the cloud server during the
efficient auditing process. The aggregation and algebraic
properties of the authenticator further benefit our design
for the batch auditing. Specifically, our contribution can
be summarized as the following three aspects:

1) We motivate the public auditing system of data
storage security in Cloud Computing and provide a
privacy-preserving auditing protocol. Our scheme
enables an external auditor to audit user’s cloud
data without learning the data content.

2) To the best of our knowledge, our scheme is
the first to support scalable and efficient privacy-
preserving public storage auditing in Cloud.
Specifically, our scheme achieves batch auditing
where multiple delegated auditing tasks from dif-
ferent users can be performed simultaneously by
the TPA in a privacy-preserving manner.

3) We prove the security and justify the performance
of our proposed schemes through concrete experi-
ments and comparisons with the state-of-the-art.

The rest of the paper is organized as follows. Section 2
introduces the system and threat model, and our design
goals. Then we provide the detailed description of our
scheme in Section 3. Section 4 gives the security analysis
and performance evaluation. Section 5 presents further
discussions on a zero-knowledge auditing protocol, fol-
lowed by Section 6 that overviews the related work.
Finally, Section 7 gives the concluding remark of the
whole paper.
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2 PROBLEM STATEMENT

2.1 The System and Threat Model

We consider a cloud data storage service involving three
different entities, as illustrated in Fig. 1: the cloud user,
who has large amount of data files to be stored in
the cloud; the cloud server (CS), which is managed by
the cloud service provider (CSP) to provide data storage
service and has significant storage space and compu-
tation resources (we will not differentiate CS and CSP
hereafter); the third party auditor (TPA), who has expertise
and capabilities that cloud users do not have and is
trusted to assess the cloud storage service reliability on
behalf of the user upon request. Users rely on the CS
for cloud data storage and maintenance. They may also
dynamically interact with the CS to access and update
their stored data for various application purposes. As
users no longer possess their data locally, it is of critical
importance for users to ensure that their data are being
correctly stored and maintained. To save the computa-
tion resource as well as the online burden potentially
brought by the periodic storage correctness verification,
cloud users may resort to TPA for ensuring the storage
integrity of their outsourced data, while hoping to keep
their data private from TPA.

We assume the data integrity threats towards users’
data can come from both internal and external attacks
at CS. These may include: software bugs, hardware fail-
ures, bugs in the network path, economically motivated
hackers, malicious or accidental management errors, etc.
Besides, CS can be self-interested. For their own benefits,
such as to maintain reputation, CS might even decide
to hide these data corruption incidents to users. Us-
ing third-party auditing service provides a cost-effective
method for users to gain trust in Cloud. We assume the
TPA, who is in the business of auditing, is reliable and
independent. However, it may harm the user if the TPA
could learn the outsourced data after the audit.

Note that in our model, beyond users’ reluctance to
leak data to TPA, we also assume that cloud servers
has no incentives to reveal their hosted data to external
parties. On the one hand, there are regulations, e.g.
HIPAA [16], requesting CS to maintain users’ data pri-
vacy. On the other hand, as users’ data belong to their
business asset [10], there also exist financial incentives
for CS to protect it from any external parties. Therefore,
we assume that neither CS nor TPA has motivations to
collude with each other during the auditing process. In
other words, neither entities will deviate from the pre-
scribed protocol execution in the following presentation.

To authorize the CS to respond to the audit delegated
to TPA’s, the user can issue a certificate on TPA’s public
key, and all audits from the TPA are authenticated
against such a certificate. These authentication hand-
shakes are omitted in the following presentation.
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Fig. 1: The architecture of cloud data storage service

2.2 Design Goals

To enable privacy-preserving public auditing for cloud
data storage under the aforementioned model, our pro-
tocol design should achieve the following security and
performance guarantees.

1) Public auditability: to allow TPA to verify the
correctness of the cloud data on demand without
retrieving a copy of the whole data or introducing
additional online burden to the cloud users.

2) Storage correctness: to ensure that there exists no
cheating cloud server that can pass the TPA’s audit
without indeed storing users’ data intact.

3) Privacy-preserving: to ensure that the TPA cannot
derive users’ data content from the information
collected during the auditing process.

4) Batch auditing: to enable TPA with secure and
efficient auditing capability to cope with multiple
auditing delegations from possibly large number of
different users simultaneously.

5) Lightweight: to allow TPA to perform auditing
with minimum communication and computation
overhead.

3 THE PROPOSED SCHEMES

This section presents our public auditing scheme which
provides a complete outsourcing solution of data – not
only the data itself, but also its integrity checking. After
introducing notations and brief preliminaries, we start
from an overview of our public auditing system and
discuss two straightforward schemes and their demerits.
Then we present our main scheme and show how to
extent our main scheme to support batch auditing for the
TPA upon delegations from multiple users. Finally, we
discuss how to generalize our privacy-preserving public
auditing scheme and its support of data dynamics.

3.1 Notation and Preliminaries

• F – the data file to be outsourced, denoted as a
sequence of n blocks m1, . . . ,mi, . . . ,mn ∈ Zp for
some large prime p.

• MAC(·)(·) – message authentication code (MAC)
function, defined as: K × {0, 1}∗ → {0, 1}l where
K denotes the key space.

• H(·), h(·) – cryptographic hash functions.
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We now introduce some necessary cryptographic
background for our proposed scheme.

Bilinear Map. Let G1, G2 and GT be multiplicative cyclic
groups of prime order p. Let g1 and g2 be generators of
G1 and G2, respectively. A bilinear map is a map e : G1×
G2 → GT such that for all u ∈ G1, v ∈ G2 and a, b ∈ Zp,
e(ua, vb) = e(u, v)ab. This bilinearity implies that for any
u1, u2 ∈ G1, v ∈ G2, e(u1 · u2, v) = e(u1, v) · e(u2, v). Of
course, there exists an efficiently computable algorithm
for computing e and the map should be non-trivial, i.e.,
e is non-degenerate: e(g1, g2) 6= 1.

3.2 Definitions and Framework
We follow a similar definition of previously proposed
schemes in the context of remote data integrity check-
ing [9], [11], [13] and adapt the framework for our
privacy-preserving public auditing system.

A public auditing scheme consists of four algorithms
(KeyGen, SigGen, GenProof, VerifyProof). KeyGen
is a key generation algorithm that is run by the user
to setup the scheme. SigGen is used by the user to
generate verification metadata, which may consist of
digital signatures. GenProof is run by the cloud server
to generate a proof of data storage correctness, while
VerifyProof is run by the TPA to audit the proof.

Running a public auditing system consists of two
phases, Setup and Audit:
• Setup: The user initializes the public and secret

parameters of the system by executing KeyGen, and
pre-processes the data file F by using SigGen to
generate the verification metadata. The user then
stores the data file F and the verification metadata
at the cloud server, and deletes its local copy. As part
of pre-processing, the user may alter the data file F
by expanding it or including additional metadata to
be stored at server.

