ADVANCED TOPICS IN ALGEBRA

LECTURE 2

(lecture and problems to solve)
2020/21

ANNIHILATORS

We begin a cycle of lectures that will lead to a theorem about a matrix representation of a linear mapping in simple diagonal-like form.
Let

$$
w(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}
$$

be a polynomial whose domain is \mathcal{K} and whose coefficients a_{0}, \ldots, a_{n} are in \mathcal{K} (here always $\mathcal{K}=\mathbb{R}$ or $\mathcal{K}=\mathbb{C}$). Let V be a linear space (over a field \mathcal{K}) and let $f: V \rightarrow V$ be a linear mapping. Let us define a mapping $w(f)$ in the following way:

$$
w(f)=a_{n} \underbrace{f \circ f \circ \cdots \circ f}_{n \text { times }}+a_{n-1} \underbrace{f \circ f \circ \cdots \circ f}_{n-1 \text { times }}+\ldots=a_{1} f+a_{0} \mathrm{id}
$$

As the composition of linear mappings is a linear mapping and the sum of linear mappings is a linear mapping, the mapping $w(f)$ is again a linear mapping from V to V.

Problem 1. Let a linear mapping $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be represented by the matrix

$$
F=\left[\begin{array}{cc}
1, & 2 \\
2, & -1
\end{array}\right]
$$

Calculate the matrix of the mapping $w(f)$, where $w(x)=3 x^{2}+x-1$. Find $w(f)(\boldsymbol{v})$, where

$$
\boldsymbol{v}=\left[\begin{array}{l}
2 \\
0
\end{array}\right]
$$

Problem 2. Prove that if $f: V \rightarrow V$ is a linear mapping and

$$
w(x)=u(x) v(x)
$$

for polynomials $u(x), v(x)$ and $w(x)$ then

$$
w(f)=u(f) \circ v(f)
$$

Theorem 5. Let V be a linear space (over a field \mathcal{K}) of finite dimension $\operatorname{dim}(V)=$ $n \in \mathbb{N}$ and let $f: V \rightarrow V$ be a linear mapping. Let $\boldsymbol{v} \in V$. There exists a polynomial $w(x) \neq 0$ of degree n such that $w_{f}(\boldsymbol{v})=0$.

Proof. Consider $n+1$ vectors

$$
\begin{gathered}
\boldsymbol{v}=\operatorname{id}(\boldsymbol{v}) \\
f(\boldsymbol{v}), \\
f^{2}(\boldsymbol{v})=(f \circ f)(\boldsymbol{v})=f(f(\boldsymbol{v}))
\end{gathered}
$$

$$
\begin{gathered}
\vdots, \\
f^{n}(\boldsymbol{v})=\underbrace{f \circ f \circ \cdots \circ f}_{n \text { times }}(\boldsymbol{v})=\underbrace{f(f(\ldots(f}_{n \text { times }}(\boldsymbol{v}) \ldots)) .
\end{gathered}
$$

As the dimension of the space V is n, these vectors must be linearly dependent, which means that some linear combination of these vectors where not all coefficients are equal to zero is the zero vector:

$$
a_{n} f^{n}(\boldsymbol{v})+a_{n-1} f^{n-1}(\boldsymbol{v})+\ldots a_{1} f(\boldsymbol{v})+a_{0} \boldsymbol{v}=\mathbf{0}
$$

Thus the polynomial

$$
w(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots a_{1} x+a_{0}
$$

satisfies the conclusion of the theorem.

Let V be a linear space (over a field \mathcal{K}) of finite dimension $\operatorname{dim}(V)=n \in \mathbb{N}$ and let $f: V \rightarrow V$ be a linear mapping. Now, when we already know that for every vector $\boldsymbol{v} \in V$ there exists a polynomial $w(x) \neq 0$ of degree n such that $w(f)(\boldsymbol{v})=0$, we can find such a polynomial $\phi(x)$ of minimal degree with the coefficient at the greatest power equal to one. We call this polynomial an annihilator of the vector \boldsymbol{v}.

