ADVANCED TOPICS IN ALGEBRA

LECTURE 1

(lecture and problems to solve)
2020/21

EIGENVALUES AND EIGENVECTORS

Let V be a linear space (over a field \mathcal{K}) and let $f: V \rightarrow V$ be a linear mapping. A nonzero vector $\boldsymbol{v} \in V$ is called an eigenvector of f if

$$
f(\boldsymbol{v})=\alpha \boldsymbol{v}
$$

for some nonzero scalar $\alpha \in \mathcal{K}$.
Theorem 1. Let $f: V \rightarrow V$ be a linear mapping. The set of eigenvectors E_{α} having the same eigenvalue $\alpha \in \mathcal{K}$ (for the mapping f) with zero vector added to this set is a linear subspace of V. Moreover, it is f-invariant, i.e. $f\left[E_{\alpha}\right]=E_{\alpha}$.

Proof. Let $\boldsymbol{v}, \boldsymbol{w} \in E_{\alpha}$. Then

$$
\begin{gathered}
f(\beta \boldsymbol{v}+\gamma \boldsymbol{w})=f(\beta \boldsymbol{v}+\gamma \boldsymbol{w})=f(\beta \boldsymbol{v})+f(\gamma \boldsymbol{w})=\beta f(\boldsymbol{v})+\gamma f(\boldsymbol{w})= \\
\beta \alpha \boldsymbol{v}+\gamma \alpha \boldsymbol{v}=\alpha(\beta \boldsymbol{v}+\gamma \boldsymbol{w})
\end{gathered}
$$

Thus every linear combination of vectors from E_{α} belongs to E_{α}.
Let us check now that the image via f of a vector \boldsymbol{v} from E_{α} again belongs to E_{α}. We have

$$
f(\boldsymbol{v})=\alpha \boldsymbol{v}
$$

Thus

$$
f(f(\boldsymbol{v}))=f(\alpha \boldsymbol{v})=\alpha f(\boldsymbol{v})
$$

The dimension of $E_{\alpha}, \operatorname{dim}\left(E_{\alpha}\right)$ is called the multiplicity of α.
If x is an eigenvalue of f and $\boldsymbol{v} \in E_{x}$, then $(f-x \cdot \mathrm{id})(\boldsymbol{v})=\mathbf{0}$ and if F is a matrix of f in some basis $\left\langle\boldsymbol{a}_{\boldsymbol{1}}, \ldots, \boldsymbol{a}_{\boldsymbol{n}}\right\rangle$, then

$$
\operatorname{det}(F-x I)=0
$$

because $(F-x I) \boldsymbol{v}=\mathbf{0}$ and $\boldsymbol{v} \neq \mathbf{0}$. The matrix $(F-x I)$ is called the characteristic matrix of f. The determinant

$$
w_{f}(x):=\operatorname{det}(F-x I)
$$

is called the characteristic polynomial of f.
Theorem 2. Let V be a linear space of finite dimension. Let $f: V \rightarrow V$ be a linear mapping. Then the characteristic polynomial $w_{f}(x)$ does not depend on a choice of a basis for the matrix F representing f.

Proof. Let us consider two bases $B=\left\langle\boldsymbol{b}_{\mathbf{1}}, \ldots, \boldsymbol{b}_{\boldsymbol{n}}\right\rangle$ and $B^{\prime}=\left\langle\boldsymbol{b}_{\mathbf{1}}^{\prime}, \ldots, \boldsymbol{b}_{\boldsymbol{n}}^{\prime}\right\rangle$. Let D be the matrix transforming B to B^{\prime}. If a matrix F represents f in the basis B then the matrix $D F D^{-1}$ represents f in the basis B^{\prime}. We have

$$
\begin{gathered}
\operatorname{det}\left(D F D^{-1}-x I\right)=\operatorname{det}\left(D F D^{-1}-x D I D^{-1}\right)=\operatorname{det}\left(D(F-x I) D^{-1}\right)= \\
\operatorname{det}(D) \operatorname{det}(F-x I) \operatorname{det}\left(D^{-1}\right)=\operatorname{det}(D) \operatorname{det}\left(D^{-1}\right) \operatorname{det}(F-x I)=\operatorname{det}(F-x I)
\end{gathered}
$$