• Audit: The TPA issues an audit message or chal-
lenge to the cloud server to make sure that the cloud
server has retained the data file F properly at the
time of the audit. The cloud server will derive a
response message by executing GenProof using F
and its verification metadata as inputs. The TPA
then verifies the response via VerifyProof.

Our framework assumes the TPA is stateless, i.e., TPA
does not need to maintain and update state between
audits, which is a desirable property especially in the
public auditing system [13]. Note that it is easy to ex-
tend the framework above to capture a stateful auditing
system, essentially by splitting the verification metadata
into two parts which are stored by the TPA and the
cloud server respectively. Our design does not assume
any additional property on the data file. If the user wants
to have more error-resilience, he can first redundantly
encodes the data file and then uses our system with the
data that has error-correcting codes integrated1.

1. We refer readers to [17], [18] for the details on integration of error-
correcting codes and remote data integrity checking.

3.3 The Basic Schemes
Before giving our main result, we study two classes of
schemes as a warm-up. The first one is a MAC-based
solution which suffers from undesirable systematic de-
merits – bounded usage and stateful verification, which
may pose additional online burden to users, in a public
auditing setting. This also shows that the auditing prob-
lem is still not easy to solve even if we have introduced a
TPA. The second one is a system based on homomorphic
linear authenticators (HLA), which covers many recent
proof of storage systems. We will pinpoint the reason
why all existing HLA-based systems are not privacy-
preserving. The analysis of these basic schemes leads to
our main result, which overcomes all these drawbacks.
Our main scheme to be presented is based on a specific
HLA scheme.

MAC-based Solution. There are two possible ways to
make use of MAC to authenticate the data. A trivial way
is just uploading the data blocks with their MACs to the
server, and sends the corresponding secret key sk to the
TPA. Later, the TPA can randomly retrieve blocks with
their MACs and check the correctness via sk. Apart from
the high (linear in the sampled data size) communication
and computation complexities, the TPA requires the
knowledge of the data blocks for verification.

To circumvent the requirement of the data in TPA
verification, one may restrict the verification to just
consist of equality checking. The idea is as follows.
Before data outsourcing, the cloud user chooses s ran-
dom message authentication code keys {skτ}1≤τ≤s, pre-
computes s (deterministic) MACs, {MACskτ (F )}1≤τ≤s
for the whole data file F , and publishes these verification
metadata (the keys and the MACs) to TPA. The TPA
can reveal a secret key skτ to the cloud server and ask
for a fresh keyed MAC for comparison in each audit.
This is privacy-preserving as long as it is impossible to
recover F in full given MACskτ (F ) and skτ . However,
it suffers from the following severe drawbacks: 1) the
number of times a particular data file can be audited is
limited by the number of secret keys that must be fixed
a priori. Once all possible secret keys are exhausted,
the user then has to retrieve data in full to re-compute
and re-publish new MACs to TPA; 2) The TPA also
has to maintain and update state between audits, i.e.,
keep track on the revealed MAC keys. Considering
the potentially large number of audit delegations from
multiple users, maintaining such states for TPA can be
difficult and error prone; 3) it can only support static
data, and cannot efficiently deal with dynamic data at
all. However, supporting data dynamics is also of critical
importance for cloud storage systems. For the reason of
brevity and clarity, our main protocol will be presented
based on static data. Section 3.6 will describe how to
adapt our protocol for dynamic data.

HLA-based Solution. To effectively support public au-
ditability without having to retrieve the data blocks
themselves, the HLA technique [9], [13], [8] can be used.
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TPA Cloud Server
1. Retrieve file tag t, verify its

signature, and quit if fail;

2. Generate a random challenge
{(i,νi)}i∈I−−−−−−−−−−−−−−−−−→

challenge request chal
3. Compute µ′ =

∑
i∈I νimi, and

chal = {(i, νi)}i∈I ; σ =
∏
i∈I σ

νi
i ;

4. Randomly pick r ← Zp, and
R = e(u, v)r and γ = h(R);

{µ,σ,R}←−−−−−−−−−−−−−−−−−−−
storage correctness proof

5. Compute µ = r + γµ′ mod p ;

6. Compute γ = h(R), and then
verify {µ, σ,R} via Equation 1.

TABLE 1: The privacy-preserving public auditing protocol

HLAs, like MACs, are also some unforgeable verification
metadata that authenticate the integrity of a data block.
The difference is that HLAs can be aggregated. It is
possible to compute an aggregated HLA which authenti-
cates a linear combination of the individual data blocks.

At a high level, an HLA-based proof of storage system
works as follow. The user still authenticates each element
of F = {mi} by a set of HLAs Φ. The TPA verifies the
cloud storage by sending a random set of challenge {νi}.
The cloud server then returns µ =

∑
i νi · mi and its

aggregated authenticator σ computed from Φ.
Though allowing efficient data auditing and consum-

ing only constant bandwidth, the direct adoption of
these HLA-based techniques is still not suitable for our
purposes. This is because the linear combination of
blocks, µ =

∑
i νi ·mi, may potentially reveal user data

information to TPA, and violates the privacy-preserving
guarantee. Specifically, by challenging the same set of
c block m1,m2, . . . ,mc using c different sets of random
coefficients {νi}, TPA can accumulate c different linear
combinations µ1, . . . , µc. With {µi} and {νi}, TPA can
derive the user’s data m1,m2, . . . ,mc by simply solving
a system of linear equations.

3.4 Privacy-Preserving Public Auditing Scheme

Overview. To achieve privacy-preserving public audit-
ing, we propose to uniquely integrate the homomorphic
linear authenticator with random masking technique. In
our protocol, the linear combination of sampled blocks
in the server’s response is masked with randomness
generated by the server. With random masking, the TPA
no longer has all the necessary information to build
up a correct group of linear equations and therefore
cannot derive the user’s data content, no matter how
many linear combinations of the same set of file blocks
can be collected. On the other hand, the correctness
validation of the block-authenticator pairs can still be
carried out in a new way which will be shown shortly,
even with the presence of the randomness. Our design
makes use of a public key based HLA, to equip the
auditing protocol with public auditability. Specifically,
we use the HLA proposed in [13], which is based on the
short signature scheme proposed by Boneh, Lynn and
Shacham (hereinafter referred as BLS signature) [19].

