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Abstract—Cloud computing economically enables the paradigm of data service outsourcing. However, to protect data privacy, sensitive
cloud data has to be encrypted before outsourced to the commercial public cloud, which makes effective data utilization service a very
challenging task. Although traditional searchable encryption techniques allow users to securely search over encrypted data through
keywords, they support only Boolean search and are not yet sufficient to meet the effective data utilization need that is inherently
demanded by large number of users and huge amount of data files in cloud. In this paper, we define and solve the problem of
secure ranked keyword search over encrypted cloud data. Ranked search greatly enhances system usability by enabling search result
relevance ranking instead of sending undifferentiated results, and further ensures the file retrieval accuracy. Specifically, we explore
the statistical measure approach, i.e. relevance score, from information retrieval to build a secure searchable index, and develop a
one-to-many order-preserving mapping technique to properly protect those sensitive score information. The resulting design is able
to facilitate efficient server-side ranking without losing keyword privacy. Thorough analysis shows that our proposed solution enjoys
“as-strong-as-possible” security guarantee compared to previous searchable encryption schemes, while correctly realizing the goal of
ranked keyword search. Extensive experimental results demonstrate the efficiency of the proposed solution.
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1 INTRODUCTION

C Loud Computing is the long dreamed vision of
computing as a utility, where cloud customers can

remotely store their data into the cloud so as to enjoy the
on-demand high quality applications and services from a
shared pool of configurable computing resources [2]. The
benefits brought by this new computing model include
but are not limited to: relief of the burden for storage
management, universal data access with independent
geographical locations, and avoidance of capital expen-
diture on hardware, software, and personnel mainte-
nances, etc [3].

As Cloud Computing becomes prevalent, more and
more sensitive information are being centralized into
the cloud, such as emails, personal health records, com-
pany finance data, and government documents, etc. The
fact that data owners and cloud server are no longer
in the same trusted domain may put the outsourced
unencrypted data at risk [4]: the cloud server may leak
data information to unauthorized entities [5] or even
be hacked [6]. It follows that sensitive data has to be
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encrypted prior to outsourcing for data privacy and com-
bating unsolicited accesses. However, data encryption
makes effective data utilization a very challenging task
given that there could be a large amount of outsourced
data files. Besides, in Cloud Computing, data owners
may share their outsourced data with a large number of
users, who might want to only retrieve certain specific
data files they are interested in during a given session.
One of the most popular ways to do so is through
keyword-based search. Such keyword search technique
allows users to selectively retrieve files of interest and
has been widely applied in plaintext search scenarios [7].
Unfortunately, data encryption, which restricts user’s
ability to perform keyword search and further demands
the protection of keyword privacy, makes the traditional
plaintext search methods fail for encrypted cloud data.

Although traditional searchable encryption schemes
(e.g. [8]–[12], to list a few) allow a user to securely
search over encrypted data through keywords without
first decrypting it, these techniques support only con-
ventional Boolean keyword search1, without capturing
any relevance of the files in the search result. When
directly applied in large collaborative data outsourcing
cloud environment, they may suffer from the following
two main drawbacks. On the one hand, for each search
request, users without pre-knowledge of the encrypted
cloud data have to go through every retrieved file in
order to find ones most matching their interest, which
demands possibly large amount of postprocessing over-

1. In the existing symmetric key based searchable encryption
schemes, the support of disjunctive Boolean operation (OR) on multiple
keywords searches still remains an open problem.
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head; On the other hand, invariably sending back all
files solely based on presence/absence of the keyword
further incurs large unnecessary network traffic, which is
absolutely undesirable in today’s pay-as-you-use cloud
paradigm. In short, lacking of effective mechanisms to
ensure the file retrieval accuracy is a significant draw-
back of existing searchable encryption schemes in the
context of Cloud Computing. Nonetheless, the state-of-
the-art in information retrieval (IR) community has al-
ready been utilizing various scoring mechanisms [13] to
quantify and rank-order the relevance of files in response
to any given search query. Although the importance of
ranked search has received attention for a long history
in the context of plaintext searching by IR community,
surprisingly, it is still being overlooked and remains to
be addressed in the context of encrypted data search.

Therefore, how to enable a searchable encryption sys-
tem with support of secure ranked search, is the problem
tackled in this paper. Our work is among the first few
ones to explore ranked search over encrypted data in
Cloud Computing. Ranked search greatly enhances sys-
tem usability by returning the matching files in a ranked
order regarding to certain relevance criteria (e.g., key-
word frequency), thus making one step closer towards
practical deployment of privacy-preserving data hosting
services in the context of Cloud Computing. To achieve
our design goals on both system security and usability,
we propose to bring together the advance of both crypto
and IR community to design the ranked searchable
symmetric encryption scheme, in the spirit of “as-strong-
as-possible” security guarantee. Specifically, we explore
the statistical measure approach from IR and text-mining
to embed weight information (i.e. relevance score) of
each file during the establishment of searchable index
before outsourcing the encrypted file collection. As di-
rectly outsourcing relevance scores will leak lots of sensi-
tive frequency information against the keyword privacy,
we then integrate a recent crypto primitive [14] order-
preserving symmetric encryption (OPSE) and properly
modify it to develop a one-to-many order-preserving
mapping technique for our purpose to protect those
sensitive weight information, while providing efficient
ranked search functionalities. Our contribution can be
summarized as follows:

1) For the first time, we define the problem of se-
cure ranked keyword search over encrypted cloud
data, and provide such an effective protocol, which
fulfills the secure ranked search functionality with
little relevance score information leakage against
keyword privacy.

2) Thorough security analysis shows that our ranked
searchable symmetric encryption scheme indeed
enjoys “as-strong-as-possible” security guarantee
compared to previous SSE schemes.

3) We investigate the practical considerations and
enhancements of our ranked search mechanism,
including the efficient support of relevance score
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Fig. 1: Architecture for search over encrypted cloud data

dynamics, the authentication of ranked search re-
sults, and the reversibility of our proposed one-to-
many order-preserving mapping technique.

4) Extensive experimental results demonstrate the ef-
fectiveness and efficiency of the proposed solution.

The rest of the paper is organized as follows. Section
2 gives the system and threat model, our design goals,
notations and preliminaries. Then we provide the frame-
work, definitions and basic scheme in Section 3, followed
by Section 4, which gives the detailed description of our
ranked searchable symmetric encryption system. Section
5 gives the security analysis. Section 6 studies further
enhancements and practical considerations, followed by
Section 7 on performance evaluations. Related work for
both searchable encryption and secure result ranking
is discussed in Section 8. Finally, Section 9 gives the
concluding remark of the whole paper.

2 PROBLEM STATEMENT

2.1 The System and Threat Model
We consider an encrypted cloud data hosting service
involving three different entities, as illustrated in Fig.
1: data owner, data user, and cloud server. Data owner has
a collection of n data files C = (F1, F2, . . . , Fn) that he
wants to outsource on the cloud server in encrypted
form while still keeping the capability to search through
them for effective data utilization reasons. To do so,
before outsourcing, data owner will first build a secure
searchable index I from a set of m distinct keywords
W = (w1, w2, ..., wm) extracted2 from the file collection
C, and store both the index I and the encrypted file
collection C on the cloud server.