Problem 1. Let us consider two bases of the linear space \mathbb{R}^{2} :

$$
B=\left\langle\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right\rangle
$$

and

$$
B^{\prime}=\left\langle\left[\begin{array}{l}
1 \\
1
\end{array}\right],\left[\begin{array}{c}
-1 \\
2
\end{array}\right]\right\rangle
$$

Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear mapping such that

$$
f\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)=\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
$$

and

$$
f\left(\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right)=\left[\begin{array}{l}
0 \\
2
\end{array}\right]
$$

Find the matrices F and F^{\prime} od the mapping f in the bases B and B^{\prime} and directly from the form of these matrices calculate the characteristic polynimial(s). Verify if the result is the same.

Theorem 3. A scalar x is an eigenvalue of a linear mapping $f: V \rightarrow V$ if and only if it is a root of the characteristic polynomial of f.

Proof. We have already shown that if $x \in \mathcal{K}$ is an eigenvalue then $w_{f}(x)=0$. Assume now that $w_{f}(x)=0$. This means that

$$
\operatorname{det}(F-x I)=0
$$

which means that the matrix $\operatorname{det}(F-x I)$ has order smaller that $\operatorname{dim}(V)$. As the matrix $(F-x I)$ is the matrix of the linear mapping $f-x$. id there must be a nonzero vector \boldsymbol{v} such that

$$
\mathbf{0}=(f-x \cdot \operatorname{id})(\boldsymbol{v})=f(\boldsymbol{v})-x \cdot \operatorname{id}(\boldsymbol{v})=f(\boldsymbol{v})-x \cdot \boldsymbol{v}
$$

and hence

$$
f(\boldsymbol{v})=x \cdot \boldsymbol{v}
$$

which means that the vector \boldsymbol{v} is an eigenvector with the eigenvalue x.

Problem 2. Let us consider the linear space \mathbb{R}^{3} and the linear mapping $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ that is represented in the standard basis by the matrix

$$
F=\left[\begin{array}{ccc}
4 & -1 & -1 \\
-3 & 2 & 3 \\
5 & -1 & -2
\end{array}\right]
$$

Calculate the characteristic polynomial $w_{f}(x)$, find its roots, find the eigenvectors of f, represent f in the basis consisting of the eigenvectors (if such a basis exists).

Theorem 4 Let V be a linear space of finite dimension n. Let $f: V \rightarrow V$ be a linear mapping and let α be an eigenvalue of the mapping f. The multiplicity of the eigenvalue α is equal to $n-\operatorname{rank}(F-\alpha I)$.

Proof. Let m be the multiplicity of α. Let $\left\langle\boldsymbol{e}_{\boldsymbol{1}}, \ldots, \boldsymbol{e}_{\boldsymbol{m}}\right\rangle$ be the basis of E_{α}. Let $\left\langle\boldsymbol{e}_{\boldsymbol{m}+\mathbf{1}}, \ldots, \boldsymbol{e}_{\boldsymbol{n}}\right\rangle$ be a complement of the vector system $\left\langle\boldsymbol{e}_{\boldsymbol{1}}, \ldots, \boldsymbol{e}_{\boldsymbol{m}}\right\rangle$ to the basis $\left\langle\boldsymbol{e}_{\mathbf{1}}, \ldots, \boldsymbol{e}_{\boldsymbol{n}}\right\rangle$ of the whole space V. We have (a theorem in a basic course in linear algebra)

$$
\operatorname{rank}(F-\alpha I)=\operatorname{dim}((f-\alpha \cdot \mathrm{id})[V])
$$

We shall show that the right-hand side of the above equality is equal to $n-m$. This will, of course, imply the conclusion of the theorem.
First let us notice that $(f-\alpha \cdot \mathrm{id})\left(\boldsymbol{e}_{\boldsymbol{i}}\right)=\mathbf{0}$ for each $i \leqslant m$. Thus as the image space $(f-\alpha \cdot \mathrm{id})[V]$ is spanned over the vectors $f\left(\boldsymbol{e}_{\boldsymbol{i}}\right), i \leqslant n$, the space $(f-\alpha \cdot \mathrm{id})[V]$ is the the space spanned by the vectors $\left\langle(f-\alpha \cdot \mathrm{id})\left(\boldsymbol{e}_{\boldsymbol{m}+\mathbf{1}}\right), \ldots,(f-\alpha \cdot \mathrm{id})\left(\boldsymbol{e}_{\boldsymbol{n}}\right)\right\rangle$. We will show that these vectors are linearly independent. Let us assume that