Scheme Details. Let G1, G2 and GT be multiplicative
cyclic groups of prime order p, and e : G1 × G2 → GT
be a bilinear map as introduced in preliminaries. Let g
be a generator of G2. H(·) is a secure map-to-point hash
function: {0, 1}∗ → G1, which maps strings uniformly to
G1. Another hash function h(·) : GT → Zp maps group
element of GT uniformly to Zp. Our scheme is as follows:

Setup Phase: The cloud user runs KeyGen to generate
the public and secret parameters. Specifically, the user
chooses a random signing key pair (spk, ssk), a random
x ← Zp, a random element u ← G1, and computes v ←
gx. The secret parameter is sk = (x, ssk) and the public
parameters are pk = (spk, v, g, u, e(u, v)).

Given a data file F = {mi}, the user runs SigGen
to compute authenticator σi ← (H(Wi) · umi)x ∈ G1 for
each i. Here Wi = name||i and name is chosen by the
user uniformly at random from Zp as the identifier of file
F . Denote the set of authenticators by Φ = {σi}1≤i≤n.

The last part of SigGen is for ensuring the integrity
of the unique file identifier name. One simple way to do
this is to compute t = name||SSigssk(name) as the file
tag for F , where SSigssk(name) is the signature on name
under the private key ssk. For simplicity, we assume the
TPA knows the number of blocks n. The user then sends
F along with the verification metadata (Φ, t) to the server
and deletes them from local storage.

Audit Phase: The TPA first retrieves the file tag t. With
respect to the mechanism we describe in the Setup
phase, the TPA verifies the signature SSigssk(name) via
spk, and quits by emitting FALSE if the verification fails.
Otherwise, the TPA recovers name.

Now it comes to the “core” part of the auditing
process. To generate the challenge message for the au-
dit “chal”, the TPA picks a random c-element subset
I = {s1, . . . , sc} of set [1, n]. For each element i ∈ I , the
TPA also chooses a random value νi (of bit length that
can be shorter than |p|, as explained in [13]). The message
“chal” specifies the positions of the blocks required to be
checked. The TPA sends chal = {(i, νi)}i∈I to the server.

Upon receiving challenge chal = {(i, νi)}i∈I , the server
runs GenProof to generate a response proof of data
storage correctness. Specifically, the server chooses a ran-
dom element r ← Zp, and calculates R = e(u, v)r ∈ GT .
Let µ′ denote the linear combination of sampled blocks
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specified in chal: µ′ =
∑
i∈I νimi. To blind µ′ with

r, the server computes: µ = r + γµ′ mod p, where
γ = h(R) ∈ Zp. Meanwhile, the server also calculates
an aggregated authenticator σ =

∏
i∈I σ

νi
i ∈ G1. It

then sends {µ, σ,R} as the response proof of storage
correctness to the TPA. With the response, the TPA runs
VerifyProof to validate it by first computing γ = h(R)
and then checking the verification equation

R · e(σγ , g)
?
= e((

sc∏
i=s1

H(Wi)
νi)γ · uµ, v) (1)

The protocol is illustrated in Table 1. The correctness of
the above verification equation is elaborated as follows:

R · e(σγ , g) = e(u, v)r · e((
sc∏
i=s1

(H(Wi) · umi)x·νi)γ , g)

= e(ur, v) · e((
sc∏
i=s1

(H(Wi)
νi · uνimi)γ , g)x

= e(ur, v) · e((
sc∏
i=s1

H(Wi)
νi)γ · uµ

′γ , v)

= e((

sc∏
i=s1

H(Wi)
νi)γ · uµ

′γ+r, v)

= e((

sc∏
i=s1

H(Wi)
νi)γ · uµ, v)

Properties of Our Protocol. It is easy to see that our
protocol achieves public auditability. There is no secret
keying material or states for the TPA to keep or maintain
between audits, and the auditing protocol does not pose
any potential online burden on users. This approach
ensures the privacy of user data content during the
auditing process by employing a random masking r to
hide µ, a linear combination of the data blocks. Note that
the value R in our protocol, which enables the privacy-
preserving guarantee, will not affect the validity of the
equation, due to the circular relationship between R and
γ in γ = h(R) and the verification equation. Storage
correctness thus follows from that of the underlying pro-
tocol [13]. The security of this protocol will be formally
proven in Section 4. Besides, the HLA helps achieve the
constant communication overhead for server’s response
during the audit: the size of {σ, µ,R} is independent of
the number of sampled blocks c.

Previous work [9], [8] showed that if the server is
missing a fraction of the data, then the number of blocks
that needs to be checked in order to detect server misbe-
havior with high probability is in the order of O(1). In
particular, if t fraction of data is corrupted, then random
sampling c blocks would reach the detection probability
P = 1− (1− t)c. Here every block is chosen uniformly at
random. When t = 1% of the data F , the TPA only needs
to audit for c = 300 or 460 randomly chosen blocks of F
to detect this misbehavior with probability larger than
95% and 99% respectively. Given the huge volume of

data outsourced in the cloud, checking a portion of the
data file is more affordable and practical for both the
TPA and the cloud server than checking all the data, as
long as the sampling strategies provides high probability
assurance. In Section 4, we will present the experiment
result based on these sampling strategies.

For some cloud storage providers, it is possible that
certain information dispersal algorithms (IDA) may be
used to fragment and geographically distribute the
user’s outsourced data for increased availability. We note
that these cloud side operations would not affect the
behavior of our proposed mechanism, as long as the IDA
is systematic, i.e., it preserves user’s data in its original
form after encoding with redundancy. This is because
from user’s perspective, as long as there is a complete
yet unchanged copy of his outsourced data in cloud,
the precomputed verification metadata (Φ, t) will remain
valid. As a result, those metadata can still be utilized in
our auditing mechanism to guarantee the correctness of
user’s outsourced cloud data.
Storage and Communication Tradeoff As described
above, each block is accompanied by an authenticator
of equal size of |p| bits. This gives about 2× storage
overhead on server. However, as noted in [13], we can
introduce a parameter s in the authenticator construction
to adjust this storage overhead, in the cost of com-
munication overhead in the auditing protocol between
TPA and cloud server. In particular, we assume each
block mi consists of s sectors {mij} with 1 ≤ j ≤ s,
where mij ∈ Zp. The public parameter pk is now
(spk, v, g, {uj}, {e(uj , v)}), 1 ≤ j ≤ s, where u1, u2, . . . , us
are randomly chosen from G1. The authenticator σi of
mi is constructed as: σi ← (H(Wi) ·

∏s
j=1 u

mij
j )x ∈ G1.

Because we now have one authenticator per block (or per
s sectors), we reduce the storage overhead to (1+1/s)×.

