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ABSTRACT
In the setting of cryptographic protocols, the corruption of a
party has traditionally been viewed as a simple, uniform and
atomic operation, where the adversary decides to get control
over a party and this party immediately gets corrupted. In
this paper, motivated by the fact that different players may
require different resources to get corrupted, we put forth the
notion of resource-based corruptions, where the adversary
must invest some resources in order to corrupt a player.

If the adversary has full information about the system con-
figuration then resource-based corruptions would provide no
fundamental difference from the standard corruption model.
However, in a resource “anonymous” setting, in the sense
that such configuration is hidden from the adversary, much
is to be gained in terms of efficiency and security.

We showcase the power of such hidden diversity in the con-
text of secure multiparty computation (MPC) with resource-
based corruptions and prove that anonymity it can effec-
tively be used to circumvent known impossibility results.
Specifically, if OPT is the corruption budget that violates
the completeness of MPC (the case when half or more of
the players are corrupted), we show that if hidden diversity
is available, the completeness of MPC can be made to hold
against an adversary with as much as a B ·OPT budget, for
any constant B > 1. This result requires a suitable choice of
parameters (in terms of number of players and their hardness
to corrupt), which we provide and further prove other tight
variants of the result when the said choice is not available.
Regarding efficiency gains, we show that hidden diversity
can be used to force the corruption threshold to drop from
1/2 to 1/3, in turn allowing the use of much more efficient
(information-theoretic) MPC protocols.
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We achieve the above through a series of technical contri-
butions:

The modeling of the corruption process in the setting
of cryptographic protocols through corruption oracles
as well as the introduction of a notion of reduction to
relate such oracles;

the abstraction of the corruption game as a combinato-
rial problem and its analysis; and, importantly,

the formulation of the notion of inversion effort preserv-
ing (IEP) functions which is a type of direct-sum prop-
erty, and the property of hardness indistinguishability.
While hardness indistinguishability enables the dissoci-
ation of parties’ identities and the resources needed to
corrupt them, IEP enables the discretization of adver-
sarial work into corruption tokens,

all of which may be of independent interest.

Categories and Subject Descriptors
C.2.0 [COMPUTER-COMM. NETWORKS]: Security
and Protection; E.3 [DATA ENCRYPTION]: Public key
cryptosystems; G.2.1 [DISCRETE MATHEMATICS]:
Combinatorics—Combinatorial algorithms

Keywords
Cost of corruption, secure multi-party computation, combi-
natorial analysis, exact hardness, hardness amplification.

1. INTRODUCTION
The notion of computing in the presence of an adversary

which controls or gets access to parts of the system is at
the heart of modern cryptography. This paradigm has given
rise to cryptosystems and protocols which achieve general
tasks in the presence of powerful adversaries. A prime ex-
ample of the paradigm are “completeness theorems” which
show that a distributed cryptographic protocol exists where
an adversary controlling any minority of the parties, cannot
prevent the secure computation of any efficient functional-
ity defined over their inputs [22]. Similar secure multiparty
computation (MPC) results hold over secure channels (and
no additional cryptography) with an adversary controlling
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less than a third of the parties [5, 9]. Furthermore, these
results are tight in the sense that when the adversary con-
trols more parties there are functionalities that cannot be
securely implemented.

In the works thus far however, the corruption of a party
has been viewed as a simple, uniform and atomic opera-
tion where the adversary decides to corrupt a party and this
party gets corrupted. The only limit the adversary has is on
the number of individual party’s corruptions and restrictions
on when and how it can corrupt.

In this paper we are motivated by the fact that different
players may require different resources to get corrupted. In-
deed, the price paid for penetrating one organization, mea-
sured for example by the amount of money that a corrupt
employee might have demanded, may differ from the cost
of getting into another organization. Another example of a
more cryptographic nature is when two organizations em-
ploy different password policies, or utilize VPN’s relying on
cryptosystems of different strengths. Taking such real world
considerations into account gives rise to the notion we put
forth of resource-based corruption, where the adversary must
invest certain resources in order to corrupt a party. The
initiation of the study of corruption models which describe
situations like the above is our first contribution.

In a setting where the adversary has full information about
a system, resource-based corruptions provide no fundamen-
tal divergence from the logic of the standard corruption
model. The adversary, given an initial corruption budget,
will target the largest subset of the system that it can afford
and if such subset if large enough, the disruption of various
security properties will ensue (as it follows from, e.g., [10]).
The interesting case thus arises when the parties act on the
system “anonymously” from the point of view of the ad-
versary, in the sense that the association of parties’ names
and the individual corruption resources they require remains
hidden. In this way, it seems plausible that a portion of the
corruption budget will have to be wasted to learn the system
configuration. Our second contribution is thus the investiga-
tion of the quantitative effect of this type of hidden diversity
in the context of resource-based corruptions.

The problem the adversary faces can be abstracted as
the following combinatorial game. The adversary is given
a number of balls (“corruption tokens”) and is faced with a
sequence of buckets with the objective to fill a certain frac-
tion of them. While it knows all the bucket sizes, it does not
know their correspondence to the individual buckets in the
sequence. If OPT is the minimum number of balls required
to fill a given percentage of the buckets had the adversary
been privy to the correspondence between the buckets and
their sizes, how many balls as a function of OPT would
be required if such hidden diversity is provided? We ana-
lyze this setting as “the combinatorics of hidden diversity”
and show a number of results concerning the initial par-
tial knowledge given to the adversary and the strategies it
can apply. The analysis leads to corruption strategies (algo-
rithms) and corruption impossibilities (lower bounds), under
various cases of partial knowledge and size parameters.

Most importantly, we prove that the “value of hidden di-
versity” can be unbounded! Specifically, for any B there
are ways to choose buckets’ sizes so that the required re-
sources needed by the adversary to reach its target would
be B ·OPT , i.e., an arbitrarily high inflation of the required

corruption budget (the cryptographic implications of this
are shown below).

To realize the abstractions made above—including the
combinatorial game for corruptions—we introduce a formal
framework where there is a special entity called a corruption
oracle that mediates the adversary’s corruption capability.
We describe a variety of natural corruption oracles and in-
troduce a notion of reduction between them that makes the
translation between different corruption games that an ad-
versary might choose feasible. In particular this allows us
to capture and quantify the setting where corruptions oc-
cur due to the inversion of computationally hard problem
instances (what we call “computational corruptions”).

Our third contribution is the study of the sufficient con-
ditions under which such computational corruptions can be
abstracted as token-based corruptions. First, we formulate
the notion of Inversion Effort Preserving (IEP) functions,
which, at a high level, postulates a complexity lower bound
on the problem of solving (inverting) multiple instances si-
multaneously as a function of the sum of the complexities of
solving those instances individually. This notion is a type of
generalized direct-sum property. Such direct-sum properties
have been studied in other contexts such as communication
complexity and complexity of quadratic forms (see, e.g., [16,
27, 15]) and also relate to the notion of hardness amplifica-
tion [38, 25]. We show that the IEP property holds for ran-
dom functions as well as exponentiation maps in idealized
models such as the random oracle model [3] and the generic
group model (e.g., [37]), respectively; we also provide evi-
dence that it holds in the computational model under com-
plexity of factoring assumptions. Second, we formulate the
notion of hardness indistinguishability which, essentially, ex-
presses the inability of the adversary to distinguish between
two or more inversion instances of different complexity. We
express this property in the statistical sense, something that
facilitates our reductions between corruption models. Effec-
tively, the former notion (IEP) enables the discretization
and token abstraction of the computational effort against a
sequence of problems, while the latter (indistinguishability)
provides the uncertainty the adversary faces while deciding
its corruption budget allocation. In turn, these two notions
rely on the hardness of the inversion problem of a function
when measured in an exact sense, a notion we also formalize,
investigate and relate to past notions.

Putting everything together, we show how hidden diver-
sity in the context of resource-based corruptions enables us
to get around impossibility results. Going back to our mo-
tivating example of secure multiparty computation, the im-
possibility result states that when the adversary has corrup-
tion resources sufficient to control half the players, many
functionalities have to be given up. Specifically we prove
the following (informally stated):

Let OPT be the optimal corruption budget for which the
completeness of MPC is violated. Assuming hidden diver-
sity, there exist configurations such that:

For any B, the completeness of MPC holds against any
adversary with less than B · OPT corruption budget
assuming a sufficient number n of players (where n =
Ω(log( 1

ε
) · B), and ε is the probability of error).

The above assumes the hardness of individual corrup-
tions is not bounded. If, on the other hand, a bound M
is imposed, the completeness of MPC holds against any
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adversary with less than ∼ (
√

M

log( 1
ε
)
) · OPT corruption

budget assuming n ≥ √
M .

These results are expressed formally in Theorems 3.3 and
3.6, respectively. In addition, we provide evidence that the
above results are essentially tight. For example, for the sec-
ond formulation above, when the adversary’s budget reaches
an amount ∼ √

M ·OPT , there is a strategy that always cor-
rupts half the players (Corollary 3.5).