$$
\beta_{1}(f-\alpha \cdot \mathrm{id})\left(\boldsymbol{e}_{\boldsymbol{m}+\mathbf{1}}\right)+\ldots+\beta_{n-m}(f-\alpha \cdot \mathrm{id})\left(\boldsymbol{e}_{\boldsymbol{n}}\right)=\mathbf{0}
$$

Transforming this equality we obtain

$$
f\left(\beta_{1} \boldsymbol{e}_{\boldsymbol{m + 1}}+\ldots+\beta_{1} \boldsymbol{e}_{\boldsymbol{n}}\right)=\alpha\left(\beta_{1} \boldsymbol{e}_{\boldsymbol{m + 1}}+\ldots+\beta_{1} \boldsymbol{e}_{\boldsymbol{n}}\right)
$$

which means that the vector $\beta_{1} \boldsymbol{e}_{m+1}+\ldots+\beta_{1} \boldsymbol{e}_{\boldsymbol{n}}$ is an eigenvector with the eigenvalue α, but it can belong to E_{α} only if

$$
\beta_{1} \boldsymbol{e}_{m+1}+\ldots+\beta_{1} \boldsymbol{e}_{\boldsymbol{n}}=\mathbf{0}
$$

(because otherwise this vector is linearly independent of the basis of E_{α}). Because vectors $\boldsymbol{e}_{\boldsymbol{m + 1}}, \ldots, \boldsymbol{e}_{\boldsymbol{n}}$ are linearly independent we infer that the coefficients $\beta_{1}, \ldots, \beta_{n-m}$ are all equal to zero. This shows that indeed the vectors $(f-\alpha$. $\mathrm{id})\left(\boldsymbol{e}_{\boldsymbol{m}}\right), \ldots,(f-\alpha \cdot \mathrm{id})\left(\boldsymbol{e}_{\boldsymbol{n}}\right)$ are linearly independent, and hence

$$
\operatorname{dim}((f-\alpha \cdot \mathrm{id})[V])=n-m
$$

. From the last inequality the conclusion follows.

Problem 3. Show an example of a linear mapping from \mathbb{R}^{2} to \mathbb{R}^{2}, such that the space \mathbb{R}^{2} has no basis consisting of eigenvectors of f.

Problem 4. Let V be a linear space. Let $f: V \rightarrow V$ be a linear mapping and let α be an eigenvalue of the mapping f. Let $p(x)-a_{n} x^{n}+\ldots+a_{1} x+a_{0}$ be an arbitrary polynomial. Show that $p(\alpha)$ is an eigenvalue of the mapping $p(f)$, where $p(f):=a_{n} \underbrace{f \circ f \circ \ldots \circ f}_{n \text { times }}+\ldots+a_{1} f+a_{0}$ id.

Let V be a linear space of finite dimension n. Let $f: V \rightarrow V$ be a linear mapping represented in some basis by the matrix

$$
F=\left[\begin{array}{ccc}
a_{11} & \ldots & a_{1, n} \\
\vdots & \ldots & \vdots \\
a_{n, 1} & \ldots & a_{n, n}
\end{array}\right]
$$

we call the sum of the elements on diagonal the trace of f (and of F) and denote it by

$$
\operatorname{tr}(f)=\sum_{i=1}^{n} a_{i, i}
$$

Problem 5. Show that the trace of f does not depend on the choice of a basis in which we represent f by a matrix. In other words, of F^{\prime} represents f in another basis the sum of its diagonal elkements is the same as for F.

Problem 6. Let V be a linear space of finite dimension n. Show that a linear mapping f of V into itself has n different eigenvalues if and only if it can be represented in some basis by a matrix of the form $\left[a_{i, j}\right]$, where a $a_{i, i} \neq 0$, and $a_{i, j}=0$ if $i \neq j$, and $a_{i, i} \neq a_{j, j}$ if $i \neq j$.