To respond to the auditing challenge chal =
{(i, νi)}i∈I , for 1 ≤ j ≤ s, the cloud server chooses a ran-
dom elements rj ← Zp, and calculates Rj = e(uj , v)rj ∈
GT . Then the server blinds each µ′j =

∑
i∈I νimij with

rj , and derives the blinded µj = rj + γµ′j mod p,
where γ = h(R1||R2|| . . . ||Rs) ∈ Zp. The aggregated
authenticator is still computed as before. It then sends
{σ, {µj , Rj}1≤j≤s} as the proof response to TPA. With
the proof, TPA first computes γ = h(R1||R2|| . . . ||Rs),
and then checks the following verification:

R1 · · ·Rs · e(σγ , g)
?
= e((

sc∏
i=s1

H(Wi)
νi)γ ·

s∏
j=1

u
µj
j , v) (2)

The correctness elaboration is similar to Eq. (1) and
thus omitted. The overall storage overhead is reduced
to (1 + 1/s)×, but the proof size now increases roughly
s× due to the additional s element pairs {µj , Rj}1≤j≤s
that the cloud server has to return. For presentation
simplicity, we continue to choose s = 1 in our following
scheme description. We will present some experiment
results with larger choice of s in Section 4.
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TPA Cloud Server
1. Verify file tag tk for each

user k, and quit if fail; For each user k (1 ≤ k ≤ K):

2. Generate a random challenge
{(i,νi)}i∈I−−−−−−−−−−−−−−−−−→

challenge request chal
3. Compute µ′k, σk , Rk as single

chal = {(i, νi)}i∈I ; user case;
4. Compute R = R1 ·R2 · · ·RK ,
L = vk1||vk2|| · · · ||vkK

{{σk,µk}1≤k≤K ,R}
←−−−−−−−−−−−−−−−−−−−
storage correctness proof

and γk = h(R||vk||L);

6. Compute γk = h(R||vk||L) 5. Compute µk = rk + γkµ
′
k mod p ;

for each user k and do batch
auditing via Equation 3.

TABLE 2: The batch auditing protocol

3.5 Support for Batch Auditing

With the establishment of privacy-preserving public au-
diting, the TPA may concurrently handle multiple au-
diting upon different users’ delegation. The individual
auditing of these tasks for the TPA can be tedious and
very inefficient. Given K auditing delegations on K
distinct data files from K different users, it is more
advantageous for the TPA to batch these multiple tasks
together and audit at one time. Keeping this natural
demand in mind, we slightly modify the protocol in
a single user case, and achieves the aggregation of K
verification equations (for K auditing tasks) into a single
one, as shown in Equation 3. As a result, a secure batch
auditing protocol for simultaneous auditing of multiple
tasks is obtained. The details are described as follows.

Setup Phase: Basically, the users just perform Setup
independently. Suppose there are K users in the system,
and each user k has a data file Fk = (mk,1, . . . ,mk,n) to
be outsourced to the cloud server, where k ∈ {1, . . . ,K}.
For simplicity, we assume each file Fk has the same
number of n blocks. For a particular user k, denote
his/her secret key as (xk, sskk), and the correspond-
ing public parameter as (spkk, vk, g, uk, e(uk, vk)) where
vk = gxk . Similar to the single user case, each user
k has already randomly chosen a different (with over-
whelming probability) name namek ∈ Zp for his/her
file Fk, and has correctly generated the correspond-
ing file tag tk = namek||SSigsskk(namek). Then, each
user k runs SigGen and computes σk,i for block mk,i:
σk,i ← (H(namek||i) ·u

mk,i
k )xk = (H(Wk,i) ·u

mk,i
k )xk ∈ G1

(i ∈ {1, . . . , n}), where Wk,i = namek||i. Finally, each
user k sends file Fk, set of authenticators Φk, and tag tk
to the server and deletes them from local storage.

Audit Phase: TPA first retrieves and verifies file tag tk
for each user k for later auditing. If the verification fails,
TPA quits by emitting FALSE. Otherwise, TPA recovers
namek and sends the audit challenge chal = {(i, νi)}i∈I
to the server for auditing data files of all K users.

Upon receiving chal, for each user k ∈ {1, . . . ,K},
the server randomly picks rk ∈ Zp and computes
Rk = e(uk, vk)rk . Denote R = R1 · R2 · · ·RK , and
L = vk1||vk2|| · · · ||vkK , our protocol further requires the
server to compute γk = h(R||vk||L). Then, the randomly

masked responses can be generated as follows:

µk = γk

sc∑
i=s1

νimk,i + rk mod p and σk =

sc∏
i=s1

σνik,i.

The server then responds with {{σk, µk}1≤k≤K ,R}.
To verify the response, the TPA can first compute

γk = h(R||vk||L) for 1 ≤ k ≤ K. Next, TPA checks if
the following equation holds:

R · e(
K∏
k=1

σk
γk , g)

?
=

K∏
k=1

e((

sc∏
i=s1

H(Wk,i)
νi)γk · uµkk , vk) (3)

The batch protocol is illustrated in Table 2. Here the
left-hand side (LHS) of Equation 3 expands as:

LHS = R1 ·R2 · · ·RK ·
K∏
k=1

e(σk
γk , g)

=

K∏
k=1

Rk · e(σkγk , g)

=

K∏
k=1

e((

sc∏
i=s1

H(Wk,i)
νi)γk · uµkk , vk)

which is the right hand side, as required. Note that the
last equality follows from Equation 1.

Efficiency Improvement. As shown in Equation 3, batch
auditing not only allows TPA to perform the multiple
auditing tasks simultaneously, but also greatly reduces
the computation cost on the TPA side. This is because ag-
gregating K verification equations into one helps reduce
the number of relatively expensive pairing operations
from 2K, as required in the individual auditing, to K+1,
which saves a considerable amount of auditing time.

Identification of Invalid Responses. The verification
equation (Equation 3) only holds when all the responses
are valid, and fails with high probability when there is
even one single invalid response in the batch auditing,
as we will show in Section 4. In many situations, a
response collection may contain invalid responses, espe-
cially {µk}1≤k≤K , caused by accidental data corruption,
or possibly malicious activity by a cloud server. The ratio
of invalid responses to the valid could be quite small,
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and yet a standard batch auditor will reject the entire
collection. To further sort out these invalid responses in
the batch auditing, we can utilize a recursive divide-and-
conquer approach (binary search), as suggested by [20].
Specifically, if the batch auditing fails, we can simply
divide the collection of responses into two halves, and
repeat the auditing on halves via Equation 3. TPA may
now require the server to send back all the {Rk}1≤k≤K ,
as in individual auditing. In Section 4.2.2, we show
through carefully designed experiment that using this
recursive binary search approach, even if up to 20% of
responses are invalid, batch auditing still performs faster
than individual verification.

3.6 Support for Data Dynamics
In Cloud Computing, outsourced data might not only
be accessed but also updated frequently by users for
various application purposes [21], [8], [22], [23]. Hence,
supporting data dynamics for privacy-preserving public
auditing is also of paramount importance. Now we show
how to build upon the existing work [8] and adapt our
main scheme to support data dynamics, including block
level operations of modification, deletion and insertion.