Another way to exploit hidden diversity that we consider
is to improve the efficiency of the implementation of MPC
(as opposed to increasing the corruption budget the proto-
col can tolerate). We prove that, assuming the same OPT
corruption budget, hidden diversity can force the corruption
threshold to drop from 1/2 to 1/3, in turn allowing the use of
much more efficient (information-theoretic) MPC protocols
(see Theorem 3.7).

The above results demonstrate that there exist settings
of player diversity that can be quite beneficial from a secu-
rity standpoint if the diversity is appropriately hidden. This
opens up the possibility for further investigation of the ben-
efits of hidden diversity in various settings where a specific
player configuration is assumed (or even can be imposed).
We emphasize that our results are relevant in the a setting
where (at least some) party corruptions require effort from
the adversary; this captures a wide range of attacks, from
cryptographic- (e.g., an offline dictionary attack against a
password file) to system-based (e.g., a brute force search
against address space layout randomization). Evidently, the
relevance of our corruption model is conditional to partic-
ular system setups (but this is also the case for the setting
where corruptions happen “for free” as well as any other
conceivable corruption model).

Related work. To our knowledge, this is the first time
that hidden diversity in terms of corruption effort is iden-
tified and used as a mechanism to boost security guaran-
tees. This can be juxtaposed with results in the theory
of cryptography that showed how other types of adversar-
ial uncertainty can be beneficial, perhaps the closest one
of which is (sender) anonymity. For example, it has been
shown that variants of an anonymous channel can be used
to implement unconditionally secure point-to-point channels
and a broadcast channel [17, 26], as well as more efficient
natural secure computation tasks, such as private informa-
tion retrieval (PIR) [26]. It is worth noting that assuming
sender-anonymity by itself does not fundamentally change
the feasibility barriers of secure protocol design, while hid-
den diversity can circumvent the MPC impossibility results
in the resource-based corruption setting.

With respect to resource-based corruptions, the notion
of general adversary structures [24], where the adversary
can choose different sets of players to corrupt from a collec-
tion of possible choices, not necessarily determined by their
size, can be cast as an instance of resource-based corruption
for an appropriate adversary budget and players’ corruption
thresholds. The two models, in fact, can be shown to be
equivalent; the resource-based corruption model, however,
is the one that enables us to reason about hidden diversity
which is our main focus.

There is also related work regarding the “lower-bounding”
of adversarial effort, including the notion of “moderately
hard functions” to fight spam [14], cryptographic key es-
crow [36, 1], time-lock puzzles and timed-release cryptogra-

phy (e.g., [33, 6, 20]), and resource fairness [19]. We note
that in most such applications, however, the common theme
is relating work to time, and thus crafting problems whose
solution is hard to parallelize, which is not our concern here.
In terms of measuring adversarial effort, our approach is
along the same lines as precise zero-knowledge [30] where
the knowledge gained by a player is measured in terms of its
actual computation.

In an independent development, Bellare, Ristenpart and
Tessaro [2] recently introduced the notion of multi-instance
(MI) security, which relates to the notion of IEP functions
introduced here. In settings where it is computationally fea-
sible for instances to be compromised (“inverted,” in our par-
lance), such as password-based cryptography, the applica-
tion where the notion is showcased, it is shown that security
can be amplified linearly in the number of instances in the
random oracle (RO) model under a proper modeling. Such
modeling, called“left-or-right xor” (LORX), is introduced in
[2], aiming to capture the level of multi-instance security of
a cryptographic primitive (encryption in that paper) with
respect to indistinguishability-type challenges. In contrast,
and in line with our objectives, the IEP property captures
the multi-instance hardness behavior of one-way functions,
and, as opposed to LORX, is cast as an intrinsic complexity
characteristic that expresses the rate of hardness growth as
a function of the number of instances.

As we already mentioned above, the notion of IEP func-
tions also bears some resemblance to hardness amplification
and direct-product theorems [38, 25]; we elaborate in more
detail on such relation in the full version of the paper [18].
Finally, similar notions to the notion of exact hardness that
we put forth in this paper have been considered in the liter-
ature; see Section 4.1 and [18] for a comparison to another
“more refined than asymptotic” measure of inversion diffi-
culty considered by Haitner, Harnik and Reingold [23].

Organization of the paper. The rest of the paper is or-
ganized as follows. In Section 2 we introduce the notion
of resource-based corruptions, corruption oracles and reduc-
tions between them. In Section 3, we present the combina-
torial analysis that allows us to prove the gains of hidden
diversity at an abstract, “token” level. Finally, in Section 4
we give the definitions of exact hardness, IEP and hardness
indistinguishability, which enable the application of the re-
sults to the computational-corruption setting. Candidate
instantiations of the Section 4 definitions are presented in
Appendix A. Some of the proofs, comparisons to related
notions, as well as additional analysis and constructions, are
presented in the full version of the paper [18]. We first in-
troduce some basic notation.

Notation. We use λ ∈ N to denote the security parameter.
All quantities are assumed to be functions of λ unless oth-
erwise noted. Let X, Y be random variables with range in

{0, 1}. We write X
ε≈ Y if we have that |Pr[X = 1]−Pr[Y =

1]| < ε.

2. RESOURCE-BASED CORRUPTIONS
A main goal of this paper is to formulate the cost for

an adversary to “corrupt” parties running a cryptographic
protocol, in contrast to the traditional approach where the
adversary gains control of parties for free. We will be mod-
elling this process in what nowadays is the widely accepted
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method to formulate the security of a protocol carrying out a
given task: the“trusted-party paradigm” [22]. Recall that in
this paradigm, the protocol execution is compared with an
ideal process where the outputs are computed by a trusted
party that sees all the inputs. A protocol is then said to se-
curely carry out a given task if running the protocol with a
realistic adversary amounts to “emulating” the ideal process
with the appropriate trusted party. In the perhaps most de-
veloped version of the paradigm, due to Canetti [7], the task
of distinguishing between the two experiments is assigned
to an entity (a polynomial-time interactive Turing machine
[ITM]) called the environment, and denoted by Z, which is
also in charge of producing the inputs for and receiving the
outputs from both executions. Besides Z, the other basic
entities (also ITMs) involved in the real-world execution are
n players P1, ..., Pn, and an adversary A. We will be us-
ing a variant of this formulation, similar to [19], meant to
capture synchronous communication and exact running-time
bounds1.

2.1 Corruption Oracles and Security Defini-
tion

We model the corruption process, under different costs,
by the addition of a new entity (ITM) to the real-world ex-
ecution, which we call the corruption oracle (C), and whose
essential purpose is to interact with adversary A and man-
age its corruption capability. In more detail, the two basic
principles in C’s operation are as follows:

C is initialized with a random tape and the number of
players n ∈ N involved in the system. It may return
some information about the players to the adversary A.

For each player Pi, A may engage C in a simple (corrup-
tion) protocol, call it ρi, to determine whether player Pi

gets corrupted. The adversary is free to schedule many
such corruption protocols concurrently (either statically
for a static adversary or dynamically for an adaptive
one). If the protocol terminates with C accepting, then
player Pi is declared corrupted, meaning that A has ac-
cess to Pi’s internal state, and is able to impersonate Pi

in all of its subsequent interactions (for a malicious A).

We consider communication with the corruption oracle as
part of the adversary’s basic step of (significant) computa-
tion (see Section 4.1). For succinctness, sometimes we will
refer to the adversary A interacting with corruption oracle
C as AC . Following [7], we will use the notation execπ,AC ,Z
to denote the (binary) distribution ensemble describing Z’s
output after interacting with adversary A running with cor-
ruption oracle C, and players running protocol π.

In the ideal process we will model the corruption capabil-
ity as follows. We consider a“wrapper” functionality WC(F)
that for any functionality F and corruption oracle C, “traps”
the corruption requests directed to a party participating in
it; all other messages and requests it immediately passes to
the functionality. This will allow us to provide a corrup-
tion interface that is compatible with the corruption-oracle
modeling of the real world. In more detail, for each party Pi

involved in F the wrapper WC(F) initializes the corruption
oracle and considers all parties as “uncorrupted.” Mimicking
the behavior of the real-world adversary attacking parties,

1We note that these formulations are in fact more powerful
than needed for this paper, as we will be focusing on stand-
alone protocol execution.

S can submit corruption messages for party Pi following the
protocol ρi to WC(F), who maintains the state of the cor-
ruption oracle. If, at some point, C terminates the execution
of one of the ρi protocols and accepts, then WC(F) sets the
party Pi status to “corrupted,” issues a (standard) corrup-
tion message for Pi, (Corrupt, Pi), to F , and returns the
functionality’s response, namely, the party’s internal state
as kept by the functionality, back to S. In addition, we
note that once a party is corrupted, the ideal adversary is
typically allowed to “re-write” the corrupted party’s inter-
nal state; WC(·) ignores such messages while the party is
uncorrupted. Let execWC(F),S,Z denote the (binary) distri-
bution ensemble describing Z’s output after interacting with
adversary S and the ideal protocol for WC(F) as specified
above.