Theorem 6. For each \boldsymbol{v} there exists only one annihilator.
Proof. Assume that there are two annihilotors ϕ and ψ of a vector \boldsymbol{v}. Consider $\xi(x)=\psi(x)-\phi(x)$. Of course

$$
\xi(f)(\boldsymbol{v})=\psi(f)(\boldsymbol{v})-\phi(f)(\boldsymbol{v})=\mathbf{0}-\mathbf{0}=\mathbf{0}
$$

But, as ϕ and ψ have the same coefficient equal to 1 at the greatest power, $\xi(x)$ has a smaller degree than ϕ and ψ and this is a contradiction.

The next theorem identifies the class of these polyniomials $w(x)$ for which $w(f)(\boldsymbol{v})=$ 0.

Theorem 7. Let V be a linear space (over a field \mathcal{K}) of finite dimension $\operatorname{dim}(V)=$ $n \in \mathbb{N}$ and let $f: V \rightarrow V$ be a linear mapping. Let $\boldsymbol{v} \in V$ and let $\phi(x)$ be an annihilator of the vector \boldsymbol{v}. Let $w(x)$ be another polynomial. Then $w(f)(\boldsymbol{v})=\mathbf{0}$ if and only if $\phi(x) \mid w(x)$.

Proof. Assume that $\phi(x) \mid w(x)$. Then we have

$$
w(x)=u(x) \phi(x)
$$

for some polynomial $u(x)$. Then, by the conclusion of Problem 2, we have

$$
w(f)(\boldsymbol{v})=u(f) \circ \phi(f)(\boldsymbol{v})=u(f)(\phi(f)(\boldsymbol{v}))=u(f)(\mathbf{0})=\mathbf{0}
$$

Now let us prove the inverse implication and assume that

$$
w(f)(\boldsymbol{v})=\mathbf{0}
$$

Assume also that $w(x)$ is not divisible by $\phi(x)$. Thus

$$
w(x)=u(x) \phi(x)+r(x)
$$

where $r(x)$ is a polynomial of smaller degree than $\phi(x)$. But then we obtain
$\mathbf{0}=u(f) \circ \phi(f)(\boldsymbol{v})+r(f)(\boldsymbol{v})=u(f)(\phi(f)(\boldsymbol{v}))+r(f)(\boldsymbol{v})=\mathbf{0}+r(f)(\boldsymbol{v})=r(f)(\boldsymbol{v})$.
Thus $r(f)(\boldsymbol{v})=\mathbf{0}$, but this contradicts our choice of ϕ as a polynomial of the smallest degree such that $\phi(f)(r(f)(\boldsymbol{v}))=0$. This contradiction completes the proof.

Theorem 8. Assume that $\psi(x)$ and $\phi(x)$ are the annihilators of the vectors \boldsymbol{u} and \boldsymbol{v}, respectively. Then

$$
(\psi \cdot \phi)(f)(\boldsymbol{u}+\boldsymbol{v})=\mathbf{0}
$$

Proof. We have

$$
\begin{gathered}
(\psi \cdot \phi)(f)(\boldsymbol{u}+\boldsymbol{u})=(\psi \cdot \phi)(f)(\boldsymbol{u})+(\psi \cdot \phi)(f)(\boldsymbol{u})= \\
(\phi \cdot \psi)(f)(\boldsymbol{u})+(\psi \cdot \phi)(f)(\boldsymbol{v})=\phi(f) \circ \psi(f)(\boldsymbol{u})+\psi(f) \circ \phi(f)(\boldsymbol{v})= \\
\phi(f)(\psi(f)(\boldsymbol{u}))+\psi(f)(\phi(f)(\boldsymbol{v}))=\mathbf{0}+\mathbf{0}=\mathbf{0} .
\end{gathered}
$$

Theorem 9. Assume that $\psi(x)$ and $\phi(x)$ are the annihilators of the vectors \boldsymbol{u} and \boldsymbol{v}, respectively. Assume also that $\psi(x)$ and $\phi(x)$ are relatively prime polynomials, i.e. they do not have common divisors which are polynomials of positive degree. Then the polynomial $\psi(x) \cdot \phi(x)$ is the annihilator of the vector $\boldsymbol{u}+\boldsymbol{v}$.