In [8], data dynamics support is achieved by replacing
the index information i with mi in the computation of
block authenticators and using the classic data structure
– Merkle hash tree (MHT) [24] for the underlying block
sequence enforcement. As a result, the authenticator
for each block is changed to σi = (H(mi) · umi)x.
We can adopt this technique in our design to achieve
privacy-preserving public auditing with support of data
dynamics. Specifically, in the Setup phase, the user
has to generate and send the tree root TRMHT to
TPA as additional metadata, where the leaf nodes of
MHT are values of H(mi). In the Audit phase, be-
sides {µ, σ,R}, the server’s response should also include
{H(mi)}i∈I and their corresponding auxiliary authen-
tication information aux in the MHT. Upon receiving
the response, TPA should first use TRMHT and aux to
authenticate {H(mi)}i∈I computed by the server. Once
{H(mi)}i∈I are authenticated, TPA can then perform the
auditing on {µ, σ,R, {H(mi)}i∈I} via Equation 1, where∏
s1≤i≤sc H(Wi)

νi is now replaced by
∏
s1≤i≤sc H(mi)

νi .
All these changes does not interfere with the proposed
random masking technique, so data privacy is still pre-
served. To support data dynamics, each data update
would require the user to generate a new tree root
TRMHT , which is later sent to TPA as the new meta-
data for storage auditing task. The details of handling
dynamic operations are similar to [8] and thus omitted.

Application to Version Control System. The above
scheme allows TPA to always keep the new tree root
for auditing the updated data file. But it is worth noting
that our mechanism can be easily extended to work with
version control system, where both current and previous
versions of the data file F and the corresponding authen-
ticators are stored and need to be audited on demand.

One possible way is to require TPA to keep tracks of
both the current and previous tree roots generated by
the user, denoted as {TR1

MHT , TR
2
MHT , . . . , TR

V
MHT }.

Here V is the number of file versions and TRVMHT

is the root related to the most current version of the
data file F . Then, whenever an designated version v
(1 ≤ v ≤ V ) of data file is to be audited, the TPA just uses
the corresponding TRvMHT to perform the auditing. The
cloud server should also keep track of all the versions of
data file F and their authenticators, in order to correctly
answer the auditing request from TPA. Note that cloud
server does not need to replicate every block of data
file in every version, as many of them are the same after
updates. However, how to efficiently manage such block
storage in cloud is not within the scope of our paper.

3.7 Generalization
As mentioned before, our protocol is based on the HLA
in [13]. It has been shown in [25] that HLA can be
constructed by homomorphic identification protocols.
One may apply the random masking technique we used
to construct the corresponding zero knowledge proof for
different homomorphic identification protocols. There-
fore, our privacy-preserving public auditing system for
secure cloud storage can be generalized based on other
complexity assumptions, such as factoring [25].

4 EVALUATION

4.1 Security Analysis
We evaluate the security of the proposed scheme by
analyzing its fulfillment of the security guarantee de-
scribed in Section 2.2, namely, the storage correctness
and privacy-preserving property. We start from the sin-
gle user case, where our main result is originated. Then
we show the security guarantee of batch auditing for the
TPA in multi-user setting.

4.1.1 Storage Correctness Guarantee
We need to prove that the cloud server cannot generate
valid response for the TPA without faithfully storing the
data, as captured by Theorem 1.

Theorem 1: If the cloud server passes the Audit phase,
it must indeed possess the specified data intact as it is.

Proof: We show that there exists an extractor of µ′

in the random oracle model. With valid {σ, µ′}, our
theorem follows from Theorem 4.2 in [13].

The extractor controls the random oracle h(·) and
answers the hash query issued by the cloud server,
which is treated as an adversary here. For a challenge
γ = h(R) returned by the extractor, the cloud server
outputs {σ, µ,R} such that the following equation holds.

R · e(σγ , g) = e((

sc∏
i=s1

H(Wi)
νi)γ · uµ, v). (4)

Suppose that our extractor can rewind a cloud server
in the execution of the protocol to the point just before
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the challenge h(R) is given. Now the extractor sets h(R)
to be γ∗ 6= γ. The cloud server outputs {σ, µ∗, R} such
that the following equation holds.

R · e(σγ
∗
, g) = e((

sc∏
i=s1

H(Wi)
νi)γ

∗
· uµ

∗
, v). (5)

The extractor then obtains {σ, µ′ = (µ − µ∗)/(γ − γ∗)}
as a valid response of the underlying proof of storage
system [13]. To see why, recall that σi = (H(Wi) · umi)x.
If we divide (4) by (5), we have

e(σγ−γ
∗
, g) = e((

sc∏
i=s1

H(Wi)
νi)γ−γ

∗
· uµ−µ

∗
, v)

e(σγ−γ
∗
, g) = e((

sc∏
i=s1

H(Wi)
νi)γ−γ

∗
, gx)e(uµ−µ

∗
, gx)

σγ−γ
∗

= (

sc∏
i=s1

H(Wi)
νi)x(γ−γ

∗) · ux(µ−µ
∗)

(

sc∏
i=s1

σνii )γ−γ
∗

= (

sc∏
i=s1

H(Wi)
νi)x(γ−γ

∗) · ux(µ−µ
∗)

ux(µ−µ
∗) = (

sc∏
i=s1

(σi/H(Wi)
x)νi)γ−γ

∗

ux(µ−µ
∗) = (

sc∏
i=s1

(uxmi)νi)γ−γ
∗

µ− µ∗ = (

sc∑
i=s1

miνi) · (γ − γ∗)

(

sc∑
i=s1

miνi) = (µ− µ∗)/(γ − γ∗)

Finally, we remark that this extraction argument and
the random oracle paradigm are also used in the proof
of the underlying scheme [13].

4.1.2 Privacy Preserving Guarantee
The below theorem shows that TPA cannot derive users’
data from the information collected during auditing.

Theorem 2: From the server’s response {σ, µ,R}, TPA
cannot recover µ′.

Proof: We show the existence of a simulator that can
produce a valid response even without the knowledge
of µ′, in the random oracle model. Now, the TPA is
treated as an adversary. Given a valid σ from the cloud
server, firstly, randomly pick γ, µ from Zp, set R ←
e((

∏sc
i=s1

H(Wi)
νi)γ · uµ, v)/e(σγ , g). Finally, backpatch

γ = h(R) since the simulator is controlling the random
oracle h(·). We remark that this backpatching technique
in the random oracle model is also used in the proof of
the underlying scheme [13].

4.1.3 Security Guarantee for Batch Auditing
Now we show that our way of extending our result to
a multi-user setting will not affect the aforementioned
security insurance, as shown in Theorem 3.

TABLE 3: Notation of cryptographic operations

HashtG1
hash t values into the group G1.

