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Abstract. Chaum’s Visual Voting is a scheme in which a voter obtains a paper
receipt from a voting machine. This receipt can be used to verify that his vote
was counted in the final tally, but cannot be used for vote selling - i.e., the voter
cannot prove that he voted for a certain party.
The Chaum’s system requires special purpose printers and application of ran-
domized partial checking (RPC) method. RPC provides provable anonymity, but
requires quite many tallying authorities.
In this paper we propose a complete design of a voting system that preserves
advantages of the Chaum’s scheme, but eliminates the use of special printers and
RPC. It seems that in our scheme it is easier to convince an average voter that
a voting machine has prepared correctly his ballot and that his vote has been
counted. We also show how to achieve scalability of the system.
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1 Introduction

There is a growing interest of electronic voting systems due to high costs, unreliability
of counting results and potential frauds during traditional voting procedures. For such
systems, counting the votes and collecting the results becomes easy, efficient, reliable
and require less personal costs. However, there are many questions regarding the goals
to be achieved - for an interesting discussion see [15]. Many nontrivial technical prob-
lems have to be solved:

1. it must be guaranteed that the technology applied does not open the doors for ma-
nipulating the votes, changing the results, . . .

2. the system must be designed so that it is possible to convince a voter distrusting
voting machines that his vote has been counted,

3. the receipts obtained by the voters may not be used for selling the votes.

These goals are to some extent contradictory. Resilience to vote manipulations may oc-
cur at the price of anonymity of voters. Receipts obtained from the voting machines to-
gether with information published to exclude vote manipulations may betray the choice
of a voter – and so enable selling a vote. In turn, provisions against vote selling may
make it hard to verify voting results.
?? contact author



Chaum’s Visual Voting Scheme Recently, Chaum [2] presented an idea of visual voting.
The idea is a mixture of visual cryptography and processing through a cascade of mixes
in order to ensure anonymity of voters. In his system, a voter has a strong evidence
that each vote is really counted, even if he distrusts the infrastructure devoted to voting.
Also, a voting machine cannot cheat the voter (by showing a picture that differs from
the encoded vote). The voter gets a (hard-copy) receipt designed in such a way that it is
meaningless for everyone, except the voter.

Understanding that the Chaum’s system is flawless and provides both security and
anonymity requires high mathematical skills. Certainly, an average voter cannot under-
stand fine details of the scheme. This might cause problems with social acceptance of
the scheme.

One of design goals of the system was using low cost standard hardware, but this
is exactly a weak point of the scheme. The main problem is not the computing devices
(standard PC’s with with special open source programs borrowed from existing infras-
tructure of public institutions), but special purpose (and probably expensive) printers,
which can print on transparent plastic cards on both sides simultaneously.

Van de Graaf proposed to abandon the idea of visual cryptography [18]. Instead,
a less elegant but much cheaper solution working with regular paper printers has been
proposed. In this solution, one can use the existing infrastructure without significant
additional expenses. The ballots in the system of Van de Graaf are designed differently,
votes are prepared in advance by special authorities. Thanks to ballot’s modification,
expensive printers are no longer needed, but other problems arise. The scheme requires
existence of two authorities that will not cheat together. The ballots have to be dis-
tributed among the voting machines. One of the main features of the Chaum’s scheme
is that the votes are prepared alone by the voting machines does not hold anymore.

As a subroutine for ensuring correct vote decoding, Chaum’s system uses Random-
ized Partial Checking (RPC) technique introduced by Jakobsson et al. in [11]. RPC
applied to a cascade of mixes reveals a large number of connections between the input
and the output of each mix. Nevertheless, it was proved [7] that very high anonymity
level is achieved for any number of votes processed with O(1) mix-servers only. Even if
the number of mix-servers is O(1), the problem is that it might be too high for practical
implementation. The point is that each mix requires some public-key ciphertext to be
printed on a ballot, and it may turn out that in order to achieve some anonymity level
we need to print more data that actually can be placed on the receipt.

New results We design a secure and fairly practical system of voting based on electronic
voting machines, in which we combine ideas of Chaum’s visual voting, printing method
of Van de Graaf and onion-like encryption technique presented in [12].