We assume the authorization between the data owner
and users is appropriately done. To search the file
collection for a given keyword w, an authorized user
generates and submits a search request in a secret form—
a trapdoor Tw of the keyword w—to the cloud server.
Upon receiving the search request Tw, the cloud server
is responsible to search the index I and return the
corresponding set of files to the user. We consider the
secure ranked keyword search problem as follows: the
search result should be returned according to certain
ranked relevance criteria (e.g., keyword frequency based

2. To reduce the size of index, a list of standard IR techniques can
be adopted, including case folding, stemming, and stop words etc.
We omit this process of keyword extraction and refinement and refer
readers to [7] for more details.
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scores, as will be introduced shortly), to improve file
retrieval accuracy for users without prior knowledge
on the file collection C. However, cloud server should
learn nothing or little about the relevance criteria as they
exhibit significant sensitive information against keyword
privacy. To reduce bandwidth, the user may send an
optional value k along with the trapdoor Tw and cloud
server only sends back the top-k most relevant files to
the user’s interested keyword w.

We primarily consider an “honest-but-curious” server
in our model, which is consistent with most of the
previous searchable encryption schemes. We assume the
cloud server acts in an “honest” fashion and correctly
follows the designated protocol specification, but is “cu-
rious” to infer and analyze the message flow received
during the protocol so as to learn additional information.
In other words, the cloud server has no intention to
actively modify the message flow or disrupt any other
kind of services. However, in some unexpected events,
the cloud server may behave beyond the “honest-but-
curious” model. We specifically deal with this scenario
in Section 6.2.

2.2 Design Goals

To enable ranked searchable symmetric encryption for
effective utilization of outsourced and encrypted cloud
data under the aforementioned model, our system de-
sign should achieve the following security and per-
formance guarantee. Specifically, we have the follow-
ing goals: i) Ranked keyword search: to explore differ-
ent mechanisms for designing effective ranked search
schemes based on the existing searchable encryption
framework; ii) Security guarantee: to prevent cloud
server from learning the plaintext of either the data
files or the searched keywords, and achieve the “as-
strong-as-possible” security strength compared to exist-
ing searchable encryption schemes; iii) Efficiency: above
goals should be achieved with minimum communication
and computation overhead.

2.3 Notation and Preliminaries

• C – the file collection to be outsourced, denoted as
a set of n data files C = (F1, F2, . . . , Fn).

• W – the distinct keywords extracted from file col-
lection C, denoted as a set of m words W =
(w1, w2, ..., wm).

• id(Fj) – the identifier of file Fj that can help
uniquely locate the actual file.

• I – the index built from the file collection, including
a set of posting lists {I(wi)}, as introduced below.

• Twi
– the trapdoor generated by a user as a search

request of keyword wi.
• F(wi) – the set of identifiers of files in C that contain

keyword wi.
• Ni – the number of files containing the keyword wi

and Ni = |F(wi)|.

Word wi

File ID Fi1 Fi2 Fi3 · · · FiNi

Relevance Score 6.52 2.29 13.42 4.76 13.80

TABLE 1: An example posting list of the inverted index.

We now introduce some necessary information re-
trieval background for our proposed scheme:
Inverted Index In information retrieval, inverted index
(also referred to as postings file) is a widely-used in-
dexing structure that stores a list of mappings from
keywords to the corresponding set of files that contain
this keyword, allowing full text search [13]. For ranked
search purposes, the task of determining which files are
most relevant is typically done by assigning a numerical
score, which can be precomputed, to each file based on
some ranking function introduced below. One example
posting list of an index is shown in Table 1. We will use
this inverted index structure to give our basic ranked
searchable symmetric encryption construction.
Ranking Function In information retrieval, a ranking
function is used to calculate relevance scores of matching
files to a given search request. The most widely used
statistical measurement for evaluating relevance score
in the information retrieval community uses the TF
× IDF rule, where TF (term frequency) is simply the
number of times a given term or keyword (we will
use them interchangeably hereafter) appears within a
file (to measure the importance of the term within the
particular file), and IDF (inverse document frequency) is
obtained by dividing the number of files in the whole
collection by the number of files containing the term (to
measure the overall importance of the term within the
whole collection). Among several hundred variations of
the TF × IDF weighting scheme, no single combination
of them outperforms any of the others universally [15].
Thus, without loss of generality, we choose an example
formula that is commonly used and widely seen in the
literature (see Chapter 4 in [7]) for the relevance score
calculation in the following presentation. Its definition is
as follows:

Score(Q,Fd) =
∑
t∈Q

1

|Fd|
· (1 + ln fd,t) · ln(1 +

N

ft
). (1)

Here Q denotes the searched keywords; fd,t denotes the
TF of term t in file Fd; ft denotes the number of files that
contain term t; N denotes the total number of files in the
collection; and |Fd| is the length of file Fd, obtained by
counting the number of indexed terms, functioning as
the normalization factor.

3 THE DEFINITIONS AND BASIC SCHEME

In the introduction we have motivated the ranked key-
word search over encrypted data to achieve economies of
scale for Cloud Computing. In this section, we start from
the review of existing searchable symmetric encryption
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(SSE) schemes and provide the definitions and frame-
work for our proposed ranked searchable symmetric
encryption (RSSE). Note that by following the same
security guarantee of existing SSE, it would be very
inefficient to support ranked search functionality over
encrypted data, as demonstrated in our basic scheme.
The discussion of its demerits will lead to our proposed
scheme.

3.1 Background on Searchable Symmetric Encryp-
tion
Searchable encryption allows data owner to outsource
his data in an encrypted manner while maintaining
the selectively-search capability over the encrypted data.
Generally, searchable encryption can be achieved in its
full functionality using an oblivious RAMs [16]. Al-
though hiding everything during the search from a ma-
licious server (including access pattern), utilizing oblivi-
ous RAM usually brings the cost of logarithmic number
of interactions between the user and the server for each
search request. Thus, in order to achieve more efficient
solutions, almost all the existing works on searchable
encryption literature resort to the weakened security
guarantee, i.e., revealing the access pattern and search
pattern but nothing else. Here access pattern refers to
the outcome of the search result, i.e., which files have
been retrieved. The search pattern includes the equality
pattern among the two search requests (whether two
searches were performed for the same keyword), and
any information derived thereafter from this statement.
We refer readers to [12] for the thorough discussion on
SSE definitions.

Having a correct intuition on the security guarantee of
existing SSE literature is very important for us to define
our ranked searchable symmetric encryption problem.
As later we will show that following the exactly same
security guarantee of existing SSE scheme, it would
be very inefficient to achieve ranked keyword search,
which motivates us to further weaken the security guar-
antee of existing SSE appropriately (leak the relative
relevance order but not the relevance score) and realize
an “as-strong-as-possible” ranked searchable symmetric
encryption. Actually, this notion has been employed by
cryptographers in many recent work [14], [17] where
efficiency is preferred over security.