Proof. From Theorems 7 and 8 we know that the annihilator $\xi(x)$ of the vector $\boldsymbol{u}+\boldsymbol{v}$ divides the polynomial $\psi(x) \cdot \phi(x)$. Now let us notice that

$$
\boldsymbol{v}=(\boldsymbol{u}+\boldsymbol{v})+(-\boldsymbol{u})
$$

and that the annihilator of $-\boldsymbol{u}$ is the same as that of \boldsymbol{u}, namely it is equal to $\psi(x)$. Hence, again by the previous theorem, the annihilator of $\boldsymbol{v}, \phi(x)$, divides $\xi(x) \dot{\psi}(x)$. Becausde $\phi(x)$ and $\psi(x)$ are relatively prime polynomials, $\phi(x)$ must divide $\xi(x)$. Also, by the analogous argument we show that $\psi(x)$ must divide $\xi(x)$. Thus, again because $\phi(x)$ and $\psi(x)$ are relatively prime polynomials, $\phi(x) \cdot \psi(x)$ divides $\xi(x)$. Thus we have

$$
\xi(x) \mid \phi(x) \cdot \psi(x) \text { and } \phi(x) \cdot \psi(x) \mid \xi(x)
$$

which implies

$$
\xi(x)=\phi(x) \cdot \psi(x)
$$

Problem 3. Let $V=\mathbb{R}^{2}$. Let a liner mapping f be given by the matrix

$$
F=\left[\begin{array}{r}
1,2 \\
-2,1
\end{array}\right]
$$

Find the annihilators (with respect to f) of the vectors

$$
\boldsymbol{e}_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \boldsymbol{e}_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right],-\boldsymbol{e}_{1}=\left[\begin{array}{c}
-1 \\
0
\end{array}\right], \boldsymbol{v}=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \boldsymbol{w}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

Problem 4. Using induction prove the following generalizations of Theorems 8 and 9.

Theorem 10. Let f be a fixed linear mapping of a vector space V into V. If $\phi_{1}(x), \phi_{2}(x), \ldots, \phi_{m}(x)$ are the annihilators (with respect to f) of vectors $\boldsymbol{v}_{\boldsymbol{1}}, \ldots, \boldsymbol{v}_{\boldsymbol{m}}$, then the annihilator $\psi(x)$ of their $\operatorname{sum} \boldsymbol{w}=\boldsymbol{v}_{\boldsymbol{1}}+\ldots+\boldsymbol{v}_{\boldsymbol{m}}$ divides the product ot their annihilators $\phi_{1}(x) \cdot \phi_{2}(x) \cdot \ldots \cdot \phi_{m}(x)$.

Theorem 11. Let f be a fixed linear mapping of a vector space V into V. If the annihilators $\phi_{1}(x), \phi_{2}(x), \ldots, \phi_{m}(x)$ (with respect to f) of vectors $\boldsymbol{v}_{\mathbf{1}}, \ldots, \boldsymbol{v}_{\boldsymbol{m}}$ are relatively prime, then the annihilator $\psi(x)$ of their $\operatorname{sum} \boldsymbol{w}=\boldsymbol{v}_{\boldsymbol{1}}+\ldots+\boldsymbol{v}_{\boldsymbol{m}}$ is the product of their annihilators

$$
\psi(x)=\phi_{1}(x) \cdot \phi_{2}(x) \cdot \ldots \cdot \phi_{m}(x)
$$

Let f be a fixed linear mapping of a vector space V into V. Let $\left\langle\boldsymbol{e}_{\boldsymbol{1}}, \ldots, \boldsymbol{e}_{\boldsymbol{n}}\right\rangle$ be a basis of V and let $\phi_{1}(x), \phi_{2}(x), \ldots, \phi_{n}(x)$ be the annihilators of the vectors $\boldsymbol{e}_{\boldsymbol{1}}, \ldots, \boldsymbol{e}_{\boldsymbol{n}}$, respectively. Let $\phi(x)=\phi_{1}(x) \cdot \phi_{2}(x) \cdot \ldots \cdot \phi_{n}(x)$. By Theorem 7