Our solution has the following important features:

low cost: the whole infrastructure requires only fairly standard devices: scanners or
regular bar-code laser readers, and paper printers; thus we avoid sophisticated print-
ers that are necessary for the Chaum’s scheme,

efficiency: computational effort of performing the whole procedure is linear with re-
spect to the number of voters.
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scalability: processing of votes in the scheme presented by us can be parallelized. In
that case provable anonymity of votes is preserved (such a parallelization for the
Chaum’s scheme based on RPC method is more problematic). This causes not only
speed-up and lower load per server, but also decreases probability of undetected
cheating by a mix-server. Unfortunately, parallelization has a negative impact on
the level of anonymity. But, it turns out that for most cases (see section [5]) it
ensures a higher level of anonymity than with Chaum’s visual voting.

voter verifiable elections: every voter can verify that with an overwhelming probabil-
ity his vote is in the final tally,

vote selling: nobody can sell votes without cooperation with a voting machine or all
tallying authorities,

cheating detection: every tallying authority that cheats during vote decoding is caught
with an overwhelming probability,

low number of tallying authorities: the number of tallying authorities necessary for
decoding the votes can be reduced significantly compared with the Chaum’s solu-
tion based on the RPC method.

The main disadvantage of the scheme presented in this paper is that it does not work
in practice, if the number of candidates is large - it becomes impossible to encode all
necessary information on a single paper receipt given to the voter. This is not a problem
for presidential elections in the USA, but it is a problem for parliament elections in
Poland.

Voter-verifiable voting schemes One can regard a voting process as a problem of sub-
mitting messages v(xi) to a kind of bulletin board by voters x1, ..., xN in such a way
that:

– every xi can verify if v(xi) is delivered to the bulletin board,
– it is infeasible to link xi with his vote; even if xi is cooperating, it is infeasible to

build a convincing proof that xi voted in a particular way.

Let us recall the idea of Chaum’s [2] solution for this problem. Every xi chooses
v(xi) and gets a receipt r(xi). The receipt is constructed in such a way that after passing
through λ mix-servers and re-coding at each server it becomes v(xi) again. We assume
that a voting machine that prepared r(xi) from v(xi) is honest. When all messages are
delivered, then it is easy to count the election result. In order to avoid election fraud by
the mix-servers, every mix-server must reveal a randomly chosen half of it’s operations
during Randomized Partial Checking procedure. The connections to be revealed are
chosen by an independent party – for instance an opponent of the authority ruling a
particular mix-server. Probability for the cheating server to be caught is 1

2 , if a single
vote is manipulated. Probability of successful cheating k votes is lower than to 1

2k

Our solution is different. Two encoded and different copies of v(xi) and two en-
coded receipts are sent through mix servers. The probability of successful delivery de-
pends on the number of messages. In order to cheat, a mix-server has to guess which out
of 4N messages are ciphertexts that are logically connected to xi. To succeed in cheat-
ing, the mix-server has to replace each copy of v(xi), but none of r(xj ). The probability
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of undetected removing k votes in our system depends on the number of votes N being
sent and is less than 1/(2N)k, compared with 1/2k in the Chaum’s system.

Another approach of checking correctness of mix-servers’ behaviour is introduced
in [16]. In this paper, a method of shuffling El-Gamal ciphertexts is presented - after
processing a whole batch of ciphertexts, each of mix-servers proves that its output rep-
resents a permutation of properly re-encrypted input elements. In our approach, any
fraud is detected automatically and only in that case some additional computations are
required for finding dishonest servers.

Let us mention yet another solution. Recall that it is possible to generate ciphertexts
so that re-encryption of ciphertexts is possible without knowledge of public/private keys
[9]. Moreover, it is possible to sign such ciphertexts so that the signatures can be re-
encrypted just like the ciphertexts [14]. If votes are encrypted and signed in this way
by respective authorities, then mix-servers processing the encoded votes can re-code
the votes and the signatures. At the same time signature of each encoded vote can be
checked. The only problem is duplicating the votes, but we can apply similar techniques
as presented in this paper to cope with this problem. The main difference with the
schemes discussed above is that the votes must be prepared in advance by a trusted
third-party (or parties), like in the van de Graaf’s scheme.

2 Building Blocks

Mix-servers Mix-server is a basic anonymity primitive introduced by D. Chaum in
[3]. A mix-server takes a batch of encrypted messages and outputs them after recoding
in a random order. The recoding procedure can be, for instance, decryption. It must
hide any link between inputs and outputs of the mix-server. The main goal of a mix-
server is to hide the correspondence between the input and the output batch. Since then,
many papers addressed attacks on mixes and message tracing, reputability of mixes,
composing networks of mixes, . . . .