3.2 Definitions and Framework of RSSE System
We follow the similar framework of previously proposed
searchable symmetric encryption schemes [12] and adapt
the framework for our ranked searchable encryption sys-
tem. A ranked searchable encryption scheme consists of
four algorithms (KeyGen, BuildIndex, TrapdoorGen,
SearchIndex). Our ranked searchable encryption sys-
tem can be constructed from these four algorithms in
two phases, Setup and Retrieval:
• Setup: The data owner initializes the public and se-

cret parameters of the system by executing KeyGen,

and pre-processes the data file collection C by using
BuildIndex to generate the searchable index from
the unique words extracted from C. The owner then
encrypts the data file collection C, and publishes
the index including the keyword frequency based
relevance scores in some encrypted form, together
with the encrypted collection C to the Cloud. As
part of Setup phase, the data owner also needs to
distribute the necessary secret parameters (in our
case, the trapdoor generation key) to a group of
authorized users by employing off-the-shelf public
key cryptography or more efficient primitive such
as broadcast encryption.

• Retrieval: The user uses TrapdoorGen to gener-
ate a secure trapdoor corresponding to his interested
keyword, and submits it to the cloud server. Upon
receiving the trapdoor, the cloud server will derive
a list of matched file IDs and their corresponding
encrypted relevance scores by searching the index
via SearchIndex. The matched files should be sent
back in a ranked sequence based on the relevance
scores. However, the server should learn nothing or
little beyond the order of the relevance scores.

Note that as an initial attempt to investigate the secure
ranked searchable encryption system, in this paper we
focus on single keyword search. In this case, the IDF
factor in equation 1 is always constant with regard to
the given searched keyword. Thus, search results can be
accurately ranked based only on the term frequency and
file length information contained within the single file
using equation 2:

Score(t, Fd) =
1

|Fd|
· (1 + ln fd,t). (2)

Data owner can keep a record of these two values
and pre-calculate the relevance score, which introduces
little overhead regarding to the index building. We will
demonstrate this via experiments in the performance
evaluation Section 7.

3.3 The Basic Scheme

Before giving our main result, we first start with a
straightforward yet ideal scheme, where the security
of our ranked searchable encryption is the same as
previous SSE schemes, i.e., the user gets the ranked
results without letting cloud server learn any additional
information more than the access pattern and search
pattern. However, this is achieved with the trade-off of
efficiency: namely, either should the user wait for two
round-trip time for each search request, or he may even
lose the capability to perform top-k retrieval, resulting
the unnecessary communication overhead. We believe
the analysis of these demerits will lead to our main
result. Note that the basic scheme we discuss here is
tightly pertained to recent work [12], though our focus
in on secure result ranking. Actually, it can be considered
as the most simplified version of searchable symmetric
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BuildIndex(K, C)
1. Initialization:

i) scan C and extract the distinct words W = (w1, w2, ..., wm) from C. For each wi ∈W , build F(wi);
2. Build posting list:

i) for each wi ∈W
• for 1 ≤ j ≤ |F(wi)|:

a) calculate the score for file Fij according to equation 2, denoted as Sij ;
b) compute Ez(Sij), and store it with Fij ’s identifier 〈id(Fij)||Ez(Sij)〉 in the posting list I(wi);

3. Secure the index I:
i) for each I(wi) where 1 ≤ i ≤ m:
• encrypt all Ni entries with `′ padding 0′s, 〈0`′ ||id(Fij)||Ez(Sij)〉, with key fy(wi), where 1 ≤ j ≤ ν.
• set remaining ν −Ni entries, if any, to random values of the same size as the existing Ni entries of I(wi).
• replace wi with πx(wi);

4. Output I.

TABLE 2: The details of BuildIndex(·) for Basic Scheme

encryption that satisfies the non-adaptive security defi-
nition of [12].
Basic Scheme: Let k, `, `′, p be security parameters that
will be used in Keygen(·). Let E be a semantically
secure symmetric encryption algorithm: E : {0, 1}` ×
{0, 1}r → {0, 1}r. Let ν be the maximum number of files
containing some keyword wi ∈ W for i = 1, . . . ,m, i.e.,
ν = maxmi=1Ni. This value does not need to be known in
advance for the instantiation of the scheme. Also, let f be
a pseudo-random function and π be a collision resistant
hash function with the following parameters:

• f : {0, 1}k × {0, 1}∗ → {0, 1}`
• π : {0, 1}k × {0, 1}∗ → {0, 1}p where p > logm

In practice, π(·) will be instantiated by off-the-shelf hash
functions like SHA-1, in which case p is 160 bits.

In the Setup phase:

1) The data owner initiates the scheme by call-
ing KeyGen(1k, 1`, 1`

′
, 1p), generates random keys

x, y
R←− {0, 1}k, z R←− {0, 1}`, and outputs K =

{x, y, z, 1`, 1`′ , 1p}.
2) The data owner then builds a secure inverted

index from the file collection C by calling
BuildIndex(K, C). The details are given in Table
2. The `′ padding 0′s indicate the valid posting
entry.

In the Retrieval phase:

1) For an interested keyword w, the user gener-
ates a trapdoor T = (πx(w), fy(w)) by calling
TrapdoorGen(w).

2) Upon receiving the trapdoor Tw, the server calls
SearchIndex(I, Tw): first locates the matching list
of the index via πx(w), uses fy(w) to decrypt the
entries, and then sends back the corresponding files
according to F(w), together with their associated
encrypted relevance scores.

3) User decrypts the relevance scores via key z and
gets the ranked search results.

Discussion: The above scheme clearly satisfies the secu-
rity guarantee of SSE, i.e., only the access pattern and
search pattern are leaked. However, the ranking is done

on the user side, which may bring in huge post process-
ing overhead. Moreover, sending back all the files con-
sumes large undesirable bandwidth. One possible way
to reduce the communication overhead is that server
first sends back all the valid entries 〈id(Fij)||Ez(Sij)〉,
where 1 ≤ j ≤ Ni. User then decrypts the relevance
score and sends cloud server another request to retrieve
the most relevant files (top-k retrieval) by the rank-
ordered decrypted scores. As the size of valid entries
〈id(Fij)||Ez(Sij)〉 is far less than the corresponding files,
significant amount of bandwidth is expected to be saved,
as long as user does not retrieve all the matching files.
However, the most obvious disadvantage is the two
round-trip time for each search request of every user.
Also note that in this way, server still learns nothing
about the value of relevance scores, but it knows the
requested files are more relevant than the unrequested
ones, which inevitably leaks more information than the
access pattern and search pattern.

4 EFFICIENT RANKED SEARCHABLE SYM-
METRIC ENCRYPTION SCHEME

The above straightforward approach demonstrates the
core problem that causes the inefficiency of ranked
searchable encryption. That is how to let server quickly
perform the ranking without actually knowing the rele-
vance scores. To effectively support ranked search over
encrypted file collection, we now resort to the newly
developed cryptographic primitive – order preserving
symmetric encryption (OPSE) [14] to achieve more prac-
tical performance. Note that by resorting to OPSE, our
security guarantee of RSSE is inherently weakened com-
pared to SSE, as we now let server know the relevance
order. However, this is the information we want to trade-
off for efficient RSSE, as discussed in previous Section 3.
We will first briefly discuss the primitive of OPSE and its
pros and cons. Then we show how we can adapt it to suit
our purpose for ranked searchable encryption with an
“as-strong-as-possible” security guarantee. Finally, we
demonstrate how to choose different scheme parameters
via concrete examples.