MulttG t multiplications in group G.

ExptG(`) t exponentiations gai , for g ∈ G, |ai| = `.

m-MultExptG(`) t m-term exponentiations
∏m
i=1 g

ai .

PairtG1,G2
t pairings e(ui, gi), where ui ∈ G1, gi ∈ G2.

m-MultPairtG1,G2
t m-term pairings

∏m
i=1 e(ui, gi).

Theorem 3: Our batch auditing protocol achieves the
same storage correctness and privacy preserving guar-
antee as in the single-user case.

Proof: The privacy-preserving guarantee in the
multi-user setting is very similar to that of Theorem 2,
and thus omitted here. For the storage correctness guar-
antee, we are going to reduce it to the single-user
case. We use the forking technique as in the proof of
Theorem 1. However, the verification equation for the
batch audits involves K challenges from the random
oracle. This time we need to ensure that all the other
K − 1 challenges are determined before the forking of
the concerned random oracle response. This can be done
using the idea in [26]. As soon as the adversary issues
the very first random oracle query for γi = h(R||vi||L)
for any i ∈ [1,K], the simulator immediately determines
the values γj = h(R||vj ||L) for all j ∈ [1,K]. This is
possible since they are all using the same R and L. Now,
all but one of the γk’s in Equation 3 are equal, so a valid
response can be extracted similar to the single-user case
in the proof of Theorem 1.

4.2 Performance Analysis
We now report some performance results of our exper-
iments. We consider our auditing mechanism happens
between a dedicated TPA and some cloud storage node,
where user’s data is outsourced to. In our experiment,
the TPA/user side process is implemented on a work-
station with an Intel Core 2 processor running at 1.86
GHz, 2048 MB of RAM, and a 7200 RPM Western Digital
250 GB Serial ATA drive. The cloud server side process
is implemented on Amazon Elastic Computing Cloud
(EC2) with a large instance type [27], which has 4 EC2
Compute Units, 7.5 GB memory, and 850 GB instance
storage. The randomly generated test data is of 1 GB
size. All algorithms are implemented using C language.
Our code uses the Pairing-Based Cryptography (PBC)
library version 0.4.21. The elliptic curve utilized in the
experiment is an MNT curve, with base field size of 159
bits and the embedding degree 6. The security level is
chosen to be 80 bit, which means |νi| = 80 and |p| = 160.
All experimental results represent the mean of 20 trials.

Because the cloud is a pay-per-use model, users have
to pay both the storage cost and the bandwidth cost (for
data transfer) when using the cloud storage auditing.
Thus, when implementing our mechanism, we have to
take into consideration both factors. In particular, we



10

TABLE 4: Performance under different number of sam-
pled blocks c for high assurance (≥ 95%) auditing

s = 1 Our Scheme [13]
Sampled blocks c 460 300 460 300

Server comp. time (ms) 335.17 219.27 333.23 217.33
TPA comp. time (ms) 530.60 357.53 526.77 353.70

Comm. cost (Byte) 160 160 40 40

s = 10 Our Scheme [13]
Sampled blocks c 460 300 460 300

Server comp. time (ms) 361.56 242.29 342.91 223.64
TPA comp. time (ms) 547.39 374.32 543.35 370.29

Comm. cost (Byte) 1420 1420 220 220

conducts the experiment with two different sets of stor-
age/communication tradeoff parameter s as introduced
in Section 3.4. When s = 1, the mechanism incurs extra
storage cost as large as the data itself, but only takes
very small auditing bandwidth cost. Such a mechanism
can be adopted when the auditing has to happen very
frequently (e.g., checking the storage correctness every
few minutes [21]), because the resulting data transfer
charge could be dominant in the pay-per-use-model. On
the other hand, we also choose a properly larger s = 10,
which reduces the extra storage cost to only 10% of the
original data but increases the bandwidth cost roughly
10 times larger than the choice of s = 1. Such a case is
relatively more desirable if the auditing does not need to
happen frequently. In short, users can flexibly choose the
storage/communication tradeoff parameter s for their
different system application scenarios.

On our not-so-powerful workstation, the measure-
ment shows that the user setup phase (i.e., generating
authenticators) achieves a throughput of around 9.0
KB/s and 17.2 KB/s when s = 1 and s = 10 respectively.
These results are not very fast due to the expensive
modular exponentiation operations for each 20 byte
block sector in the authenticator computation. (See [28]
for some similar experimental results.) Note that for each
data file to be outsourced, such setup phase happens
once only. Further, since the authenticator generation on
each block is independent, these one-time operations can
be easily parallelized by using multithreading technique
on the modern multi-core systems. Therefore, various
optimization techniques can be applied to speedup the
user side setup phase. As our paper focuses on privacy-
preserving storage auditing performance, in the follow-
ing, we will primarily assess the performance of the
proposed auditing schemes on both TPA side and cloud
server side, and show they are indeed lightweight. We
will focus on the cost of the privacy-preserving protocol
and our proposed batch auditing technique.

4.2.1 Cost of Privacy-Preserving Protocol
We begin by estimating the cost in terms of basic cryp-
tographic operations (refer to Table 3 for notations).
Suppose there are c random blocks specified in the chal-

lenge message chal during the Audit phase. Under this
setting, we quantify the cost introduced by the privacy-
preserving auditing in terms of server computation, au-
ditor computation as well as communication overhead.
Since the difference for choices on s has been discussed
previously, in the following privacy-preserving cost anal-
ysis we only give the atomic operation analysis for the
case s = 1 for simplicity. The analysis for the case of
s = 10 follows similarly and is thus omitted.

On the server side, the generated response includes an
aggregated authenticator σ =

∏
i∈I σ

νi
i ∈ G1, a random

factor R = e(u, v)
r ∈ GT , and a blinded linear combina-

tion of sampled blocks µ = γ
∑
i∈I νimi + r ∈ Zp, where

γ = h(R) ∈ Zp. The corresponding computation cost is
c-MultExp1G1

(|νi|), Exp1GT (|p|), and Hash1Zp + AddcZp +
Multc+1

Zp , respectively. Compared to the existing HLA-
based solution for ensuring remote data integrity [13],
the extra cost resulted from the random mask R is only
a constant: Exp1GT (|p|)+Mult1Zp+Hash1Zp+Add1Zp , which
has nothing to do with the number of sampled blocks
c. When c is set to be 300 to 460 for high assurance of
auditing, as discussed in Section 3.4, the extra cost on
the server side for privacy-preserving guarantee would
be negligible against the total server computation for
response generation.