RE-Onions with Recoding We describe now an encoding scheme, which is a simplified
version of URE-onions from [12].

We create an onion-like structure, which we call RE-onion, based on ElGamal en-
cryption in such a way that λ parties have to process the RE-onion before it is finally
decrypted. An RE-onion shall be used to send a message m through a mix cascade of
λ servers. For 1 ≤ j ≤ λ, let yj be the public key of the jth mix, and let xj be the
corresponding private key, that is, yj = gxj . In this formula g is a generator of a group
with hard discrete logarithm problem.

In order to prepare an onion we choose a string k1 uniformly at random. Then an
onion is computed as:

(α, β) := (m · (y1 · . . . · yλ)k1 , gk1) .

When such an onion (after some decoding and re-encryption) is delivered to mix i, then
it has the form

(αi, βi) = (m · (yi · . . . · yλ)ki , gki) .

4



Then the onion gets partially decrypted and re-encrypted – the following operations are
executed with a randomly chosen ri:

αi+1 := αi/βxi

i ,

αi+1 := αi+1 · (yi+1 · . . . · yλ)ri ,

βi+1 := βi · g
ri .

It is easy to see that after performing these operations we get

(αi+1, βi+1) = (m · (yi+1 · . . . · yλ)ki+1 , gki+1)

where ki+1 = ki + ri.

Opening an Onion We use a trick borrowed from [2]. When we construct an RE-
onion, then we need a random exponent. This exponent is generated by a strong pseudo-
random number generator R from a seed s(q), where s(q) denotes a signature over q.
The signature scheme used is deterministic (that is, we can use RSA, but not ElGamal
at this point). The string q is also (pseudo)random and is stored together with the RE-
onion created.

Notice that it is impossible to recover the exponent used for constructing (α, β) =
(m · (y1 . . . yλ)k1 , gk1) given q only. Indeed, this would require finding s(q), but this is
impossible without knowledge of the signing key. However, in the case that the onion
creator would like to show the contents of the onion it suffices to publish s(q). Then
everybody can reconstruct R(s(q)), derive the exponent k1, and finally derive m :=
α/(y1 . . . yλ)k and check whether β = gk.

3 Description of the Voting Protocol

Overview In the early morning of the election day, each voting machine generates a
couple of key pairs for signature schemes used. No cryptographic material is imported
from outside – such as pre-prepared ballots, except the public keys of the tallying au-
thorities running mix-servers. A ballot is created online by the voting machine once a
voter starts the voting procedure.

When the voter’s identity and his right to vote is confirmed, he is is admitted to a
voting machine. During the procedure the machine prints some codes in three phases.
During the first phase some codes are printed on the paper - but the ballot is still not
released to the voter. Then the voter makes his decision about his vote. Additionally, the
voter chooses the left or the right side of the ballot for checking its correctness. At this
moment some codes are overwritten, additional information is printed and the ballot
is released to the voter. The information from the ballot (without overwritten stuff) is
scanned at a different stand during the next step - and the voter gets a confirmation that
his ballot has been inserted into the counting system.

The voter can check integrity of his ballot at any machine equipped with a scanner
(it may be provided outside by any “watch dog” organization). The control procedure
provides a proof that the half of the ballot chosen for control was prepared correctly.
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The codes read from all ballots are gathered and are processed through a cascade of
mixes run by tallying authorities. They can be published, but this is not necessary for
proving correctness of the election result.

Voter’s preferences are encoded in four RE-onions read from the ballot. Two RE-
onions are used to encode the vote and two RE-onions are used to encode the identi-
fier associated with this ballot. The identifiers do not reveal any information about the
voter’s choice. Each of these onions is processed by the mix-servers. This includes par-
tial decryption and re-encryption. It is a key feature that the onions of both kinds cannot
be distinguished until the final recoding occurs. Then we get a plaintext of the vote and
an identifier of the ballot.

Finally, the lists of identifiers and votes obtained are published. Then a voter can
check, if the identifier of his ballot appears on the list. If the list of identifiers has been
published prior to mixing, one can compare both lists. If some identifier is missing, then
it is an evidence of faulty processing of votes. In this case an investigation is started,
during which a dishonest mix-server is identified. A similar procedure could be started
in the case when a vote gets corrupted. However, we refrain from an investigation in
this case since it could break anonymity of the voter. However, the point is that even if
the mix server can identify four RE-onions coming from a single voter, it has 1

6 chance
to remove the onions encoding the identifier. Of course, we can send more than four
RE-onions to obtain even greater probability of detection of the dishonest mix-server,
but this influences the size of the ballot (and the number of codes printed) as well as
the amount of work for the mix-servers. Moreover using four onions provides very high
level of security.