We now proceed to more formally specify how the two
executions—real and ideal—would be indistinguishable to
the environment. The typical order of quantifiers in simulation-
based security definitions (∀A∃S∀Z) allows the ideal-world
adversary to depend on the real-world adversary that it sim-
ulates, but it should be independent of the environment.
Following [19], we use a slight weakening of this definition,
which is appropriate for the setting of adversaries restricted
to performing a specific number of steps of the computa-
tion. Specifically, let t denote the number of steps taken by
the adversary, for t a monotonically increasing arithmetic
function; we consider the “compound” ITM 〈Z,A〉 (namely,
two ITMs, interacting with each other and possibly with
other ITMs in a well-defined manner, treated as a single en-
tity) as being t-bounded. (This refinement will become use-
ful when capturing corruptions as computational effort—cf.
Section 4.)

Definition 2.1. For a given t, a protocol π is said to
securely realize a functionality F against t-bounded adver-
saries and corruption oracle C, if for all A there exists an
ideal-world adversary S, running in time t+p, such that for
all Z with 〈Z,A〉 being t-bounded,

execπ,AC ,Z
ε≈ execWC(F),S,Z ,

where ε is some negligible function and p some polynomial.

Next, we introduce the notion of safety for a corruption
oracle.

Definition 2.2. For a given t, we say a corruption or-
acle C is t-safe if for all functionalities F (including those
that guarantee fairness and output delivery to all honest par-
ties), there is a protocol π that securely realizes F against
t-bounded adversaries and C.

If a corruption oracle is t-safe for all t, then we call it
simply safe. For example, it can be derived from [22, 8]
that the standard (traditional) corruption oracle allowing
less than 1/2 of the players to be corrupted (to be denoted
below as Cstd

1
2

) is safe. Further, in case we want to be explicit

about the parameters involved in the proof of safety, we will
say that a corruption oracle C is (t, γ)-safe if it holds that
the above definition is satisfied with a simulation that may
fail with probability at most 1 − γ.

2.2 Cost Measures and Relations between Cor-
ruption Oracles

Next, we will start by capturing two cost measures for cor-
ruptions, namely, the traditional one (i.e., no cost) and the
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“token”based (i.e., discretized) measure, defining corruption
oracles for them, which will already enable us to establish
the power of hidden diversity at an abstract level; later on
(Section 4) we will provide the final“translation”by present-
ing the computational-based measure. In addition, we will
define the “blinded” version of such oracles (which, looking
forward, will effectively model the hardness indistinguisha-
bility of functions put forth in Section 4.1), and establish
the relations between them.

Standard cryptographic corruption. In this case the
corruption oracle is initialized with a threshold α ∈ (0, 1),
and maintains a counter ctr initially set to 0. The oracle pro-
vides the number of players n to the adversary. The corrup-
tion protocol ρi consists of a single message (Corrupt, Pi)
that is to be transmitted by the adversary to the oracle.
Given such a message, the oracle checks whether ctr + 1 <
�α · n�, and in this case declares player Pi corrupted (with
the effect described above) and increases ctr by 1. We denote
this corruption oracle by Cstd

α . For secure multi-party com-
putation applications, typical values of α are 1

2
(i.e., honest

majority), 1
3

and 1 − 1
n

(i.e., at least one honest player).

Token-based corruption. In this case the corruption
oracle is initialized with a vector s ∈ N

n (s for bucket
“sizes”) and a threshold k (total number of tokens); the
threshold of player Pi is the value si. The oracle gives to
A the vector s, and maintains counters ctr1, . . . , ctrn ini-
tially set to 0. Protocol ρi here consists of messages of the
form (Corrupt, Pi, v) sent by A. The oracle checks that
v +

P
i ctri ≤ k, and in this case it increases counter ctri by

v; if it happens that ctri ≥ si, then player Pi gets corrupted.
We will denote the token-based corruption oracle by Ctk

s,k.

Blinded token-based corruption. This corruption ora-
cle, denoted by Cbtk

s,k, is identical to Ctk
s,k in operation with

the following difference: whenever the adversary submits a
(Corrupt, Pi, v) message, the oracle performs the update
operations on player Pp(i) where p is a secret random per-
mutation that is selected initially and maintained by the
corruption oracle. Otherwise, the blinded token-based cor-
ruption oracle behaves as the token-based corruption ora-
cle. Given that this oracle has a private state (permutation
p), for technical reasons (to be revealed later) we will also
consider a “leaky” version of this corruption oracle that is
parameterized by an ITM L and operates on the private
permutation p. In this leaky version, the adversary A may
submit a special request given which the corruption oracle
will run L on its internal state and return its output to A.
We will denote the leaky version of this corruption oracle by
Cbtk,L

s,k .

We now set out to study the relations between corrup-
tion oracles defined above. Our main tool is the following
definition.

Definition 2.3. Fix some ε > 0 and arithmetic function
t. Given two corruption oracles C1 and C2, we say that C2

dominates C1 with error ε and complexity t, denoted C1 ≤t
ε

C2, provided the following holds: for n ∈ N and any n-party
protocol π, for any A, there is an adversary B, running in
time t + p, such that for all Z with 〈Z,A〉 being t-bounded,

execπ,AC1 ,Z
ε≈ execπ,BC2 ,Z ,

where p is some polynomial.

The main intuition behind this definition is that if C2 dom-
inates C1 and an adversary is given a choice between the two,
it may always opt for the former. The way we will employ
the above relation in our exposition is that if C2 dominates
C1 and it happens that C2 is safe, then C1 is also safe. More
specifically, if C2 is (t, γ)-safe and we have that C1 ≤t

ε C2,
then we have that C1 is (t, γ − ε)-safe. It is easy to see that
the relation ≤t

ε is reflexive and transitive and thus consti-
tutes a preorder for any choice of the parameters t, ε.

Another easy observation is that Cstd
γ1 ≤t

ε Cstd
γ2 provided

that γ1 ≤ γ2, independently of the values t, ε. This stems
from the fact that the power of the adversary can only po-
tentially increase in the corruption oracle of the right-hand
side. When the relation ≤t

ε holds for any function t, we will
write ≤ε.

From token-based corruptions to standard corrup-
tions. Let A be any adversary that interacts with CX

s,k for
some s = (s1, . . . , sn) ∈ N

n, k ∈ N and X ∈ {tk, btk}. For
some α ∈ (0, 1) and complexity t, we denote by badt

X[s, k, α]
the supremum of the probability of the event that the num-
ber of corrupted players reaches �α · n� in the execution of

MCX
s,k , where M is any t-bounded ITM. We have the follow-

ing :

Lemma 2.4. For any n, k ∈ N, s ∈ N
n, α ∈ (0, 1) and

arithmetic function t, we have that CX
s,k ≤t

ε Cstd
α , where ε ≤

badt
X[s, k, α] and X ∈ {tk, btk}.

Proof. The description of B is based on A. Specifically,
B will simulate the corruption oracle CX

s,k for A and when-
ever a player is corrupted according to the corruption or-
acle it will pass the corresponding corruption message to
its own corruption oracle Cstd

α . The only problem that may
occur in the simulation is when the corruption oracle of
B rejects its corruption request for a certain player while
the corresponding player is expected to be corrupted by
A. Using the fact that Pr[X|¬B] = Pr[Y |¬B] implies that
|Pr[X] − Pr[Y ]| ≤ Pr[B] for any three events X, Y, B over
the same probability space yields the proof, by taking X to
be the output of A’s execution, Y to be the output of B’s ex-
ecution, and B the probability that A is able to successfully
corrupt a player while B is denied.

This lemma would be most useful in case ε is negligible
(cf. next section).

3. THE COMBINATORICS OF HIDDEN DI-
VERSITY

In this section we will use the relations we established
between the corruption oracles in the previous section in or-
der to derive cryptographic safety bounds at a purely com-
binatorial level. In particular we will provide bounds for
the “bad” event (Lemma 2.4) and negative results—for the
adversary—showing how the blinded version of corruption
oracles remains safe for ranges of parameters that are un-
safe in the regular case, hence demanding from the adversary
a substantially higher “budget” to achieve its goal.

We defined two types of token-based corruption oracles,
regular and blinded, which are specified by two parameters:
s, k. Let OPTα(s) be the minimal number of tokens that
need to be invested in order to corrupt a set of players
of size at least �αn� in the token-based corruption oracle
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model, i.e., OPTα(s) = min{k : ∃C ⊆ {1, . . . , n} with |C| ≥
�αn� and

P
i∈C si = k}. Based on this definition, Lemma

2.4, and our observation that Cstd
1/2 is safe, we have the fol-

lowing.

Theorem 3.1. For any n ≥ 2, and s ∈ Z
n, the corrup-

tion oracle Ctk
s,k is safe for any k < OPT1/2(s) and unsafe

for any k ≥ OPT1/2(s).

Proof. First, regarding cryptographic safety, we observe
that as long as k < OPT 1

2
(s), it holds that an honest ma-

jority of players is always guaranteed. Due to the results
of [22], it follows that a protocol can be constructed for any
functionality F . On the flip side, if k ≥ OPT 1

2
(s) this means

that there exists a set of players C for which it holds that
k ≥ P

i∈C si and |C| ≥ �n
2
�. It follows that by corrupting

this set of players it is impossible to realize all functionalities
(this follows from the impossibility result of Cleve [10]).