Similarly, on the auditor side, upon receiving the
response {σ,R, µ}, the corresponding computation cost
for response validation is Hash1Zp + c-MultExp1G1

(|νi|) +

HashcG1
+ Mult1G1

+ Mult1GT + Exp3G1
(|p|) + Pair2G1,G2

,
among which only Hash1Zp + Exp2G1

(|p|) + Mult1GT ac-
count for the additional constant computation cost. For
c = 460 or 300, and considering the relatively expensive
pairing operations, this extra cost imposes little overhead
on the overall cost of response validation, and thus
can be ignored. For the sake of completeness, Table 4
gives the experiment result on performance comparison
between our scheme and the state-of-the-art [13]. It
can be shown that the performance of our scheme is
almost the same as that of [13], even if our scheme
supports privacy-preserving guarantee while [13] does
not. For the extra communication cost of our scheme
when compared with [13], the server’s response {σ,R, µ}
contains an additional random element R, which is a
group element of GT and has the size close to 960 bits.

4.2.2 Batch Auditing Efficiency

Discussion in Section 3.5 gives an asymptotic efficiency
analysis on the batch auditing, by considering only
the total number of pairing operations. However, on
the practical side, there are additional less expensive
operations required for batching, such as modular expo-
nentiations and multiplications. Thus, whether the ben-
efits of removing pairings significantly outweighs these
additional operations remains to be verified. To get a
complete view of batching efficiency, we conduct a timed
batch auditing test, where the number of auditing tasks
is increased from 1 to approximately 200 with intervals
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Fig. 2: Comparison on auditing time between batch and
individual auditing: Per task auditing time denotes the
total auditing time divided by the number of tasks.
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Fig. 3: Comparison on auditing time between batch and
individual auditing, when α-fraction of 256 responses are
invalid: Per task auditing time denotes the total auditing
time divided by the number of tasks.

of 8. Note that we only focus on the choice of s = 1 here,
from which similar performance results can be directly
obtained for the choice of s = 10. The performance of
the corresponding non-batched (individual) auditing is
provided as a baseline for the measurement. Following
the same settings c = 300 and c = 460, the average per
task auditing time, which is computed by dividing total
auditing time by the number of tasks, is given in Fig. 2
for both batch and individual auditing. It can be shown
that compared to individual auditing, batch auditing
indeed helps reducing the TPA’s computation cost, as
more than 15% of per-task auditing time is saved.

4.2.3 Sorting out Invalid Responses
Now we use experiment to justify the efficiency of our
recursive binary search approach for the TPA to sort out
the invalid responses for negative batch auditing result,
as discussed in Section 3.5. This experiment is tightly
pertained to the work in [20], which evaluates the batch
verification of various short signatures.

The feasibility of the recursive approach is evaluated
under the choice of s = 1, which is consistent with the
experiment settings in Section 4.2.2. We do not duplicate
evaluation of the recursive binary search methodology
for s = 10, because similar results can be easily deduced
from the choice of s = 1. We first generate a collection of
256 valid responses, which implies the TPA may concur-
rently handle 256 different auditing delegations. We then
conduct the tests repeatedly while randomly corrupting
an α-fraction, ranging from 0 to 20%, by replacing them
with random values. The average auditing time per task
against the individual auditing approach is presented in
Fig. 3. The result shows that even when the number of
invalid responses exceeds 18% of the total batch size,
the performance of batch auditing can still be safely
concluded as more preferable than the straightforward
individual auditing. Note that the random distribution
of invalid responses within the collection is nearly the
worst-case for batch auditing. If invalid responses are
grouped together, even better results can be expected.

5 ZERO KNOWLEDGE PUBLIC AUDITING

Though our scheme prevents the TPA from directly
deriving µ′ from µ, it does not rule out the possibility
of offline guessing threat by TPA using valid σ from the
response. Specifically, the TPA can always guess whether
µ′

?
= µ̃′, by checking e(σ, g)

?
= e((

∏sc
i=s1

H(Wi)
νi) ·uµ̃′ , v),

where µ̃′ is constructed from random coefficients chosen
by the TPA in the challenge and the guessed message
{m̃i}s1≤i≤sc . However, we must note that µ̃′ is chosen
from Zp and |p| is usually larger than 160 bits in practical
security settings (see Section 4.2). Given no background
information, the success of this all-or-nothing guess on
µ′ launched by TPA over such a large space Zp can be
very difficult. Besides, because TPA must at least make
c successful guesses on the same set of blocks to derive
{mi}s1≤i≤sc from the system of c linear equations, we
can specify c to be large enough in the protocol (e.g., as
discussed in Section 3.4, a strict choice of c should be at
least larger than 460), which can significantly decrease
the TPA’s successful guessing probability. In addition,
we can also restrict the number of re-auditing on ex-
actly the same set of blocks (e.g., to limit the repeated
auditing times on exactly the same set of blocks to be
always less than c). In this way, TPA can be kept from
accumulating successful guesses on µ′ for the same set of
blocks, which further diminishes the chance for TPA to
solve for {mi}s1≤i≤sc . In short, by appropriate choices of
parameter c and group size Zp, we can effectively defeat
such potential offline guessing threat.

Nevertheless, we present a public auditing scheme
with provably zero knowledge leakage. This scheme can
completely eliminate the possibilities of above offline
guessing attack, but at the cost of a little higher commu-
nication and computation overhead. The setup phase is
similar to our main scheme presented in Section 3.4. The



12

secret parameters are sk = (x, ssk) and the public pa-
rameters are pk = (spk, v, g, u, e(u, v), g1), where g1 ∈ G1

is an additional public group element. In the audit
phase, upon receiving challenge chal = {(i, νi)}i∈I , the
server chooses three random elements rm, rσ, ρ ← Zp,
and calculates R = e(g1, g)rσ · e(u, v)rm ∈ GT and
γ = h(R) ∈ Zp. Let µ′ denote the linear combination
of sampled blocks µ′ =

∑
i∈I νimi, and σ denote the

aggregated authenticator σ =
∏
i∈I σ

νi
i ∈ G1. To ensure

the auditing leaks zero knowledge, the server has to
blind both µ′ and σ. Specifically, the server computes:
µ = rm + γµ′ mod p, and Σ = σ · gρ1 . It then sends
{ς, µ,Σ, R} as the response proof of storage correctness
to the TPA, where ς = rσ +γρ mod p. With the response
from the server, the TPA runs VerifyProof to validate
the response by first computing γ = h(R) and then
checking the verification equation

R · e(Σγ , g)
?
= e((

sc∏
i=s1

H(Wi)
νi)γ · uµ, v) · e(g1, g)ς (6)

To see the correctness of the above equation, we have:

R · e(Σγ , g) = e(g1, g)rσ · e(u, v)rm · e((σ · gρ1)γ , g)

= e(g1, g)rσ · e(u, v)rm · e((σγ , g) · e(gργ1 , g)

= e(u, v)rm · e((σγ , g) · e(g1, g)rσ+ργ

= e((

sc∏
i=s1

H(Wi)
νi)γ · uµ, v) · e(g1, g)ς

The last equality follows from the elaboration of Equa-
tion 1 in Section 3.4.