Each mix-server is under control of a different party. There must be a provision
(such as key escrow) that enables to recover the private key of a mix-server in the case
when dishonest behavior of this mix is detected.

Preparation of a Ballot We describe a single voting machine V . It has two pairs of keys
of a digital signature algorithm. Let K and K ′ be the private keys of V and Kpub with
K ′

pub be the public keys related to K and K ′. It has also a serial number serV .
The ballot printed by voting machine V will contain two sides, which we call the

left side and the right side. Each of sides has two columns - columns 1 and 2. This is
for the sake of exposition only, the codes can be printed in a different manner).

For the sake of simplicity assume that the voter can choose between two parties -
the Blue Party and the Yellow Party. The ballot can contain (depending on the voter’s
choice) the following components:

– a ballot identifier r, which is a random string signed by the voting machine,
– an auxiliary string q,
– RE-onions BR

1 , BR
2 , Y R

1 , Y R
2 , IR

1 , IR
2 on the right side and RE-onions BL

1 , BL
2 ,

Y L
1 , Y L

2 , IL
1 , IL

2 on the left side, with the corresponding labels B, Y, I ,
– random strings rL and rR, signatures sigK(q, 1, L), sigK(q, 2, L), sigK(q, 1, R),

sigK(q, 2, R) – but only one string and one signature corresponding to the side and
column chosen for verification of ballot’s correctness).

The string q is used for constructing the onions. Namely, while constructing the
onions BX

i , Y X
i , IX

i (i ∈ {1, 2}, X ∈ {L, R}), the signature sigK(q, i, X) is created
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(sig is a deterministic signature scheme and K is the private key of the voting machine
used for signing the onions). Then a pseudorandom number generator R with the seed
sigK(q, i, X) is used to generate the exponents used in the construction of these RE-
onions.

For X ∈ {L, R}, the onions BX
1 , BX

2 encode a vote for the Blue Party, while the
onions Y X

1 , Y X
2 encode a vote for the Yellow Party. The onions IX

1 , IX
2 encode the

identifier r. After full decoding of the onions we get, respectively for i = 1, 2:

– (B, rX , serV , sig′K′(B, rX , i)) from BX
i ,

– (Y, rX , serV , sig′

K′(Y, rX , i)) from Y X
i ,

– (r, serV , sig′

K′(r, i, X)) from IX
i .

for some random rL, rR chosen for this ballot. The private key K ′ is used only for
signing the votes and identifiers with signature scheme sig′. The onions are RE-onions
encoded with the public keys of the tallying authorities.

The codes of all onions are printed on the ballot. Each pair of onions encoding the
same information is clearly marked as a pair. However, the ordering of pairs is random.
The orderings chosen for the left and the right side are stochastically independent.

Making Choices Once a ballot consisting of the strings listed above is created, the voter
makes a couple of choices:

1. which side will be used for checking and which for making a vote,
2. the choice of a column on the checked side that will be examined,
3. the vote for particular party.

Assume that the voter has chosen for checking the left side containing BL
1 , BL

2 , Y L
1 ,

Y L
2 , IL

1 , IL
2 . Then, rL is printed (see Fig. 2).

The next choice of the voter is j ∈ {1, 2}. After making this decision by the voter
the printer performs the following steps (see Fig. 3):

– BL
j , Y L

j , IL
j get overwritten. (This excludes the use of the votes encoded on the left

side, since for each choice one half will be missing.)
– For j′ ∈ {1, 2}, j′ 6= j, the voting machine opens BL

j′ , Y L
j′ , IL

j′ . That is, it prints
sigK(q, j′, L).

In the next step, the user chooses how to vote. The voter’s preference is encoded
on the other side (this time the right side). The printer overwrites the onions that en-
code the vote for the party that has not been chosen. That is, if the Blue Party has been
chosen by the voter, then Y R

1 , Y R
2 are overwritten, otherwise BR

1 , BR
2 are overwrit-

ten. Simultaneously, all labels indicating which onion correspond to which party are
overwritten.

When printing is finished, the ballot is released to the voter.