6

0 20 40 60 80 100 120 140
0

10

20

30

40

50

60

Relevance score

N
u
m

b
e
r 

o
f 
p
o
in

ts

 

 

Distribution of relevance score
for keyword "network"

Fig. 2: An example of relevance score distribution.

4.1 Using Order Preserving Symmetric Encryption
The OPSE is a deterministic encryption scheme where
the numerical ordering of the plaintexts gets preserved
by the encryption function. Boldyreva et al. [14] gives
the first cryptographic study of OPSE primitive and
provides a construction that is provably secure under
the security framework of pseudorandom function or
pseudorandom permutation. Namely, considering that
any order-preserving function g(·) from domain D =
{1, . . . ,M} to range R = {1, . . . , N} can be uniquely
defined by a combination of M out of N ordered items,
an OPSE is then said to be secure if and only if an
adversary has to perform a brute force search over all
the possible combinations of M out of N to break the
encryption scheme. If the security level is chosen to be
80 bits, then it is suggested to choose M = N/2 > 80
so that the total number of combinations will be greater
than 280. Their construction is based on an uncovered
relationship between a random order-preserving func-
tion (which meets the above security notion) and the
hypergeometric probability distribution, which will later
be denoted as HGD. We refer readers to [14] for more
details about OPSE and its security definition.

At the first glance, by changing the relevance score
encryption from the standard indistinguishable symmet-
ric encryption scheme to this OPSE, it seems to follow
directly that efficient relevance score ranking can be
achieved just like in the plaintext domain. However, as
pointed out earlier, the OPSE is a deterministic encryp-
tion scheme. This inherent deterministic property, if not
treated appropriately, will still leak a lot of information
as any deterministic encryption scheme will do. One
such information leakage is the plaintext distribution.
Take Fig. 2 for example, which shows a skewed relevance
score distribution of keyword “network”, sampled from
1000 files of our test collection. For easy exposition,
we encode the actual score into 128 levels in domain
from 1 to 128. Due to the deterministic property, if
we use OPSE directly over these sampled relevance
scores, the resulting ciphertext shall share exactly the
same distribution as the relevance score in Fig. 2. On

the other hand, previous research works [18], [22] have
shown that the score distribution can be seen as keyword
specific. Specifically, in [22], the authors have shown
that the TF distribution of certain keywords from the
Enron email corpus3 can be very peaky, and thus result
in significant information leak for the corresponding
keyword. In [18], the authors further point out that the
TF distribution of the keyword in a given file collection
usually follows a power law distribution, regardless of
the popularity of the keyword. Their results on a few test
file collections show that not only different keywords can
be differentiated by the slope and value range of their TF
distribution, but even the normalized TF distributions,
i.e., the original score distributions (see the equation 2),
can be keyword specific. Thus, with certain background
information on the file collection, such as knowing it
contains only technical research papers, the adversary
may be able to reverse-engineer the keyword “network”
directly from the encrypted score distribution without
actually breaking the trapdoor construction, nor does the
adversary need to break the OPSE.

4.2 One-to-many Order-preserving Mapping
Therefore, we have to modify the OPSE to suit our
purpose. In order to reduce the amount of information
leakage from the deterministic property, an one-to-many
OPSE scheme is thus desired, which can flatten or ob-
fuscate the original relevance score distribution, increase
its randomness, and still preserve the plaintext order.
To do so, we first briefly review the encryption process
of original deterministic OPSE, where a plaintext m in
domain D is always mapped to the same random-sized
non-overlapping interval bucket in range R, determined
by a keyed binary search over the range R and the result
of a random HGD sampling function. A ciphertext c is
then chosen within the bucket by using m as the seed
for some random selection function.

Our one-to-many order-preserving mapping employs
the random plaintext-to-bucket mapping of OPSE, but
incorporates the unique file IDs together with the plain-
text m as the random seed in the final ciphertext chosen
process. Due to the use of unique file ID as part of
random selection seed, the same plaintext m will no
longer be deterministically assigned to the same cipher-
text c, but instead a random value within the randomly
assigned bucket in range R. The whole process is shown
in Algorithm 1, adapted from [14]. Here TapeGen(·) is a
random coin generator and HYGEINV(·) is the efficient
function implemented in MATLAB as our instance for
the HGD(·) sampling function. The correctness of our
one-to-many order-preserving mapping follows directly
from the Algorithm 1. Note that our rational is to use the
OPSE block cipher as a tool for different application sce-
narios and achieve better security, which is suggested by
and consistent with [14]. Now, if we denote OPM as our
one-to-many order-preserving mapping function with

3. http://www.cs.cmu.edu/∼enron/
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parameter: OPM : {0, 1}` × {0, 1}log |D| → {0, 1}log |R|,
our proposed RSSE scheme can be described as follows:
In the Setup phase:

1) The data owner calls
KeyGen(1k, 1`, 1`

′
, 1p, |D|, |R|), generates

random keys x, y, z
R←− {0, 1}k, and outputs

K = {x, y, z, 1`, 1`′ , 1p, |D|, |R|}.
2) The data owner calls BuildIndex(K, C) to build

the inverted index of collection C, and uses
OPMfz(wi)(·) instead of E(·) to encrypt the scores.

In the Retrieval phase:
1) The user generates and sends a trapdoor Tw =

(πx(w), fy(w)) for an interested keyword w. Upon
receiving the trapdoor Tw, the cloud server first
locates the matching entries of the index via πx(w),
and then uses fy(w) to decrypt the entry. These are
the same with basic approach.

2) The cloud server now sees the file identifiers
〈id(Fij)〉 (suppose w = wi and thus j ∈ {1, . . . , Ni})
and their associated order-preserved encrypted
scores: OPMfz(wi)(Sij).

3) The server then fetches the files and sends back
them in a ranked sequence according to the en-
crypted relevance scores {OPMfz(wi)(Sij)}, or
sends top-k most relevant files if the optional value
k is provided.

Discussion: With the help of order-preserving mapping,
now the server can accordingly rank the files as effi-
ciently as for the unencrypted score. The reason that we
use different keys (fz(wi)) to encrypt the relevance score
for different posting lists is to make the one-to-many
mapping more indistinguishable. Therefore, the same
relevance score appearing in different lists of the index
I will be mapped to different “bucket” in R. Combining
this with our one-to-many mapping will randomize the
encrypted values from an overall point of view. Thus,
we can further mitigate the useful information revealed
to the cloud server, who may be consistently interested
at the statistical analysis on the encrypted numeric value
to infer the underlying information.