Next, we demonstrate how the blinded token-based cor-
ruption oracle remains safe for ranges of parameters that are
unsafe in the regular case.

Balls and buckets. The problem at hand can be rephrased
as the following game:An adversary wishes to distribute balls
(corresponding to corruption tokens) to n buckets, so as
to fill at least �αn� of them for some given α ∈ (0, 1).
The sizes of the buckets are given in the form of a vector
s ∈ Z

n. If the adversary has full information about the
buckets, it can achieve its goal by investing OPTα(s) balls.
Given the characteristics of the Cbtk

s,k oracle, we are inter-
ested in the case where the adversary does not know the
correspondence between buckets and s so it may have to
waste a certain number of balls to reach the �αn� thresh-
old. Specifically, we assume that there is a hidden random
permutation π that re-labels the buckets so the adversary
knows sπ = (sπ(1), . . . , sπ(n)). We note that it should be the
case that s includes at least 2 different sizes, since otherwise
the hidden permutation would not stall the adversary in any
way. Specifically, the cardinality of the set {s | ∃i : s = si}
is bigger than 1.

3.1 Increased Security from Hidden Diversity
We first consider the case when there are no restrictions

on the number of sizes or their values.

Theorem 3.2. For any α, 0 < α < 1, constants B > 1
and ε < 2−4 and for any n ≥ log(1/ε) · max{1/α, (4B −
2)/(1 − α)}, there exists a vector s ∈ Z

n such that any ad-
versary that is given sπ for a random permutation π, and
has fewer than B ·OPTα(s) balls, has probability less than ε
of filling �αn� buckets.

Proof. For a c, 0 < c ≤ α, to be specified later, our
instance will have �cn� buckets of size �αn�+1, �αn�−�cn�
buckets of size 1, and n − �αn� buckets of size (�cn� +
2)B�αn�. An optimal solution will consist of the �αn� small-
est buckets, and will have total size (�cn� + 1)�αn�. This
implies that we cannot afford to fill any of the largest buckets
if we are to use fewer than B ·OPTα(s) = B(�cn�+ 1)�αn�
balls, and any algorithm that fills �αn� buckets must find
and fill all the buckets of size �αn� + 1.

But now note that the only way the adversary can tell
whether a bucket has this size or one of the larger ones is to
place �αn� + 1 balls in the bucket. Thus, if the adversary

is to use no more than B(�cn� + 1)�αn� balls, it can test
no more than B(�cn� + 1) buckets with size exceeding 1, of
which there are n− �αn�+ �cn�. The probability of finding
all �cn� of the mid-size buckets is then at most„

n − �αn�
B(�cn� + 1) − �cn�

«ffi„
n − �αn� + �cn�

B(�cn� + 1)

«
.

Setting X = n − �αn� and Y = B(�cn� + 1) − �cn�, this is
equal to „

X
Y

«ffi„
X + �cn�
Y + �cn�

«

=
(Y + 1)(Y + 2) · · · (Y + �cn�)
(X + 1)(X + 2) · · · (X + �cn�) ,

which we will be able to argue is sufficiently small if we
can chose c > 0 such that, say, Y + �cn� ≤ (X + �cn�)/2.
This requires that B�cn� + B < (n − �αn� + �cn�)/2, or
(2B − 1)�cn� ≤ n − �αn� − 2B. which will be true so long
as (2B − 1)(cn + 1) ≤ n(1−α)− 1− 2B, or (2B − 1)(cn) ≤
n(1 − α) − 4B, or c ≤ (1 − α)/(2B − 1) − 4B/(n(2B − 1).
It is easy to see that our bound on n implies also that n >
8B/(1 − α) hence all we need for Y + �cn� < (X + �cn�)/2
is that c ≤ (1 − α)/(4B − 2). By our construction, we also
need c ≤ α, so it suffices to set c = min{α, (1−α)/(4B−2)}.

Given that Y + �cn� < (X + �cn�)/2, we then have that
(Y + i)/(X + i) ≤ 1/2 for 1 ≤ i�cn�, and hence the proba-
bility of success is at most

(Y + 1)(Y + 2) · · · (Y + �cn�)
(X + 1)(X + 2) · · · (X + �cn�) < (1/2)�cn� ≤ (1/2)cn .

Setting (1/2)cn = ε and solving for n yields the claimed
result.

The above theorem implies the following result.

Corollary 3.3. For any B > 1 and ε < 2−4, and for
any n ≥ log(1/ε)(8B − 4), there exists a vector s ∈ Z

n such
that the corruption oracle Cbtk

s,k is (1 − ε)-safe provided that
k < B · OPT1/2(s).

Proof. We show that Cbtk
s,k ≤ε Cstd

n, 1
2

for the choice of

parameters n, s, k of the previous theorem. Cryptographic
safety will follow then immediately due to Theorem 3.1.

In order to prove the reduction between the corruption
oracles we need to provide an adversary B operating with
Cstd

n,1/2 for any adversary A operating with Cbtk
s,k. B will sim-

ply simulate the corruption oracle of A and submit the cor-
ruption requests to Cstd

n,1/2 whenever a corruption with Cbtk
s,k

takes place. The simulator will fail with probability at most
badbtk[s, k, 1/2] from Lemma 2.4. Due to the previous the-
orem we can bound the probability by ε, which completes
the proof.

The above results require arbitrarily large bucket sizes
(components of s). In real applications, it is plausible that
there might be some upper bound M on the maximum size.
We now show how an adversary can exploit this (and other
restrictions), and what level of safety may remain.

Consider the following algorithm H2 that is a hybrid be-
tween two simple bucket-filling strategies: one that continu-
ously picks an empty bucket and fills it, and one that layers
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balls horizontally across all buckets. Let M ′ = �√M�. Al-
gorithm H2 proceeds in two basic steps: (1) While less than
�αn� buckets are full and there is an unfull bucket contain-
ing fewer than M ′ balls, choose one with the fewest balls
and place a ball in it. (2) While less than �αn� buckets are
full, pick an unfull bucket and add balls until it is filled to
capacity.

Let H2α(s) denote the worst-case number of balls that
H2 must place in order to fill �αn� buckets. The following
upper bound on the behavior of H2 is proved in the full
version of the paper ([18], Section B.3.4.)

Theorem 3.4. For 0 < α < 1, n ∈ N and any s ∈ Z
n

with maximum size M , H2α(s)
OPTα(s)

≤ 1 +
√

M
α

.

Corollary 3.5. For any n > 1, M > 0, and any s ∈ Z
n

with maximum level M , the corruption oracle Cbtk
s,k is unsafe

whenever k ≥ (1 + 2
√

M) · OPT1/2(s).

Proof. The proof follows as a direct application of the
previous theorem. Specifically, we have that due to the pre-
vious theorem there is an adversarial strategy that needs at
most 1 + 2

√
M balls to fill � 1

2
· n� buckets. It follows that

with this strategy an adversary can corrupt � 1
2
· n� players

always and as we argued in Theorem 3.1, it follows that the
corruption oracle is unsafe.

The above relation between the maximum bucket size and
unsafety is essentially tight—once the number of corruption
tokens drops below

√
M by a fixed fraction there exist s with

maximum size M where with high probability the adversary
will fail to fill the target number of buckets. In [18] we show
the following.

Theorem 3.6. For any ε > 0 and any M ≥ 8, n >
4 with �√M� dividing n, there is an s ∈ Z

n with maxi-
mum size M , such that the corruption oracle Cbtk

s,k is (1 −
ε)-safe provided that k < δ · √M · OPT1/2(s) where δ =

min
`
2/45, (4/15)/ log(1/ε)

´
.

It is worth noting that this theorem becomes trivial if
δ < 1/

√
M , since in that case we would be given fewer than

OPT1/2(s) balls and so even the unblinded corruption oracle
would be safe. This in turn implies that the theorem is only

meaningful for ε > 2−(4/15)
√

M .

The above results about the cryptographic safety of the
blinded token-based corruption oracle are all proved using
systems s that have three distinct sizes. The fact that we
use more than two sizes turns out to be necessary. For sys-
tems with just two sizes, we show in [18] that there is an
adversarial strategy that violates cryptographic safety given
just 2 · OPT1/2(s) corruption tokens; this bound turns out
to be tight.

3.2 Increased Efficiency from Hidden Diver-
sity

Next, we explore the question whether hidden diversity
can be used to relax the computational effort in secure mul-
tiparty computation (MPC). Consider an adversary that is
given k < OPT1/2(s) corruption tokens. Recall that the

corruption oracle Ctk
s,k is safe for exactly this range of ad-

versarial resources, i.e., fully secure MPC can be achieved
under computational assumptions [22, 31, 8]. The problem

we investigate in this section is what potential benefits can
be reaped in the hidden diversity setting assuming the same
level of adversarial resources. In [18] we show the following.