Checking a Ballot The voter can check consistency of information on the side chosen
for checking. He opens the onions on this side using the signature printed and checks
that their contents adhere to the protocol. For instance, he checks that the encoded votes
corresponds to the labels printed,that the identifier rX is properly contained in the votes,
and that the onion contents are properly signed. Checking is done by an appropriate
program after reading in the codes from the ballot.
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r

B

I

Y

I

Y

B

Fig. 1. Initial shape of the voting card as seen by
a voter at the first step

rL

q
r

B

I

Y

I

Y

B

Fig. 2. The voting card after a voter chooses the
left side to be verified - rL gets printed

rL

q
r

B

I

Y

I

Y

B

)L1,q,sig(

Fig. 3. The voting card after choosing the col-
umn to verification, additionally sig

K
(q, i, X) is

printed

rL

q
r

B

I

Y

I

Y

B

)L1,q,sig(

Fig. 4. The voting card after choosing a party;
information betraying the voters preference and
the unused onions get overprinted
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Counting Procedure The voter presents his ballot to a scanner that reads two pairs
of onions that are left on the side containing the vote. At the same time it checks the
signature of the voting machine contained in r (if the signature is invalid, the voting
card is rejected). A confirmation is printed on the ballot confirming that the ballot has
been registered (it also prevents using the same ballot twice). All vote identifiers r may
be published before counting of voices begins.

After reading all ballots the onions are sent to the first tallying authority. It recodes
the RE-onions as described above and gives the result to the second tallying authority.
The second authority recodes the onions and gives the result to the next authority. This
process is continued until the last tallying authority finishes decoding. For the purpose
of a future investigation (which is necessary when the final output is faulty), if one
authority gives (recoded) onions to another authority, then both authorities sign the list
of these onions and retain it safely.

The last tallying authority publishes the list of the strings read from the onions from
the final decoding. If every participant behaves according to the protocol, then the list
contains:

– pairs of signed identifiers of the form

(r, serV , sig′

K′(r, 1, X)), (r, serV , sig′

K′(r, 2, X))

– pairs of votes of the forms

(B, s, serV , sig′

K′(B, s, 1)), (B, s, sig′

K′(B, s, 2))

(Y, z, serV , sig′

K′(Y, z, 1)), (Y, z, sig′K′(Y, z, 2))

for random identifiers s, z.

The identifiers of the ballots (voting card) are checked either by the voters or against
the list published before counting procedure starts. If both lists contain exactly the same
identifiers, all signatures are valid, the number of votes and the number of identifiers
are equal to the number of the voters participating in the elections, then the votes are
counted and the election result is announced.

Investigation procedure Let us assume that after decoding the last tallying authority
gets a string that is neither a valid vote nor a valid identifier (i.e. a signature of a voting
machine is invalid or missing). In this case the route of the faulty message m should be
traced back in order to find the authority responsible for a manipulation.

First, the last server presents the ElGamal ciphertext from which it has obtained
m, say (a, b). Then it proves that a/m = bx, where x is the private decryption key of
this authority. More precisely, a proof of equality of discrete logarithms [17] for pairs
(a/m, b) and (y, g) is shown, where y is the public key of the authority.

If the onion pointed to by the last authority is on the list of onions it has got from the
previous authority, then it is the turn of the previous authority to prove its good behavior.
The procedure is the same way as in the case of the last authority, except that instead
of decryption we consider partial decryption. Additionally, the authority shows which
input RE-onion was re-encrypted to obtain the faulty RE-onion. For this purpose, the
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authority publishes the exponent used for re-encryption. Note that it is not necessary to
store all exponents used for re-encryption – they might be derives from a secret key with
a strong pseudorandom generator. If this authority proves that it has properly processed
the onion containing the faulty m, then the next authority must prove its source of m.
This procedure is continued until we come to the point that some authority cannot prove
to be not guilty.

The same investigation takes place, if the final list contains duplicates. In this case
we trace back each of the onions holding the duplicate message. An authority is found
guilty, if it can show only one source of onions that are decoded to the same string.

Improper behavior Let us consider different possibilities of misbehavior of the mixes:

Removing an onion: in this case the number of onions in the input and in the output
of a tallying authority disagree; the fault is immediately discovered provided that
the number of onions (and votes!) is recorded at each stage.

Inserting a new onion: nobody except the voting machine can prepare an onion that
will be correctly decoded. Indeed - the message obtained by the last tallying au-
thority need to be signed by the voting machine at each case. In this case the last
tallying authority starts an investigation described above. It shows the authority that
has injected a new message.