4.3 Choosing Range Size of R
We have highlighted our idea, but there still needs some
care for implementation. Our purpose is to discard the
peaky distribution of the plaintext domain as much as
possible during the mapping, so as to eliminate the
predictability of the keyword specific score distribution
on the domain D. Clearly, according to our random one-
to-many order-preserving mapping (Algorithm 1 line 6),
the larger size the range R is set, the less peaky feature
will be preserved. However, the range size |R| cannot
be arbitrarily large as it may slow down the efficiency
of HGD function. Here, we use the min-entropy as our
tool to find the size of range R.

In information theory, the min-entropy of a dis-
crete random variable X is defined as: H∞(X ) =

Algorithm 1 One-to-many Order-preserving Mapping-
OPM

1: procedure OPMK(D,R,m, id(F ))
2: while |D| ! = 1 do
3: {D,R} ← BinarySearch(K,D,R,m);
4: end while
5: coin

R←− TapeGen(K, (D,R, 1||m, id(F )));
6: c

coin←− R;
7: return c;
8: end procedure

9: procedure BinarySearch(K,D,R,m);
10: M ← |D|; N ← |R|;
11: d← min (D)− 1; r ← min (R)− 1;
12: y ← r + dN/2e;
13: coin

R←− TapeGen(K, (D,R, 0||y));
14: x

R←− d+HYGEINV(coin,M,N, y − r);
15: if m ≤ x then
16: D ← {d+ 1, . . . , x};
17: R ← {r + 1, . . . , y};
18: else
19: D ← {x+ 1, . . . , d+M};
20: R ← {y + 1, . . . , r +N};
21: end if
22: return {D,R};
23: end procedure

− log(maxa Pr[X = a]). The higher H∞(X ) is, the more
difficult the X can be predicted. We say X has high
min-entropy if H∞(X ) ∈ ω(log k) [17], where k is the
bit length used to denote all the possible states of X .
Note that one possible choice of H∞(X ) is (log k)

c where
c > 1. Based on this high min-entropy requirement as a
guideline, we aim to find appropriate size of the range
R, which not only helps discard the peaky feature of
the plaintext score distribution after score encryption,
but also maintains within relatively small size so as to
ensure the order-preserving mapping efficiency.

Let max denote the maximum possible number of
score duplicates within the index I, and let λ denote
the average number of scores to be mapped within each
posting list I(wi). Without loss of generality, we let
D = {1, . . . ,M} and thus |D| = M . Then based on
above high min-entropy requirement, we can find the
least possible |R| satisfying the following equation:

max/(|R| · 12
5 logM+12

)

λ
≤ 2−(log(log |R|))

c

. (3)

Here we use the result of [14] that the total recursive calls
of HGD sampling during an OPSE operation is a func-
tion belonging to O(logM), and is at most 5 logM + 12
on average, which is the expected number of times
the range R will be cut into half during the function
call of BinarySearch(·). We also assume that the one-
to-many mapping is truly random (Algorithm 1 line
5-6). Therefore, the numerator of left-hand-side of the
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Fig. 3: Size selection of range R, given max/λ = 0.06,
M = 128, and c = 1.1. The LHS and RHS denote
the corresponding side of the equation 4. Two example
choices of O(logM) to replace 5 logM + 12 in equation
4 are also included.

above equation is indeed the expected largest number of
duplicates after mapping. Dividing the numerator by λ,
we have on the left-hand-side the expected largest prob-
ability of a plaintext score mapped to a given encrypted
value in range R. If we denote the range size |R| in bits,
i.e., k = log |R|, we can re-write the above inequation as:

max · 25 logM+12

2k · λ
=
max ·M5

2k−12 · λ
≤ 2−(log k)c . (4)

With the established index I, it is easy to determine the
appropriate range size |R|.

Following the same example of keyword “network”
in Fig. 2, where max/λ = 0.06 (i.e., the max score
duplicates is 60 and the average length of the posting
list is 1000), one can determine the ciphertext range size
|R| = 246, when the relevance score domain is encoded
as 128 different levels and c is set to be 1.1, as indicated
in Fig. 3. Note that smaller size of range |R| is possible,
when we replace the upper bound 5 logM +12 by other
relatively “loose” function of M belonging to O(logM),
e.g., 5 logM or 4 logM . Fig. 3 shows that the range |R|
size can be further reduced to 234, or 227, respectively. In
Section 7, we provide detailed experimental results and
analysis on the performance and effectiveness of these
different parameter selections.

5 SECURITY ANALYSIS

We evaluate the security of the proposed scheme by
analyzing its fulfillment of the security guarantee de-
scribed in Section 2. Namely, the cloud server should
not learn the plaintext of either the data files or the
searched keywords. We start from the security analysis
of our one-to-many order-preserving mapping. Then we
analyze the security strength of the combination of one-
to-many order-preserving mapping and SSE.

5.1 Security Analysis for One-to-many Mapping
Our one-to-many order-preserving mapping is adapted
from the original OPSE, by introducing the file ID as
the additional seed in the final ciphertext chosen pro-
cess. Since such adaptation only functions at the final
ciphertext selection process, it has nothing to do with
the randomized plaintext-to-bucket mapping process in
the original OPSE. In other words, the only effect of
introducing file ID as the new seed is to make multi-
ple plaintext duplicates m’s no longer deterministically
mapped to the same ciphertext c, but instead mapped
to multiple random values within the assigned bucket
in range R. This helps flatten the ciphertext distribution
to some extent after mapping. However, such a generic
adaptation alone only works well when the number of
plaintext duplicates are not large. In case there are many
duplicates of plaintext m, its corresponding ciphertext
distribution after mapping may still exhibit certain skew-
ness or peaky feature of the plaintext distribution, due to
the relative small size of assigned bucket selected from
range R.

This is why we propose to appropriately enlarge R
in Section 4.3. Note that in the original OPSE, size R
is determined just to ensure the number of different
combinations between D and R is larger than 280. But
from a practical perspective, properly enlarging R in our
one-to-many case further aims to ensure the low du-
plicates (with high probability) on the ciphertext range
after mapping. This inherently increases the difficulty for
adversary to tell precisely which points in the range R
belong to the same score in the domain D, making the
order-preserving mapping as strong as possible. Note
that one disadvantage of our scheme, compared to the
original OPSE, is that fixing the range size R requires
pre-knowledge on the percentage of maximum dupli-
cates among all the plaintexts (i.e., max/λ in equation
3). However, such extra requirement can be easily met
in our scenario when building the searchable index.

5.2 Security Analysis for Ranked Keyword Search
Compared to the original SSE, the new scheme embeds
the encrypted relevance scores in the searchable index in
addition to file ID. Thus the encrypted scores are the only
additional information that the adversary can utilize
against the security guarantee, i.e., keyword privacy and
file confidentiality. Due to the security strength of the
file encryption scheme, the file content is clearly well
protected. Thus, we only need to focus on keyword
privacy.