Theorem 4: The above auditing protocol achieves zero-
knowledge information leakage to the TPA, and it also
ensures the storage correctness guarantee.

Proof: Zero-knowledge is easy to see. Randomly
pick γ, µ, ς from Zp and Σ from G1, set R ←
e((

∏sc
i=s1

H(Wi)
νi)γ · uµ, v) · e(g1, g)ς/e(Σγ , g) and back-

patch γ = h(R). For proof of storage correctness, we can
extract ρ similar to the extraction of µ′ as in the proof
of Theorem 1. Likewise, σ can be recovered from Σ. To
conclude, a valid pair of σ and µ′ can be extracted.

6 RELATED WORK

Ateniese et al. [9] are the first to consider public au-
ditability in their “provable data possession” (PDP)
model for ensuring possession of data files on untrusted
storages. They utilize the RSA-based homomorphic lin-
ear authenticators for auditing outsourced data and
suggest randomly sampling a few blocks of the file.
However, among their two proposed schemes, the one
with public auditability exposes the linear combination
of sampled blocks to external auditor. When used di-
rectly, their protocol is not provably privacy preserving,
and thus may leak user data information to the external
auditor. Juels et al. [11] describe a “proof of retrievability”
(PoR) model, where spot-checking and error-correcting
codes are used to ensure both “possession” and “retriev-
ability” of data files on remote archive service systems.

However, the number of audit challenges a user can
perform is fixed a priori, and public auditability is not
supported in their main scheme. Although they describe
a straightforward Merkle-tree construction for public
PoRs, this approach only works with encrypted data.
Later, Bowers et al. [18] propose an improved framework
for POR protocols that generalizes Juels’ work. Dodis et
al. [29] also give a study on different variants of PoR
with private auditability. Shacham et al. [13] design an
improved PoR scheme built from BLS signatures [19]
with proofs of security in the security model defined in
[11]. Similar to the construction in [9], they use publicly
verifiable homomorphic linear authenticators that are
built from provably secure BLS signatures. Based on the
elegant BLS construction, a compact and public verifiable
scheme is obtained. Again, their approach is not privacy-
preserving due to the same reason as [9]. Shah et al. [15],
[10] propose introducing a TPA to keep online storage
honest by first encrypting the data then sending a num-
ber of pre-computed symmetric-keyed hashes over the
encrypted data to the auditor. The auditor verifies the
integrity of the data file and the server’s possession
of a previously committed decryption key. This scheme
only works for encrypted files, requires the auditor to
maintain state, and suffers from bounded usage, which
potentially brings in online burden to users when the
keyed hashes are used up.

Dynamic data has also attracted attentions in the re-
cent literature on efficiently providing the integrity guar-
antee of remotely-stored data. Ateniese et al. [21] is the
first to propose a partially dynamic version of the prior
PDP scheme, using only symmetric key cryptography
but with a bounded number of audits. In [22], Wang et
al. consider a similar support for partially dynamic data
storage in a distributed scenario with additional feature
of data error localization. In a subsequent work, Wang
et al. [8] propose to combine BLS-based HLA with MHT
to support fully data dynamics. Concurently, Erway et
al. [23] develop a skip list based scheme to also enable
provable data possession with full dynamics support.
However, the verification in both protocols requires the
linear combination of sampled blocks as an input, like
the designs in [9], [13], and thus does not support
privacy-preserving auditing.

In other related work, Sebe et al. [30] thoroughly study
a set of requirements which ought to be satisfied for
a remote data possession checking protocol to be of
practical use. Their proposed protocol supports unlim-
ited times of file integrity verifications and allows preset
tradeoff between the protocol running time and the local
storage burden at the user. Schwarz and Miller [31]
propose the first study of checking the integrity of the
remotely stored data across multiple distributed servers.
Their approach is based on erasure-correcting code and
efficient algebraic signatures, which also have the similar
aggregation property as the homomorphic authenticator
utilized in our approach. Curtmola et al. [32] aim to
ensure data possession of multiple replicas across the
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distributed storage system. They extend the PDP scheme
in [9] to cover multiple replicas without encoding each
replica separately, providing guarantee that multiple
copies of data are actually maintained. In [33], Bowers et
al. utilize a two-layer erasure-correcting code structure
on the remotely archived data and extend their POR
model [18] to distributed scenario with high data avail-
ability assurance. While all the above schemes provide
methods for efficient auditing and provable assurance on
the correctness of remotely stored data, almost none of
them necessarily meet all the requirements for privacy-
preserving public auditing of storage. Moreover, none of
these schemes consider batch auditing, while our scheme
can greatly reduce the computation cost on the TPA
when coping with a large number of audit delegations.

Portions of the work presented in this paper have pre-
viously appeared as an extended abstract in [1]. We have
revised the article a lot and improved many technical de-
tails as compared to [1]. The primary improvements are
as follows: Firstly, we provide a new privacy-preserving
public auditing protocol with enhanced security strength
in Section 3.4. For completeness, we also include an
additional (but slightly less efficient) protocol design for
provably secure zero-knowledge leakage public auditing
scheme in Section 5. Secondly, based on the enhanced
main auditing scheme, we provide a new provably-
secure batch auditing protocol. All the experiments in
our performance evaluation for the newly designed pro-
tocol are completely redone. Thirdly, we extend our main
scheme to support data dynamics in Section 3.6, and
provide discussions on how to generalize our privacy-
preserving public auditing scheme in Section 3.7, which
are lacking in [1]. Finally, we provide formal analysis
of privacy-preserving guarantee and storage correctness,
while only heuristic arguments are sketched in [1].

7 CONCLUSION

In this paper, we propose a privacy-preserving public
auditing system for data storage security in Cloud Com-
puting. We utilize the homomorphic linear authenticator
and random masking to guarantee that the TPA would
not learn any knowledge about the data content stored
on the cloud server during the efficient auditing process,
which not only eliminates the burden of cloud user
from the tedious and possibly expensive auditing task,
but also alleviates the users’ fear of their outsourced
data leakage. Considering TPA may concurrently handle
multiple audit sessions from different users for their
outsourced data files, we further extend our privacy-
preserving public auditing protocol into a multi-user
setting, where the TPA can perform multiple auditing
tasks in a batch manner for better efficiency. Extensive
analysis shows that our schemes are provably secure and
highly efficient. Our preliminary experiment conducted
on Amazon EC2 instance further demonstrates the fast
performance of our design on both the cloud and the
auditor side. We leave the full-fledged implementation

of the mechanism on commercial public cloud as an
important future extension, which is expected to robustly
cope with very large scale data and thus encourage users
to adopt cloud storage services more confidently.
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