Duplicating an onion: Thanks to re-encryption features, a duplicate can be easily hid-
den. However, on the final list we get two identical strings. If the duplicated string
is an identifier, then an investigation is started and one of the authorities is found
guilty. If the duplicated string is a vote, then we do not start an investigation for this
vote, since it could endanger voters anonymity. However, even in this case we have
a chance to catch an authority that has duplicated the vote.
In order to succeed in cheating, one has to replace a pair of onions which encode
votes but not identifiers. Having 4 onions, the probability of a successful replace-
ment is equal to 1

6 (= 2
4 · 1

3 ). So in that case the probability that an onion holding
an identifier has been deleted is 5

6 . Then, with high probability, some vote identifier
is missing from the final list and we may start an investigation that traces the route
of an onion holding this identifier.
When the authority, which performs a fraud gets 4N onions, the probability of
duplicating 2k onions encoding votes is equal to:

2N

4N

1

4N − 1

2N − 2

4N − 2

1

4N − 3
...

2N − 4k

4N − 2k + 1

1

4N − 2k
≤

(2N)k

(4N − 2k)2k
≤

1

(2N)k

Manipulating an onion: Since each vote and identifier is accompanied by a signa-
ture of a voting machine, no one can derive a new onion with a valid contents,
except for creating an onion with the same contents as another onion (otherwise,
we would have a procedure breaking the signature scheme used). So if an onion is
manipulated, then after the last decoding we get an invalid message. In this case an
investigation is started to trace back the route of an onion containing this message.

Hacked voting machine: There is a possibility that a mallware is running on a voting
machine (remember that we use public infrastructure). In this case the voting cards
may be faulty. However, thanks to the verification procedure it will be detected by
each voter with probability at least 1

4 .

10



Dishonest comission: There is also a possibility that there is dishonest group of people
supervising a voting machine. They may use the machine for casting extra votes.
Since the points, where the votes are get registered, are checking only the signa-
tures of the voting machines, the manipulation get undetected at the first moment.
However, finally each decoded vote reveals from which voting machine it came. If
the number of votes from this machine does not agree with the list of voters that
participated in elections the manipulation is revealed. Then it is easy to recompute
results of voting and repeat the voting procedure only in that commission, where
the problems have occurred, and not in the whole country.
One may be tempted to redesign the scheme in order to hide also on which voting
machine a vote has been generated. This may cause a lot of problems related to
dishonest commissions. Another point is that, at least in our country, it is required
by law that the election results from each commission are published.

4 Improvements

Overprinting some regions of the voting card has one major advantage – it is quite easy
to convince an average voter that the voting machine is caught with probability 1

2 if it
cheats. We find that very important due to the social acceptance of the election process.

There are some drawbacks of this approach. Firstly, an encoded onion requires some
space on the voting card. This may be problematic when we consider multi-candidate
elections. Even more serious problem is that a voter may bring a camera to the voting
booth and take photos of the voting card during the voting process. Those pictures can
be used for selling votes. The same problem appears also in the Chaum’s scheme.

There is another issue related to taking pictures of the voting cards. If a dishon-
est commission at the polling place takes pictures of voting cards, then it gets onions
encoding other voter’s choices. Then the commission can replace the onion encoding
the voter’s choice with another onion of their preference. Such a cheating will not be
detected, since the commission can prepare spoofed votes by using proper identifiers
combined with onions chosen of its choice (retrieved from the picture). In the Chaum’s
scheme it is impossible to cheat in such a way. Of course, for all voting schemes, in-
stalling a camera at the voting booth always destroys anonymity of a voter.

In our opinion it is difficult to guarantee that no camera can be taken to the voting
booth (even if it is forbidden by law and there is some control before entering the booth).
For that reason we propose a simple modification of the system that solves problems
mentioned above. On the other hand, we suppose that it is little bit less intuitive for
voters without sophisticated knowledge. So it can be harder accepted by an average
voter.

Modified Scheme Instead of printing all onions during the first phase, the commitments
of these onions are printed (for instance hash values of these onions). After making
the choice by the voter, certain onions are printed - namely these onions that are not
overprinted according to the original scheme. In this way there is no need to overprint
any onion. This approach not only saves the space on the voting card (a commitment
is much shorter than an onion – this can be crucial due to space limitations), but it
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also provides a higher level of security. Namely, recording of even the whole vote-
preparation process does not allow manipulating the votes as it was described above.