From previous discussion, we know that as long as
data owner properly chooses the range size R suffi-
ciently large, the encrypted scores in the searchable index
will only be a sequence of order-preserved numeric
values with very low duplicates. Though adversary may
learn partial information from the duplicates (e.g., ci-
phertext duplicates may indicate very high correspond-
ing plaintext duplicates), the fully randomized score-to-
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bucket assignment (inherited from OPSE) and the highly
flattened one-to-many mapping still makes it difficult for
the adversary to predict the original plaintext score dis-
tribution, let alone reverse-engineer the keywords. Also
note that we use different order-preserving encryption
keys for different posting lists, which further reduces
the information leakage from an overall point of view.
Thus, the keyword privacy is also well preserved in our
scheme.

6 FURTHER ENHANCEMENTS AND INVESTI-
GATIONS

Above discussions have shown how to achieve an ef-
ficient RSSE system. In this section, we give further
study on how to make the RSSE system more readily
deployable in practice. We start with some practical
considerations on the index update and show how our
mechanism can gracefully handle the case of score dy-
namics without introducing re-computation overhead on
data owners. For enhanced quality of service assurance,
we next study how the RSSE system can support ranked
search result authentication. Finally, we uncover the
reversible property of our one-to-many order-preserving
mapping, which may find independent use in other
interesting application scenarios.

6.1 Supporting Score Dynamics
In Cloud Computing, outsourced file collection might
not only be accessed but also updated frequently for
various application purposes (see [19]–[21], for example).
Hence, supporting the score dynamics in the searchable
index for an RSSE system, which is reflected from the
corresponding file collection updates, is thus of practical
importance. Here we consider score dynamics as adding
newly encrypted scores for newly created files, or mod-
ifying old encrypted scores for modification of existing
files in the file collection. Ideally, given a posting list
in the inverted index, the encryption of all these newly
changed scores should be incorporated directly without
affecting the order of all other previously encrypted
scores, and we show that our proposed one-to-many
order-preserving mapping does exactly that. Note that
we do not consider file deletion scenarios because it is
not hard to infer that deleting any file and its score does
not affect the ranking orders of the remaining files in the
searchable index.

This graceful property of supporting score dynamics
is inherited from the original OPSE scheme, even though
we made some adaptations in the mapping process.
This can be observed from the BinarySearch(·) proce-
dure in Algorithm 1, where the same score will always
be mapped to the same random-sized non-overlapping
bucket, given the same encryption key and the same pa-
rameters of the plaintext domain D and ciphertext range
R. Because the buckets themselves are non-overlapping,
the newly changed scores indeed do not affect previ-
ously mapped values. Thus, with this property, the data

Algorithm 2 Reversing One-to-many Order-preserving
Mapping-ROPM

1: procedure OPMK(D,R, c, id(F ))
2: while |D| ! = 1 do
3: {D,R} ← BinarySearch(K,D,R, c);
4: end while
5: m← min (D);
6: coin

R←− TapeGen(K, (D,R, 1||m, id(F )));
7: w

coin←− R;
8: if w = c then return m;
9: end if

10: return ⊥;
11: end procedure

12: procedure BinarySearch(K,D,R, c);
13: M ← |D|; N ← |R|;
14: d← min (D)− 1; r ← min (R)− 1;
15: y ← r + dN/2e;
16: coin

R←− TapeGen(K, (D,R, 0||y));
17: x

R←− d+HYGEINV(coin,M,N, y − r);
18: if c ≤ y then
19: D ← {d+ 1, . . . , x};
20: R ← {r + 1, . . . , y};
21: else
22: D ← {x+ 1, . . . , d+M};
23: R ← {y + 1, . . . , r +N};
24: end if
25: return {D,R};
26: end procedure

owner can avoid the re-computation of the whole score
encryption for all the file collection, but instead just
handle those changed scores whenever necessary. Note
that the scores chosen from the same bucket are treated
as ties and their order can be set arbitrary.

Supporting score dynamics is also the reason why we
do not use the naive approach for RSSE, where data
owner arranges file IDs in the posting list according
to relevance score before outsourcing. As whenever the
file collection changes, the whole process, including the
score calculation, would need to be repeated, rendering
it impractical in case of frequent file collection updates.
In fact, supporting score dynamics will save quite a lot
of computation overhead during the index update, and
can be considered as a significant advantage compared
to the related work [18], [22], as will be discussed in
Section 8.

6.2 Authenticating Ranked Search Result

In practice, cloud servers may sometimes behave beyond
the semi-honest model. This can happen either because
cloud server intentionally wants to do so for saving cost
when handling large number of search requests, or there
may be software bugs, or internal/external attacks. Thus,
enabling a search result authentication mechanism that
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can detect such unexpected behaviors of cloud server is
also of practical interest and worth further investigation.

To authenticate a ranked search result (or Top-k re-
trieval), one need to ensure: 1) the retrieved results
are the most relevant ones; 2) the relevance sequence
among the results are not disrupted. To achieve this
two authentication requirements, we propose to utilize
the one way hash chain technique, which can be added
directly on top of the previous RSSE design. Let H(·)
denote some cryptographic one-way hash function, such
as SHA-1. Our mechanism requires one more secret
value u in the Setup phase to be generated and shared
between data owner and users. The details go as follows:
In the Setup phase:

1) When data owner calls BuildIndex(K, C), he
picks an initial seed si0 = fu(wi) for each posting
list of keyword wi ∈ W . Then he sorts the posting
list based on the encrypted scores.

2) Suppose id(Fi1), id(Fi2), . . . , id(Fiv) denotes the or-
dered sequence of file identifiers based on the
encrypted relevance scores. The data owner gen-
erates a hash chain Hi

1 = H(id(Fi1)||si0), Hi
2 =

H(id(Fi2)||Hi
1), . . . ,H

i
v = H(id(Fiv)||Hi

v−1).

3) For each corresponding entry 〈0`′ ||id(Fij)||Ez(Sij)〉,
0 ≤ j ≤ v, in the posting list of keyword wi, the
data owner inserts the corresponding hash value of
the hash chain and gets 〈0`′ ||id(Fij)||Hi

j ||Ez(Sij)〉.
All other operations, like entry encryption and
entry permutation remain the same as previous
RSSE scheme.

In the Retrieval phase:
1) Whenever the cloud server is transmitting back

top-k most relevant files, the corresponding k hash
values embedded in the posting list entries should
also be sent back as a correctness proof.

2) The user simply generates the initial seed si0 =
fu(wi) and verifies the received portion of the hash
chain accordingly.

Discussion: It is easy to see that the secret seed shared
between data owner and user ensures the authentication
requirement 1, while the one-way property of hash chain
guarantees the authentication requirement 2. The hash
chain itself is a light weight technique, which can be
easily incorporated in our RSSE system with negligible
computation/performance overhead on both data owner
and users. The only tradeoff for achieving this high
quality of data search assurance is the storage overhead
on cloud, due to the augmented size of posting list. But
we believe this should be easily acceptable because of
the cheap storage cost today.