Theorem 3.7. For any β > 0, there are constants N > 1
and a < 1, such that for any n > N , there is a vector s ∈ Z

n

with Cbtk
s,k ≤an Cstd

1/4+β, provided that k ≤ OPT1/2(s).

Thus, if we choose β = 1/3− 1/4 = 1/12 and an instance
s with sufficiently large n, an adversary will have proba-
bility less than ε of corrupting 1/3 or more participants,
where “sufficiently large” here again grows proportionally
with log(1/ε). This result can be used to extend the ap-
plication domain of information-theoretic protocols for fully
secure MPC such as those of [5, 12], which are typically much
more efficient than the cryptographic ones, but that in the
regular corruption model only tolerate a rate of corruptions
less than 1/3.

The full version of the paper contains additional results in
the blinded balls-and-buckets model, including adversarial
strategies that bound how much the previous result can be
extended and an examination of the case where the number
of buckets n is bounded but not the maximum size M [18].

4. COMPUTATIONAL CORRUPTIONS
In this last section we turn to capturing and quantify-

ing the setting where corruptions occur due to the inver-
sion of computationally hard problem instances (what we
call “computational corruptions”), and study the sufficient
conditions under which such corruptions can be abstracted
out as token-based corruptions. We start by defining the
corresponding corruption oracles. First, the computational
corruption oracle captures the setting where the adversary
can corrupt a player by “breaking in,” specifically by solv-
ing an instance of a computational problem that is other-
wise unrelated to the cryptographic protocol (for example,
this would be the case when the adversary’s offline attack
against a cryptographic authentication protocol succeeds).
The blinded computational corruption oracle extends the
above to the setting where the adversary cannot determine
the correspondence between players and the instances that
need to be solved for a break-in to occur.

Computational corruption oracle. The oracle is initial-
ized with the description of functions f1, . . . , fn and samples
x1, . . . , xn from the functions’ respective domains. Subse-
quently, it provides to the adversary the vector (y1, . . . , yn),
where yi = fi(xi). The corruption protocol ρi here consists
of messages of the form (Corrupt, Pi, x) provided by A; if
it happens that yi = fi(x), then player Pi gets corrupted2.
We denote this oracle by Ccc

f
, where f = (f1, . . . , fn).

Blinded computational corruption oracle. This case
is similar to computational corruption with the difference
that in addition, the corruption oracle is initialized with a
random permutation p. The oracle provides to A the vector
(yp(1), . . . , yp(n)). The corruption protocol messages are as

in the case of Ccc
f

. We denote this corruption oracle by Cbcc
f

.

2As stated, the corruption protocol is an abstract version of
a potentially more complex interaction where, for example,
yi is the public-key of player Pi and corruption takes place by
getting ahold of the secret key xi via running some algorithm
against yi and then authenticating on behalf of Pi.
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We will be considering this definition in the setting when
the functions f are hardness indistinguishable.

Next, we introduce the two notions that play a fundamen-
tal role in the complexity interpretation of resource-based
corruptions.

4.1 Hardness Indistinguishability and Inver-
sion Effort Preserving Functions

Both notions are related to the hardness of the inversion
problem of a function when measured in an exact sense. We
start by explaining this notion of hardness first.

4.1.1 Exact hardness
Consider any function f : X → Y , where X = ∪λ∈NXλ,

Y = ∪λ∈NYλ. In what follows, if λ is clear from the context,
we may denote Xλ and Yλ by simply X and Y , respectively.

An inversion algorithm for f with success p(λ) in time
t(λ), is a non-uniform algorithm A that for any λ, receives
input f(x) where x is uniformly distributed over Xλ and
returns a value that belongs in f−1(f(x)) with probability
at least p(λ) while being restricted to read at most t(λ)
symbols of its advice string and run for at most t(λ) steps.
We write At to denote A restricted on performing only t
steps of computation and reading only t symbols of its advice
string (for any λ). We then denote the success probability
of A, namely, Pr[At(f(x)) ∈ f−1(f(x))], by pA,t(λ). For
simplicity, in the sequel we may drop λ from pA,t(λ).

We remark that the restriction on the number of steps
may only bind a specific operation, which would be com-
putational significant compared to the others (such as, for
example, modular exponentiation). At times we may specify
the input distribution to be other than the uniform distri-
bution over X; e.g., we may consider some X ′ ⊆ X and let
x be distributed uniformly over X ′. Unless otherwise noted
we will assume that the uniform over X is used.

We are now ready to introduce exact hardness, a notion
which will later on allow us to compare functions according
to their inversion difficulty. In a nutshell, the exact hardness
of a function, parameterized by ε, is the number of steps
that necessarily needs to be surpassed in order to achieve
probability of success at least ε. More formally:

Definition 4.1. For any ε ∈ (0, 1) and a function f :
X → Y , we define the exact hardness of f with probability ε
to be the maximum H ∈ N such that for any A and t ≤ H, it
holds that pA,t < ε. For each λ ∈ N, we denote the maximum
such H by Hf,ε(λ).

Notions of similar nature have been considered in the liter-
ature; a salient difference is that exact hardness fixes ε, and
then calls for the largest possible t for which the function
remains hard to invert. Also, observe that, by definition,
there is a (non-uniform) algorithm A that performs a num-
ber of steps t = Hf,ε(λ) + 1 with a similarly sized advice
string and satisfies pA,t(λ) ≥ ε for all λ. This holds since
if there was no such algorithm, then Hf,ε would not be the
maximum possible for that particular value of λ.

Similar notions to the notion of exact hardness that we put
forth in this paper have been considered in the literature.
Notably, Nissan and Wigderson [32] define the hardness of
a Boolean function as the largest size of the circuit whose
bias is still bounded by the inverse of its size. In our setting,
we are interested in fixing the bound of success to a certain

level ε and maximizing with respect to that (as opposed to
allowing ε to vary as the inverse of the circuit size). Bellare
and Rogaway [4] define a function to be (t, ε)-secure if there
is no “t-inverter” (an algorithm bounded by t in number of
steps and size) with success probability at least ε. Put in this
latter context, our notion of exact hardness can be defined
by fixing ε and calling for the largest possible t for which
the function remains (t, ε)-secure. Another “more refined
than asymptotic” measure of inversion difficulty has been
considered by Haitner, Harnik and Reingold [23]; we explore
its relation to exact hardness in more detail in the full version
of the paper [18].

Next, we show two basic properties of our notion of ex-
act hardness. Specifically, we show that exact hardness is
monotonically increasing in the probability of inversion suc-
cess ε, and that there is a natural upper bound for exact
hardness that stems from the fact that any function over a
finite domain can be subjected to a brute-force attack.

Proposition 4.2. Let f : X → Y be any function. For
any λ ∈ N we have:
1. For any 0 < ε ≤ ε′, it holds that Hf,ε(λ) ≤ Hf,ε′(λ).

2. For any ε > 0, Hf,ε(λ) ≤ �ε · |Xλ|�.
Proof. We drop λ for notational simplicity. For the first

property, assume for the sake of contradiction that ε ≤ ε′

and Hf,ε > Hf,ε′ . Consider now an algorithm A running in
t ≤ Hf,ε steps. It follows that it has probability of success
less than ε ≤ ε′. As a result any algorithm A running in
time at most Hf,ε has probability of success less than ε′.
This contradicts that Hf,ε′ is the maximum integer with
this property.

For the second property, we consider the basic step to
be the operation of reading a pair (x, y) and an element y′

from the respective tapes they reside in, and testing whether
y = y′. Now let z ≥ 1 be an integer function and consider a
family of advice strings that contain pairs of the type (xi, yi),
i = 1, . . . , z, that belong to the graph of f following a lex-
icographic ordering. Consider now the algorithm A that,
given y, scans the advice string, and if it finds (xi, yi) such
that y = yi it returns xi. It is easy to see that the number
of steps that A takes is z (in the worst case—without loss
of generality we can assume that A always takes that many
steps). The success probability of A is z

|X| , since the desired

output x is selected at random from all inputs.
Recall now that no algorithm running Hf,ε steps can have

probability of success at least ε. If, for the sake of contra-
diction, we assume that for sufficiently large values of the
security parameter it holds that �ε · |X|� < Hf,ε, it follows
that Hf,ε ≥ �ε · |X|� + 1; thus, setting z = �ε · |X|� + 1, we
have that A performs z ≤ Hf,ε operations and has success
probability of success z

|X| > ε, which is a contradiction.

It is worth noting that in the specification of Hf,ε there
is no presumption of a “minimal hardness” for the inversion
problem of the function f ; rather, Hf,ε is meant to capture
the intrinsic property of f that corresponds to the minimum
computational effort (measured in basic operations depend-
ing on the computational model) that is required to invert
the function with a certain probability of success. If one as-
sumes that this value is sufficiently high, then the function
would be presumed to be one-way. To this end, we now show
the basic relations between exact hardness and one-wayness.
Specifically, for one-wayness we have that for any ε that is
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bounded away from 0 by an inverse polynomial, the exact
hardness of the function to beat ε should exceed any poly-
nomial function. Similarly, for weak one-way functions, we
have that there is some threshold, which is an inverse poly-
nomial away from 1, that in order to be reached the exact
hardness should exceed any polynomial function.