For the modified scheme the verification process contains one more step, namely
checking the commitments of the onions that appear on the receipt.

5 Scaling the solution

Processing all ballots through a single cascade of mix-servers might be problematic in
some practical situations. Instead we could employ a parallel cascade of mixes. In this
way the number of codes processed by each mix-server may be reduced, a low cost
server may be used and processing speed might be increased.

There are many possible architectures for the networks of mixes, we shall discuss
here a parallel mix cascade [10]: it consists of some number of layers, where each layer
consists of k mix-servers. The output of each mix is divided into k equal parts and the
jth part goes into the jth mix of the next layer.

In our system allowing messages being processed in parallel by different mix-
servers might have a positive impact on the overall security of the system. The proba-
bility that a pair of onions encoding the same vote is processed by the same mix-server
is equal to 1

k
(with k servers in a layer), so the probability of success in replacement

attack is even lower than in a sequential processing if a single mix-server on a layer is
dishonest. Unfortunately, there is another issue. Processing the codes in parallel has a
negative impact on anonymity. The following arguments are not strict, but allow to es-
timate a guaranteed level of anonymity for different architectures of networks of mixes.
We consider following instances:

1. a mix cascade running our algorithm,
2. a parallel mix cascade running our algorithm,
3. a (parallel) mix cascade running with RPC as a verification procedure used.

Assume that there are N messages traveling through the system. Consider a parallel
mix cascade consisting of l layers with k mix-servers on each layer. Every mix-server
processes the same number of messages, namely N

k
, and it passes N

k2 messages to each
mix-server of the next layer. Assuming that each mix-server produces every permutation
of messages with the same probability, we ask how many layers do we need so that we
can get any permutations after the last layer. In fact, we compute in how many ways a
specific permutation of messages can be achieved by the parallel mix cascade.

Every server can permute the messages in (N
k

)! different ways. There are k servers
in a layer, so the number of possible permutations produced by a single layer equals
((

N
k

)

!
)k

. Hence the number of possible settings of the whole cascade is
((

N
k

)

!
)kl

. Then

a value z(N, k, l) =
(

(N
k

)!
)kl

/N ! is the average number of ways in which a specific
permutation of messages can be obtained by passing through the parallel mix-cascade.
When we compute coefficient z in an analogous way for a mix cascade consisting of
l mixes, we get z(N, 1, l) = (N !)l−1. For simplifying the following computation, we
approximate n! by (n

e
)n. Using this formula we can estimate ,,how much anonymity we

lose” while using parallel mix cascade instead of a sequential mix cascade. The ,,loss”
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factor is equal to z(N,1,l)
z(N,k,l) ≈ kNl. So it seems that parallelization is not good idea, but

let us consider also a similar coefficient in the context of RPC. Now, every server can
also output messages in (N

k
)! different orderings, but after all it has to reveal half of the

connections, so in fact, there is only ( N
2k

)! possible orderings. Comparing coefficient z
for a sequential mix-cascade with RPC with parallel mix cascade we get

z(N, k, l)

zRPC(N, 1, l)
≈

(

2N

ek2

)
Nl
2

.

So, for k ≤
√

2N/e, parallelization in our system makes less harm for anonymity than
usage of RPC for a sequential mix cascade. For example, for N = 1000 up to k = 27
parallelization is better. It is reasonable to assume that for the parameters occurring
during elections it is always the case that k ≤

√

2N/e, we see that the usage of RPC is
always less attractive than parallel mix cascades.

Finally, let us remark that parallel mix cascades guarantee a strong and provable
anonymity level for l = O(log k) [13], where the constant hidden by big ’Oh’ does
not depend on N . A similar result holds for mix cascades with RPC, but with a bigger
constant.

6 Implementations issues

The Chaum’s visual voting scheme requires special printers, which are able to print on
transparent plastic cards, on both sides simultaneously. The system presented by Van
de Graaf uses regular printers and paper receipts, but requires existence of an additional
infrastructure (authorities that create and verify encoded votes). Our solution uses also
regular paper printers, but no additional authorities are required – the codes are pro-
duced directly by the voting machines.

In the Brazilian system of Van de Graaf, there is also a problem of delivering pre-
pared votes into the voting machines. Another problem is that the voting machines are
connected to the network. This might be risky, since hacking voting machines could
be the target of many attacks. In our solution voting machines are off-line, so attacks
are possible only during tallying process. However, a successful attack on a tallying
authority does not help to manipulate the election result.