6.3 Reversing One-to-many Order-preserving Map-
ping

For any order-preserving mapping process, being re-
versible is very useful in many practical situations, espe-
cially when the underlying plaintext values need to be

0 0.5 1 1.5 2 2.5 3

x 10
14

0

20

40

60

80

100

Order−preserving encrypted relevance score

N
u
m

b
e
r 

o
f 
p
o
in

ts

 

 

0 0.5 1 1.5 2 2.5 3

x 10
14

0

50

100

150

Order−preserving encrypted relevance score

N
u
m

b
e
r 

o
f 
p
o
in

ts

 

 

encrypted score distribution 
for "network" with key

1
     

encrypted score distribution 
for "network" with key

2
     

Fig. 4: Demonstration of effectiveness for one-to-many
order-preserving mapping. The mapping is derived with
the same relevance score set of keyword “network”, but
encrypted with two different random keys.

modified or utilized for further computation purposes.
While OPSE, designed as a block cipher, by-default has
this property, it is not yet clear whether our one-to-many
order-preserving mapping can be reversible too. In the
following, we give a positive answer to this question.

Again, the reversibility of the proposed one-to-many
order-preserving mapping can be observed from the
BinarySearch(·) procedure in Algorithm 1. The intuition
is that the plaintext-to-bucket mapping process of OPSE
is reversible. Namely, as long as the ciphertext is chosen
from the certain bucket, one can always find through
the BinarySearch(·) procedure to uniquely identify the
plaintext value, thus making the mapping reversible.
For completeness, we give the details in Algorithm 2,
which again we acknowledge that is adapted from [14].
The corresponding reversed mapping performance is
reported in Section 7.2.

7 PERFORMANCE ANALYSIS

We conducted a thorough experimental evaluation of
the proposed techniques on real data set: Request for
comments database (RFC) [23]. At the time of writing,
the RFC database contains 5563 plain text entries and
totals about 277 MB. This file set contains a large number
of technical keywords, many of which are unique to
the files in which they are discussed. Our experiment is
conducted using C programming language on a Linux
machine with dual Intel Xeon CPU running at 3.0GHz.
Algorithms use both openssl and MATLAB libraries.
The performance of our scheme is evaluated regarding
the effectiveness and efficiency of our proposed one-to-
many order-preserving mapping, as well as the overall
performance of our RSSE scheme, including the cost
of index construction as well as the time necessary for
searches. Note that though we use a single server in
the experiment, in practice we can separately store the
searchable index and the file collections on different
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virtualized service nodes in the commercial public cloud,
such as the Amazon EC2 and Amazon S3, respectively.
In that way, even if data owners choose to store their file
collection in different geographic locations for increased
availability, the underlying search mechanism, which
always takes place based on the searchable index, will
not be affected at all.

7.1 Effectiveness of One-to-many Order Preserving
Mapping
As indicated in Section 4.2, applying the proposed one-
to-many mapping will further randomize the distribu-
tion of the encrypted values, which mitigates the chances
of reverse-engineering the keywords by adversary. Fig. 4
demonstrates the effectiveness of our proposed scheme,
where we choose |R| = 246. The two figures show the
value distribution after one-to-many mapping with as in-
put the same relevance score set of keyword “network”,
but encrypted with two different random keys. Note that
due to our safe choice of |R| (see Section 4.3) and the rel-
ative small number of total scores per posting list (up to
1000), we do not have any duplicates after one-to-many
order-preserving score mapping. However, for easy com-
parison purposes, the distribution in Fig. 4 is obtained
with putting encrypted values into 128 equally spaced
containers, as we do for the original score. Compared
to previous Fig. 2, where the distribution of raw score
is highly skewed, it can be seen that we indeed obtain
two differently randomized value distribution. This is
due to both the randomized score-to-bucket assignment
inherited from the OPSE, and the one-to-many mapping.
The former allows the same score mapped to different
random-sized non-overlapping bucket, while the latter
further obfuscates the score-to-ciphertext mapping ac-
cordingly. This confirms with our security analysis that
the exposure of frequency information to the adversaries
(the server in our case), utilized to reverse-engineer the
keyword, can be further minimized.

7.2 Efficiency of One-to-many Order-Preserving
Mapping
As shown in Section 4.3, the efficiency of our proposed
one-to-many order-preserving mapping is determined
by both the size of score domain M and the range R.
M affects how many rounds (O(logM)) the procedure
BinarySearch(·) or HGD(·) should be called. Meanwhile,
M together with R both impact the time consumption
for individual HGD(·) cost. That’s why the time cost of
single one-to-many mapping order-preserving operation
goes up faster than logarithmic, as M increases. Fig.
5 gives the efficiency measurement of our proposed
scheme. The result represents the mean of 100 trials.
Note that even for large range R, the time cost of one
successful mapping is still finished in 200 milliseconds,
when M is set to be our choice 128. Specifically, for
|R| = 240, the time cost is less than 70 milliseconds. This
is far more efficient than the order-preserving approach
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Fig. 5: The time cost of single one-to-many order-
preserving mapping operation, with regarding to differ-
ent choice of parameters: the domain size of relevance
score M and the range size of encrypted score |R|.
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Fig. 6: The time cost of single reverse one-to-many order-
preserving mapping operation, with regarding to differ-
ent choice of parameters: the domain size of relevance
score M and the range size of encrypted score |R|.

used in [18], [22], where [22] needs to keep lots of
metadata to pre-build many different buckets on the
data owner side, and [18] requires the pre-sampling
and training of the relevance scores to be outsourced.
However, our approach only needs the pre-generation
of random keys.

As shown in Section 6.3, our one-to-many order-
preserving mapping is in fact a reversible process. For
completeness, the corresponding reverse mapping per-
formance results are reported in Fig. 6. Compared to Fig.
5, the reverse mapping process is almost as fast as the
original mapping process. This can be explained from
the Algorithm 1 and Algorithm 2 of the two approaches.
Namely, for the same pre-fixed system parameters, both
processes share the same number of recursive calls for of
the BinarySearch(·) procedure procedure, thus resulting
the similar performance.
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Number of files Per keyword list size Per list build time
1000 12.414 KB 5.44s

TABLE 3: Per keyword index construction overhead for
1000 RFC files.

7.3 Performance of Overall RSSE System
7.3.1 Index Construction
To allow for ranked keyword search, an ordinary in-
verted index attaches a relevance score to each posting
entry. Our approach replaces the original scores with
the ones after one-to-many order-preserving mapping.
Specifically, it only introduces the mapping operation
cost, additional bits to represent the encrypted scores,
and overall entry encryption cost, compared to the orig-
inal inverted index construction. Thus, we only list in
Table 3 our index construction performance for a collec-
tion of 1000 RFC files. The index size and construction
time listed were both per-keyword, meaning the posting
list construction varies from one keyword to another.
This was chosen as it removes the differences of various
keyword set construction choices, allowing for a clean
analysis of just the overall performance of the system.
Note that the additional bits of encrypted scores is not a
main issue due to the cheap storage cost on nowadays
cloud servers.