Proposition 4.3. Let f : X → Y be a polynomial-time
computable function. Then:
1. f is a one-way function if and only if ∀c1, c2 : ε = λ−c1

implies Hf,ε(λ) > λc2 for sufficiently large λ.

2. f is a weak one-way function if and only if ∃c1 ∀c2

: ε = 1 − λ−c1 implies Hf,ε(λ) > λc2 for sufficiently
large λ.

Proof. The proofs of the two statements are similar so
we only prove the first one. For the forward direction, we
assume that the function is one-way and ∃c1, c2 for which if
ε = λ−c1 , then Hf,ε ≤ λc2 . Then we have that there is some
algorithm that runs in λc2 + 1 steps (which is a polynomial
in λ) and has success probability at least λ−c1 for infinitely
many λ. This contradicts one-wayness.

For the backward direction, consider an algorithm A that
attempts to invert f and runs in λc2 steps. Also let λc1 be
any polynomial. Now suppose that the probability of inver-
sion success is at least λ−c1 for infinitely many choices of λ
(i.e., the function f fails to be one-way). This contradicts
the fact that Hf,ε > λc2 , which states that in order to reach
probability of success λ−c1 one has to exceed λc2 steps.

It is natural to ask how easy is to calculate Hf,ε for a func-
tion f . Evidently, any inversion algorithm for f provides an
upper bound for exact hardness, while any lower bound ar-
gument on the complexity of the inversion problem of f is a
lower bound for Hf,ε. While finding a formula for Hf,ε might
be hard for a given function f , for certain functions in ideal-
ized computational models, such as random functions [3] or
exponentiation maps in the generic group model (e.g., [37]),
obtaining exact formulae is in fact possible; we provide such
results in Appendix A. Furthermore, under cryptographic
assumptions, reasonable ranges for Hf,ε can be stated; we
do so for factoring-related assumptions also in Appendix A.

4.1.2 The IEP property
Next, we consider the setting where instead of just one, a

set of functions are to be inverted, and would like, in par-
ticular, to have a measure for their “combined” hardness, as
a function of the functions’ individual hardnesses.

Definition 4.4. Let ε > 0, n ∈ N and τ be a monoton-
ically increasing function. We say a sequence of functions
{fi}i=1,...,n is τ -inversion effort preserving (τ -IEP) if for
any subset S = {i1, . . . , im} ⊆ [n], it holds that HfS ,ε ≥
τ(
P

i∈S Hfi,ε), where fS(x1, . . . , xm)
def
= 〈fi1(x1), . . . , fik(xm)〉.

Note that, trivially, Hf [n],ε ≥ maxi Hfi,ε, since any al-
gorithm that inverts a sequence of instances will have to
spend at least as much time as the time needed to invert
the most difficult one. Nevertheless, it is not guaranteed
that the work performed for the solution of any single in-
stance cannot be used to speed up the solution of other
instances. Essentially, the IEP property above says that the
speed-up that can occur is lower bounded by a value that

is determined by the sum of the individual exact-hardness
functions, calibrated by a given function (τ). In the extreme
case, if τ is the identity function, then the instances have to
be solved entirely independently and there is no algorithm
that can proceed towards solving a subset of the instances
simultaneously with a joint strategy.

Our IEP property is related to the notions of direct sum
and direct product in complexity-theoretic models. A direct
sum result holds in a model for a problem if solving one in-
stance x of a problem costs c, then when given k independent
instances x1, ..., xk, no significant gain is achievable and the
model requires about ck cost to solve all instances. A direct
product result, on the other hand, holds if a fixed probabil-
ity p to solve a single instance correctly is given, then the
probability of solving a m-vector of instances drops expo-
nentially with m (as in, for example, Yao’s “concatenation
lemma” [38]). We provide further context on this relation
in [18].

The IEP property can be proven to hold in idealized mod-
els such as the random oracle model or the generic group
model (we demonstrate this in Appendix A); furthermore,
it is reasonable to assume that it holds for standard crypto-
graphic functions such as multiplication of primes, provided
that a suitably function τ is chosen (also Appendix A).

4.1.3 Hardness indistinguishability
To introduce this notion, we define first the notion of in-

distinguishability between two functions. At a high level, it
is the realization of this property that will provide the hid-
ing of the functions’ hardness, “blinding” the adversary as
to what functions to attack first.

Definition 4.5. For ε > 0, two functions f1 : X1 →
Y1, f2 : X2 → Y2 are statistically indistinguishable if the
random variables f1(x1), f2(x2) have statistical distance less
than ε when xi is uniformly drawn from Xi, for i = 1, 2.

We observe that for all but at most an ε fraction of y2 ∈
f2(X2) it holds that there is some x1 with f1(x1) = y2.
The above definition is particularly interesting to us in the
setting where, say, Hf1,ε < Hf2,ε for some ε; i.e., the func-
tions behave differently with respect to the exact hardness
of the inversion problem. In such case we will talk about
hardness indistinguishability. Given that an instance can
be solved almost always in more than one way, hardness
indistinguishability ensures that the hardness level can be
equivocated3.

The definition extends to the case of a sequence of func-
tions in a straightforward way. We will call a sequence of
functions indistinguishable when every pair of functions is
indistinguishable. We give two constructions of such func-
tions, one generic (that requires the extension of the func-
tion’s outputs) and one more efficient that depends on dense
public-key cryptosystems [35]. Note that since indistinguisha-
bility is required in the statistical sense, there is no need to

3This property becomes handy when designing simulators
for reductions between corruption models (cf. Section 4.2).
We note that the reason for considering statistical as op-
posed to computational indistinguishability is that the for-
mer provides to the simulator the ability to “equivocate”
even when the adversary is able to invert some of the func-
tions, as we allow in our corruption model.
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consider how the decision problem’s computational complex-
ity amortizes over a sequence of indistinguishable instances
(as it is unattainable except with probability ε).

Our first construction is general and relies on the existence
of regular one-way functions see e.g., [21].

Construction #1. Let f1 : X1 → Y1 and f2 : X2 → Y2

be any two regular functions with exact hardness Hfi,ε for
i = 1, 2. We define the functions f ′

1, f
′
2 as follows f ′

1 :
X1 × Y2 → Y1 × Y2 and f ′

2 : Y1 × X2 → Y1 × Y2 so that
f ′
1(x1, y2) = (f1(x1), y2) and f ′

2(y1, x2) = (y1, f2(x2)). Ob-
serve that Hf ′

i ,ε = Hfi,ε for i = 1, 2. Moreover the domains

of f ′
1, f

′
2 are efficiently sampleable (assuming those of f1, f2

are). The proof of the following proposition is straightfor-
ward.

Proposition 4.6. For any regular f1, f2, the functions
f ′
1, f

′
2 defined as above are (perfectly) hardness indistinguish-

able.

The above approach generalizes easily to a sequence of
functions (at the expense of increasing linearly the length of
the domain and range elements).

Construction #2. A more efficient way to construct in-
distinguishable functions is using dense one-way functions
along the lines of dense public-key cryptosystems of [35, 34].
Specifically, a one-way function is called dense if its output
is statistically indistinguishable from a random string of a
certain length. More formally, if f is the function, it holds
that f(x) is statistically close to {0, 1}k for some suitable
k when x is uniformly distributed. In order to show hard-
ness indistinguishability, given a sequence of dense one-way
functions, each function output can be padded with random
bits so that all of them match the length of the longest one.
Based on the density property, the functions modified as
above are pairwise statistically indistinguishable.

We now briefly sketch how a dense one-way function can
be constructed. Given a function f : X → Y (for simplicity
assume it is an injection), a dense one way function can
be derived by applying a strong randomness extractor that
is also collision resistant (see [13]). Specifically, if Ext is
such an extractor, we have that f ′(r, x) = (r, Ext(r, f(x)))
is a dense one-way function. Indeed, since Ext is a strong
extractor and r is a uniformly random seed, it holds that the
output of f ′ is almost uniformly distributed (provided Ext
has suitable length). On the other hand, given the collision
resistance property of Ext any inversion algorithm against
f ′ can be turned to an algorithm inverting f , hence, f ′ is a
one-way function of exact hardness not much less than that
of f . We omit further details.

In Appendix A we study and give bounds for the exact
hardness, IEP property and hardness indistinguishability of
several candidate functions, namely, random functions, ex-
ponentiation maps in the generic group model, and integer
multiplication.

4.2 From Computational Corruptions to To-
ken based Corruptions

We now have the tools to consider the relation between the
computational corruption oracle and the token-based cor-
ruption oracle. Connecting the two relies on whether the
computation effort invested by the adversary against cor-
rupting players can be abstracted as discrete token invest-

ments. The notion of IEP functions introduced above plays
a crucial role here.