“Onions” on the voting cards can be encoded in many ways. Depending on needs
or technical possibilities one can use: bar codes (then bar code readers are needed),
numerical representation (then OCR program for scanning is needed) or graphical rep-
resentation, where the color of a pixel corresponds to the bit of the onion.

Our scheme can be slightly modified and then used for implementing elections via
Internet. For this purpose some elements of previously described ballots have to be
replaced by their cryptographic commitments. When the original protocol uses over-
printing of a particular data, the Internet system does not reveal the contents related to
a commitment of this data. If according to our protocol, some data remains uncovered
(for example, the onions to be checked), then the Internet system reveals its value. Such
an approach is particularly attractive for scenarios in which some voters use voting ma-
chines, while the other voters choose to vote online. Essentially the same procedure in
both cases contributes well to the overall system quality.
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7 Conclusions

The electronic voting scheme presented in this paper has the same advantages as Chaum’s
system. On the other hand, we have reduced demands on special hardware while the vot-
ers trust should be preserved even if no visual cryptography is used - the voter can trust
the printed data as well. It is even less mysterious and therefore may be more acceptable
by an average voter.

We also reduce the size of the messages processed if a high level of anonymity is to
be achieved. Despite that in our scheme a voter sends four onions for a single vote, we
can significantly reduce the number of tallying authorities to such a number l that with
an overwhelming probability at least one out of l authorities is honest. For the Chaum’s
scheme, the number of tallying authorities is O(1), however the size of this constant
might be quite large from the practical point of view.

A still unsolved problem is the case of elections where the list of candidates is very
long (for some voting systems each party presents a list of candidates, a voter chooses
only one name from only one list). Then simply there is no enough place for all onions
concerned on a single sheet of paper.

References

1. Berman, R., Fiat, A., Ta-Shma, A.: Provable Unlinkability Against Traffic Analysis. Finan-
cial Cryptography’2004, LNCS 3110, Springer-Verlag, 266-280.

2. Chaum, D.: Secret-Ballot Receipts and Transparent Integrity. Better and less-costly elec-
tronic voting and polling places.

3. Chaum, D.: Untraceable Electronic Mail, Return Addresses, and Digital Pseudonyms. Com-
munications of the ACM 24(2), 84-88, 1981.

4. Fairbrother, P.: An Improved Construction for Universal Re-encryption. Privacy Enhancing
Technologies’2004, LNCS , Springer-Verlag.

5. Frankling, M., Haber, S.: Joint Encryption and Message-Efficient Secure Computation. Jour-
nal of Cryptology 9.4, 217-232, 1996.

6. Goldschlag, D.M., Reed, M.G., Syverson, P.F.: Hiding Routing Information. Information
Hiding ’1996, LNCS 1174, Springer-Verlag, 137-150.

7. Gomułkiewicz, M., Klonowski, M., Kutyłowski, M.: Rapid Mixing and Security of Chaum’s
Visual Electronic Voting. Computer Security- ESORICS 2003, LNCS 2808, Springer-Verlag,
132-145.

8. Golle, P.: Reputable Mix Networks. To appear in proceedings of Privacy Enhancing Tech-
nologies (PET) 2004, LNCS , Springer-Verlag, Springer-Verlag.

9. Golle, P., Jakobsson, M., Juels, A., Syverson, P.: Universal Re-encryption for Mixnets. CT-
RSA’2004, 163-178.

10. Golle, P. Jules, A.: Parallel mixing. ACM Conference on Communications Security. ACM
Press, 2004 (http://crypto.stanford.edu/ pgolle/papers/parallel.pdf )

11. Jakobsson, M., Juels, A., Rivest, R.L.: Making Mix Nets Robust For Electronic Voting By
Randomized Partial Checking. USENIX Security Symposium 2002, 339-353.

12. Gomułkiewicz, M., Klonowski, M., Kutyłowski, M.: Onion Routing Based On Universal
Re–Encryption Immune Against Repetitive Attack. To appear in proceedings of Workshop
on Information Security Applications (WISA)’2004, LNCS , Springer-Verlag.

13. Klonowski, M., Kutyłowski, M.: Provable Anonymity for Network of Mixes. Manuscript.

14



14. Klonowski, M., Kutyłowski, M., Lauks, A., Zagórski, F.: Universal Re-Encryption of
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