Our experiment shows the total per list building time
is 5.44s, while the raw-index only consumes 2.31s on
average. Here the raw-index construction corresponds to
the step 1 and 2 of the BuildIndex algorithm in Table
2, which includes the plaintext score calculations and
the inverted index construction but without considering
security. To have a better understanding of the extra
overhead introduced by RSSE, we also conducted an
experiment for the basic searchable encryption scheme
that supports only single keyword based Boolean search.
The implementation is based on the algorithm in Table 2,
excluding the score calculations and the corresponding
score encryptions. Building such a searchable index for
secure Boolean search costs 1.88s per posting list. In
both comparisons, we conclude that the score encryption
via proposed one-to-many order-preserving mapping is
the dominant factor for index construction time, which
costs about 70 ms per valid entries in the posting list.
However, given that the index construction is the one-
time cost before outsourcing and the enabled secure
server side ranking functionality significantly improves
subsequent file retrieval accuracy and efficiency, we con-
sider the overhead introduced is reasonably acceptable.
Please note that our current implementation is not fully
optimized. Further improvement on the implementation
efficiency can be expected and is one of our important
future work.

7.3.2 Efficiency of Search
The search time includes fetching the posting list in the
index, decrypting and rank-ordering each entries. Our

focus is on top-k retrieval. As the encrypted scores are
order-preserved, server can process the top-k retrieval
almost as fast as in the plaintext domain. Note that
the server does not have to traverse every posting list
for each given trapdoor, but instead uses a tree-based
data structure to fetch the corresponding list. Therefore,
the overall search time cost is almost as efficient as on
unencrypted data. Fig. 7 list our search time cost against
the value of k increases, for the same index constructed
above.

8 RELATED WORK

Searchable Encryption: Traditional searchable encryp-
tion [8]–[12], [24], [25] has been widely studied as a
cryptographic primitive, with a focus on security defini-
tion formalizations and efficiency improvements. Song
et al. [8] first introduced the notion of searchable en-
cryption. They proposed a scheme in the symmetric
key setting, where each word in the file is encrypted
independently under a special two-layered encryption
construction. Thus, a searching overhead is linear to the
whole file collection length. Goh [9] developed a Bloom
filter based per-file index, reducing the work load for
each search request proportional to the number of files
in the collection. Chang et al. [11] also developed a
similar per-file index scheme. To further enhance search
efficiency, Curtmola et al. [12] proposed a per-keyword
based approach, where a single encrypted hash table
index is built for the entire file collection, with each
entry consisting of the trapdoor of a keyword and
an encrypted set of related file identifiers. Searchable
encryption has also been considered in the public-key
setting. Boneh et al. [10] presented the first public-key
based searchable encryption scheme, with an analogous
scenario to that of [8]. In their construction, anyone
with the public key can write to the data stored on the
server but only authorized users with the private key
can search. As an attempt to enrich query predicates,
conjunctive keyword search over encrypted data have
also been proposed in [26]–[28]. Recently, aiming at
tolerance of both minor typos and format inconsistencies
in the user search input, fuzzy keyword search over
encrypted cloud data has been proposed by Li. et al
in [29]. Note that all these schemes support only Boolean
keyword search, and none of them support the ranked
search problem which we are focusing in this paper.

Following our research on secure ranked search over
encrypted data, very recently, Cao et al. [30] pro-
pose a privacy-preserving multi-keyword ranked search
scheme, which extends our previous work in [1] with
support of multi-keyword query. They choose the prin-
ciple of “coordinate matching”, i.e., as many matches
as possible, to capture the similarity between a multi-
keyword search query and data documents, and later
quantitatively formalize the principle by a secure inner
product computation mechanism. One disadvantage of
the scheme is that cloud server has to linearly traverse
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Fig. 7: The time cost for top-k retrieval.

the whole index of all the documents for each search
request, while ours is as efficient as existing SSE schemes
with only constant search cost on cloud server.
Secure top-k retrieval from Database Community [18],
[22] from database community are the most related
work to our proposed RSSE. The idea of uniformly
distributing posting elements using an order-preserving
cryptographic function was first discussed in [22]. How-
ever, the order-preserving mapping function proposed in
[22] does not support score dynamics, i.e., any insertion
and updates of the scores in the index will result in
the posting list completely rebuilt. [18] uses a different
order-preserving mapping based on pre-sampling and
training of the relevance scores to be outsourced, which
is not as efficient as our proposed schemes. Besides,
when scores following different distributions need to be
inserted, their score transformation function still needs
to be rebuilt. On the contrary, in our scheme the score
dynamics can be gracefully handled, which is an impor-
tant benefit inherited from the original OPSE. This can
be observed from the BinarySearch(·) procedure in Algo-
rithm 1, where the same score will always be mapped to
the same random-sized non-overlapping bucket, given
the same encryption key. In other words, the newly
changed scores will not affect previous mapped values.
We note that supporting score dynamics, which can save
quite a lot of computation overhead when file collection
changes, is a significant advantage in our scheme. More-
over, both works above do not exhibit thorough security
analysis which we do in the paper.
Other Related Techniques Allowing range queries over
encrypted data in the public key settings has been
studied in [31], [32], where advanced privacy preserving
schemes were proposed to allow more sophisticated
multi-attribute search over encrypted files while preserv-
ing the attributes’ privacy. Though these two schemes
provide provably strong security, they are generally not
efficient in our settings, as for a single search request,
a full scan and expensive computation over the whole
encrypted scores corresponding to the keyword posting
list are required. Moreover, the two schemes do not
support the ordered result listing on the server side.

Thus, they can not be effectively utilized in our scheme
since the user still does not know which retrieved files
would be the most relevant.

Difference from Conference Version Portions of the
work presented in this paper have previously appeared
as an extended abstract in [1]. We have revised the article
a lot and improved many technical details as compared
to [1]. The primary improvements are as follows: Firstly,
we provide a new Section 6.1 to study and address some
practical considerations of the RSSE design. Secondly,
we provide a section 6.2 to thoroughly study the re-
sult completeness authentication. The mechanism design
incur negligible overhead on data users, and further
enhances the quality of data search service. Thirdly,
we extend our previous result on order-preserving one-
to-many mapping and show in Section 6.3 that this
mapping process is indeed reversible, which can be very
useful in many practical applications. For completeness,
we provide the corresponding algorithm for the reverse
mapping and also include its performance results. Fi-
nally, the related work has been substantially improved,
which now faithfully reflects many recent advancements
on privacy-preserving search over encrypted data.

9 CONCLUDING REMARKS

In this paper, as an initial attempt, we motivate and solve
the problem of supporting efficient ranked keyword
search for achieving effective utilization of remotely
stored encrypted data in Cloud Computing. We first give
a basic scheme and show that by following the same
existing searchable encryption framework, it is very
inefficient to achieve ranked search. We then appropri-
ately weaken the security guarantee, resort to the newly
developed crypto primitive OPSE, and derive an efficient
one-to-many order-preserving mapping function, which
allows the effective RSSE to be designed. We also inves-
tigate some further enhancements of our ranked search
mechanism, including the efficient support of relevance
score dynamics, the authentication of ranked search re-
sults, and the reversibility of our proposed one-to-many
order-preserving mapping technique. Through thorough
security analysis, we show that our proposed solution is
secure and privacy-preserving, while correctly realizing
the goal of ranked keyword search. Extensive experi-
mental results demonstrate the efficiency of our solution.
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