Theorem 4.7. Let ε > 0 and τ a monotonically increas-
ing invertible function. Given a τ -IEP sequence of functions
f1, . . . , fn, we have that for any t there exist s, k, L such that

Ccc
f ≤t

ε Ctk
s,k and Cbcc

f ≤t
ε Cbtk,L

s,k ,

where s = (s1, . . . , sn) is such that si = Hfi,ε for i = 1, . . . , n
and k = �τ−1(t)�, and where L(p) operates so that it returns
(yp(1), . . . , yp(n)) with yi = f(xi) and xi a randomly selected
input of fi.

Proof. We first consider the relation between computa-
tional corruption and token-based corruption. The adver-
sary B will simulate A as well as the corruption oracle Ccc

f
.

During the simulation, B operates exactly as A with the fol-
lowing modification: when A submits a corruption request
(Corrupt, Pi, x), B submits (Corrupt, Pi, si) to the cor-
ruption oracle.

Corruption requests (Corrupt, Pi, x) for which it holds
that fi(x) �= yi are ignored by B.

The only divergence in the simulation is when it may hap-
pen that A issues a corruption request that is granted while
the corresponding corruption request of B is denied. Sup-
pose this happens with probability at least ε. This means
that B has used all its tokens �τ−1(t)�, i.e., the set of play-
ers C corrupted by A satisfies that

P
i∈C si > �τ−1(t)� ≥

τ−1(t). Note that since A manages to corrupt the set of
players C with probability at least ε it follows that it runs
for at least τ(

P
i∈C Hfi,ε) + 1 steps due to the τ -IEP prop-

erty, i.e., t ≥ τ(
P

i∈C Hfi,ε) + 1 > τ(
P

i∈C si), which is a
contradiction.

Regarding the relation of blinded computational corrup-
tion and leaky blinded token-based corruption we construct
B as follows. When B receives s from its corruption oracle
Cbtk,L

s,k it requests to obtain the leak (yp(1), . . . , yp(n)) and re-
turns this to the adversary A. Otherwise the simulation and
proof proceeds in the same fashion as before.

We next consider the potential advantage that is given by
the leaking capability of the leaky blinded-token corruption
oracle. We have the following:

Theorem 4.8. Let ε > 0, n, k ∈ N, s ∈ N
n be parame-

ters. Given any sequence of statistically indistinguishable
functions f = 〈f1, . . . , fn〉 we have Cbtk,L

s,k ≤n·ε Cbtk
s,k, where L

is defined as in Theorem 4.7 and ε is an upper bound on the
pairwise statistical distances for the sequence f .

Proof. Basically, B will simulate A as well as the leak
that is received by A. The only issue in the simulation is that
B is not privy to the permutation of its corruption oracle and
it will still need to simulate the leak. B utilizes the sampler
for the hardest of the f1, . . . , fn functions to obtain n in-
stances y1, . . . , yn. The simulator then provides (y1, . . . , yn)
to A. The simulator proceeds as follows: whenever the ad-
versary submits a corruption message to the corruption or-
acle with a certain number of tokens the simulator passes
through this request to its own corruption oracle. Due to
the fact that the sampling done is at a distance at most ε
away from regular operation for each pair of functions the
behavior of A cannot result in a change of more than n · ε
in the execution experiment.
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With the above results we conclude that under the proper
assumptions (namely IEP and hardness indistinguishability)
the (blinded) token-based corruption oracle is an accurate
abstraction of the (blinded) computational corruption ora-
cle. It then follows from the results of Section 3 that the
blinded computational corruption oracle remains t-safe even
for values of t that far exceed the computational cost needed
to corrupt a majority of player instances, thus establishing
the value of the hidden diversity in the computational cor-
ruption setting.

5. SUMMARY AND DIRECTIONS FOR FU-
TURE RESEARCH

Adversaries in modern cryptography have thus far been
allowed to “corrupt” parties for free. In this paper, mo-
tivated by the fact that different parties may require dif-
ferent resources to get corrupted, we put forth the notion
of resource-based corruptions, where the adversary must in-
vest some resources in order to corrupt parties. We further
showed that in a resource anonymous setting (where“anony-
mous” is in the sense that such resource configuration is hid-
den from the adversary) much is to be gained in terms of
efficiency and security.

We achieved the above through a series of technical con-
tributions. These include the modeling of the corruption
process in the setting of cryptographic protocols through
corruption oracles as well as the introduction of a notion of
reduction to relate such oracles; the abstraction of the cor-
ruption game as a combinatorial problem and its analysis;
and, finally, the formulation of the notion of inversion effort
preserving (IEP) functions and the property of hardness in-
distinguishability, which we apply to natural cryptographic
candidates. An immediate next step is to expand the pool
of such candidates.

In showing the advantages of hidden diversity, we have
mainly shown that there exist instances where it provides
significant benefits both in terms of security and efficiency.
In the real world, however, systems may or may not mimic
these instances and the potential benefits of hidden diversity
may vary depending on the diversity distribution that actu-
ally exists. Investigating such benefits in a setting where
corruption diversity follows a given probability distribution
is an interesting research direction. Furthermore, one may
consider the setting where a designer intervenes and is al-
lowed to design the system taking diversity into account.
This poses the problem of choosing the required corruption
effort (bucket sizes), subject to a cost function. Can hidden
diversity allow us to reduce cost, or increase security for a
given level of expenditure? This is the subject of current
research.

6. ACKNOWLEDGEMENTS
The authors are grateful to Ran Gelles, Arjen Lenstra and

Alexander May for valuable comments. The work of Aggelos
Kiayias was partly supported by EU projects CODAMODA
and RECUP.

7. REFERENCES
[1] Mihir Bellare and Shafi Goldwasser. Verifiable partial

key escrow. In Richard Graveman, Philippe A. Janson,
Clifford Neumann, and Li Gong, editors, ACM

Conference on Computer and Communications
Security, pages 78–91. ACM, 1997.

[2] Mihir Bellare, Thomas Ristenpart, and Stefano
Tessaro. Multi-instance security and its application to
password-based cryptography. In Reihaneh
Safavi-Naini and Ran Canetti, editors, CRYPTO,
volume 7417 of Lecture Notes in Computer Science,
pages 312–329. Springer, 2012.

[3] Mihir Bellare and Phillip Rogaway. Random oracles
are practical: A paradigm for designing efficient
protocols. In ACM Conference on Computer and
Communications Security, pages 62–73, 1993.

[4] Mihir Bellare and Phillip Rogaway. The exact security
of digital signatures - how to sign with rsa and rabin.
In EUROCRYPT, pages 399–416, 1996.

[5] Michael Ben-Or, Shafi Goldwasser, and Avi
Wigderson. Completeness theorems for
non-cryptographic fault-tolerant distributed
computation (extended abstract). In Janos Simon,
editor, STOC, pages 1–10. ACM, 1988.

[6] Dan Boneh and Moni Naor. Timed commitments. In
Mihir Bellare, editor, CRYPTO, volume 1880 of
Lecture Notes in Computer Science, pages 236–254.
Springer, 2000.

[7] Ran Canetti. Universally composable security: A new
paradigm for cryptographic protocols. In Cryptology
ePrint Archive, Report 2000/067, December 2005.
Latest version at
http://eprint.iacr.org/2000/067/.

[8] Ran Canetti, Uriel Feige, Oded Goldreich, and Moni
Naor. Adaptively secure multi-party computation. In
Miller [31], pages 639–648.

[9] David Chaum, Claude Crépeau, and Ivan Damgard.
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APPENDIX

A. CANDIDATE IEP AND HARDNESS IN-
DISTINGUISHABLE FUNCTIONS

In this section we study and give bounds for the exact
hardness, the IEP property and hardness indistinguishabil-
ity of three natural cryptographic candidates: random func-
tions, discrete logarithm in the generic group model, and
factorization. We note that all the functions we present here
can be used in conjunction with constructions #1 and #2
given in Section 4.1.3 to derive hardness indistinguishable
functions.

A.1 Random Functions
We first consider the notion of exact hardness and argue

that for the inversion problem of a function that is modeled
as a random oracle [3], we can calculate exactly the expres-
sion for exact hardness. In this model, we only count queries
to the random oracle as the basic computational operation,
and thus all complexity measures are expressed in terms of
such queries.

Proposition A.1. Let ε > 0 and f : [2λ] → [2λ] be mod-
elled as a random oracle. Then Hf,ε(λ) = ε · 2λ − 1.

Proof. When f is modelled as a random oracle the prob-
ability Pr[At(f(x)) ∈ f−1(f(x))] is taken over all possible
choices of x (uniformly selected from [2λ]) and the choices
of f (thought as a random table with 2λ entries). Any
algorithm that queries f will have probability (q + 1)2−λ

of returning the inverse of the input value y = f(x) if it
is allowed q queries. To see this consider the following:
if A asks q distinct queries and finds the inverse among
them it can return it for a probability of success equal to
1; otherwise, any A no matter which strategy it follows
will have at best a 1

n−q
chance of succeeding. Note that

if A is repeating some queries the probability of success
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would be worse, but this is something we can assume with-
out loss of generality that it does not happen given that
there is no restriction in space for A. The statement of the
proposition now follows since the probability of success is
q2−λ +(1−q2−λ)(1/(2λ −q)) = (q+1)2−λ by requiring this
probability to be less than ε and considering a query to f as
the basic computational step.

We now study the inversion-effort-preserving property of
random oracles. We show that if the functions are modeled
as independent random oracles, then no speed up is possible
for such set of instances.

Proposition A.2. For n > 0, the sequence of functions
{fi}i=1,...,n with fi : [2λ] → [2λ] is IEP assuming each one
of them is modelled as a random oracle.

Proof. We will use the fact that querying function fi

gives no information about function fj for j �= i. As in
Proposition A.1, the inversion of function fi can succeed
with probability (qi + 1)2−λ as long as qi queries are made.
Also as before, any algorithm inverting fi with probability
ε requires ε · 2λ − 1 queries to fi. We will show that any
algorithm running in t = nε · 2λ − n steps cannot invert all
of the functions with probability greater than ε. We argue as
follows. At the end of any execution at the specified number
of steps t we can build a table of size qi for each function fi;
we have that

Pn
i=1 qi ≤ t. By conditioning on the subset A

of the functions for which a good query has been made, we
obtain that the probability of success can be upper-bounded
by the expression

X
A⊆[n]

Y
i∈A

qi

2λ
·
Y
i�∈A

(1 − qi

2λ
) ·
Y
i�∈A

1

2λ − qi

=
X

A⊆[n]

Q
i∈A qi

2λn
=

Qn
i=1(qi + 1)

2λn
≤
„

n +
Pn

i=1 qi

n · 2λ

«n

where the last inequality follows from the arithmetic and ge-
ometric means inequality. Now applying the bound

Pn
i=1 qi ≤

t = nε · 2λ − n and the fact that εn ≤ ε we bound the prob-
ability by ε. The result on HfS ,ε (cf. Definition 4.4) now
immediately follows.

A.2 Discrete Logarithm
We now consider the exact hardness of discrete logarithms

in the generic group model (see, e.g., [37]). In this setting,
any algorithm A solving the discrete logarithm is given the
encodings of two group elements, σ(1) and σ(x), where σ :
Zq → S is a random permutation. Here q is a prime number
that is λ-bits.
A aims to discover x but has no way to internally emulate

the group operation. Instead, the algorithm operates with
access to an oracle that takes input (r, s) and returns the
value σ(r + sx); we measure those oracle calls as the basic
steps taken by the algorithm.

We denote all the queries of A to the oracle by QA. A
key observation used in [37] is that as long as it holds that
r + sx = r′ + s′x mod q for two queries (r, s), (r′, s′) to the
oracle, it is possible to reconstruct x. The second key obser-
vation is that if this event does not occur then A’s behavior
is independent of x. It follows that the success of algorithm
A in solving the discrete logarithm problem is bounded by

the probability that r + sx = r′ + s′x or y = x for some
(r, s), (r′, s′) ∈ QA, where x is uniformly distributed over Zq

and y is some arbitrarily distributed value (in this setting,
y would capture the output of A). If the algorithm per-
forms k queries then we have that the probability of success
is bounded by (

`
k
2

´
+1)/q (this stems from the fact that the

k queries can be thought of lines over a plane that deter-
mine

`
k
2

´
cut points—the probability of equality amounts to

hitting one of those cut points). Based on this we state the
following.

Proposition A.3. Let ε > 0 and q be a λ-bit prime num-
ber. Suppose f : Zq → S is the exponentiation function over
a generic multiplicative group. Then Hf,ε ≥ √

2qε.

Proof. The proof follows from the argument presented
above (due to [37]). Suppose Hf,ε < T =

√
2qε. This means

that there is an algorithm that in T steps achieves a prob-
ability of success ε. But we observe that T is such that
(
`

T
2

´
+ 1)/q < ε, hence a contradiction following the above

arguments (assuming T ≥ 2).

Next, we consider the IEP property in the same setting.
We consider the solution of n independent instances of the
discrete-logarithm problem over n groups. Each group is
assumed to have a separate encoding of elements σi that is
independently selected. Specifically, an algorithm A is given
the pairs (σi(1), σ(xi)) for i = 1, . . . , n and aims to produce
the vector (x1, . . . , xn). A is allowed to access an oracle that
accepts queries of the form (i, r, s) and returns σi(r + sxi).

Proposition A.4. Let ε > 0, n > 0 and q be a prime
λ-bit number. Suppose f [n] : (Zq)

n → S1 × . . . × Sn is the
coordinate-wise exponentiation function over a sequence of n

generic multiplicative groups. Then Hf [n],ε ≥
p

2n · ε1/n · q.
Proof. Suppose that Hf(n),ε < T = �

p
2nε1/nq�. This

means that there is an algorithm A that in T steps has
probability of success at least ε. Define by ti the number of
queries posed to the i-th oracle by A. Then it holds thatPn

i=1 ti = T since we count only oracle queries in the run-
ning time of A. We let Ci be the event that a collision has
occurred at the i-th oracle. Now let B ⊆ [n] be the set of
groups over which the event Ci takes place, i.e., for all i,
i ∈ B if and only if Ci is true. Assuming this conditioning
we know that the probability of success of algorithm A is at
most (1/q)n−|B| since it essentially has to guess all the other
queries. Furthermore, the probability of event B happening
is the probability that we get a collision; given the indepen-
dence of the group encodings this is

Q
i∈B

`
ti
2

´
/q. So overall

we have that the probability is bounded by

q−n ·
X

B⊆[n]

Y
i∈B

 
ti

2

!
= q−n ·

nY
i=1

(

 
ti

2

!
+ 1)

≤ (n · q)−n(n +

nX
i=1

 
ti

2

!
)n,

where the last inequality follows from the geometric-arithmetic
means inequality. Observe now that

Pn
i=1

`
ti
2

´
= 1

2
·(Pn

i=1 t2i−
T ) < T (T − 1)/2. From this we obtain that the probabil-
ity of success ε is strictly bounded by (T 2/2qn)n. This is a
contradiction since (T 2/2qn)n ≥ ε by definition of T .
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Corollary A.5. Let ε > 0, n > 0, and q be a λ-bit prime
number. Suppose fi : Zq → Si is the exponentiation func-
tion over a generic multiplicative group Si. Then the set of
functions {fi}i=1,...,n is τ -IEP for τ(·) = (·)1/2.

Proof. By definition we need to show that for any sub-
set S ⊆ [n] we have that HfS ,ε ≥ τ(

P
i∈S Hfi,ε). Using

Propositions A.3 and A.4 we have that

HfS ,ε ≥
p

|S| ·
p

2qε1/n ≥
p

|S| · max
i∈S

Hfi,ε ≥ (
X
i∈S

Hfi,ε)
1/2,

which completes the proof.

A.3 Factoring
The complexity to factor an integer N with the best known

algorithm (the number field sieve [28]) takes time on the or-
der of L[1/3, 1.9229], where

L[α, β] = exp((β + o(1))(log N)α(log log N)1−α),

and was improved to L[1/3, 1.902] by Coppersmith [11]. As-
suming that this result matches the complexity of the factor-
ing problem, this will provide bounds for the exact hardness
of the multiplication function. Specifically, if Pλ is the set of
all λ-bit prime numbers, we have that if fmult : Pλ ×Pλ → N

with fmult(p, q) = p · q, then for any ε,

ε · L(1/3, 1.902) ≤ Hf,ε ≤ ε · L(1/2,
√

2) (1)

According to the above statement, the exact hardness of
factoring is a subexponential function that is bounded from
below by a time complexity that is derived from the run-
ning time of the number field sieve algorithm. We note that
a similar assumption was made in [4] when stating the “ex-
act security” of the RSA function. The upper bound in the
statement is derived from Lenstra’s elliptic curve factoriza-
tion algorithm [29]. This algorithm is suitable for expressing
an upper bound in the form above since it is an algorithm
that repetitively picks an elliptic curve and a point on it,
and then tests whether the group law holds by calculating
a scalar of the point. The complexity of the algorithm is
determined by the fact that after picking around L(1/2,

√
2)

curves, then with very high probability a “bad” curve will be
found. As a result, if we wish to succeed with probability ε,
we should sample about ε · L(1/2,

√
2) curves.

Regarding the IEP property, it was shown in [11] that it
is possible to amortize cost when factoring n integers and
there exists an algorithm with expected time complexity
L[1/3, 2.0068]+n·L[1/3, 1.6386]. Under the assumption that
Coppersmith’s algorithm (and small optimizations thereof)
is the best possible when trying to factor simultaneously a
sequence of moduli, one might be willing to assume that if
f [n] is the function that multiplies n pairs of primes to the
corresponding moduli, the following lower bound would hold
true:

Hf [n],ε ≥ ε · n · L[1/3,
√

2]. (2)

From the above two assumptions, the τ -IEP property for

factoring is satisfied by letting τ(x) = e(ln x)2/3
. This holds

due to the fact that for any n, ε, we have that ε·n·L(1/3,
√

2) ≥
τ(ε · n · L(1/2,

√
2)).
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