$$
\phi(f)\left(\boldsymbol{e}_{\boldsymbol{i}}\right)=\mathbf{0}
$$

for each $1 \leqslant i \leqslant n$. Because $\phi(f)$ is a linear mapping we also have

$$
\phi(f)(\boldsymbol{v})=\mathbf{0}
$$

for each $\boldsymbol{v} \in V$.
Hence the family of these polynomials $w(x)$ for which $w(f)(\boldsymbol{v})=\mathbf{0}$ for every vector \boldsymbol{v} in V is nonempty. Let ϕ_{V} be a polynomial with this property which is of the smallest possible degree and which has the coefficient at the greatest power equal to one. We call it an annihilator of the space V (or the minimal polynomial of the mapping f).

Problem 5. Prove the following theorem.
Theorem 12. There exists only one annihilator of the space V, and for every polynomial $w(x)$,

$$
w(f)(\boldsymbol{v})=\mathbf{0}
$$

for every $\boldsymbol{v} \in V$ if and only if $\phi_{V}(x) \mid w(x)$.
Hint: the method of proof is very similar to that of the proof that there exists only one annihilator of a vector.

Theorem 13. Let f be a fixed linear mapping of a vector space V into V. Let $\left\langle\boldsymbol{e}_{\mathbf{1}}, \ldots, \boldsymbol{e}_{\boldsymbol{n}}\right\rangle$ be a basis of v and let $\phi_{1}(x), \phi_{2}(x), \ldots, \phi_{n}(x)$ be the annihilators of the vectors $\boldsymbol{e}_{\mathbf{1}}, \ldots, \boldsymbol{e}_{\boldsymbol{n}}$, respectively. Then the annihilator of the space is the least common multiple of the polynomials $\phi_{1}(x), \phi_{2}(x), \ldots, \phi_{n}(x)$.

Proof. Let $w(x)$ be the least common multiple of the polynomials $\phi_{1}(x), \phi_{2}(x), \ldots, \phi_{n}(x)$. Then by Theorem $7 w(f)\left(\boldsymbol{e}_{\boldsymbol{i}}\right)=\mathbf{0}$ for each vector $\boldsymbol{e}_{\boldsymbol{i}}, 1 \leqslant i \leqslant n$. Thus by linearity of $w(f)$ we have $w(f)(\boldsymbol{v})=\mathbf{0}$ for each vector $\boldsymbol{v} \in V$. Hence, by Theorem 12:

$$
\phi_{V} \mid w(x) .
$$

Thus we have

$$
w(x)=\phi_{V}(x) D(x)
$$

for some polynomial $D(x)$. If $\operatorname{deg}(D(x))>1$, then $\phi_{V}(x)$ is not the common multiple of the polynomials $\phi_{1}(x), \phi_{2}(x), \ldots, \phi_{n}(x)$. Let us assume that it is not a multiple of, say, some $\phi_{i}(x)$. But then it is not the annihilator of V. Thus $D(x)$ is a constant, but this constant must be 1, because the coefficients at the greatest power in ϕ_{V} and $w(x)$ are equal to 1 .

Let $V_{1}, V_{2}<V$ be linear subspaces of the space V. If $V_{1} \cap V_{2}=\{\mathbf{0}\}$ then the space $V_{1} \oplus V_{2}$ spanned over the subspaces V_{1}, V_{2} (which consists of all the vectors of the form $v_{1}+v_{2}, v_{1} \in V_{1}, v_{2} \in V_{2}$) is called the direct sum of the spaces V_{1}, V_{2}.
Let f be a fixed linear mapping of a vector space V into V. A linear subspace W of the linear space V is called invariant (with respect to f) if $f[W] \subseteq W$.

Theorem 14. Let f be a fixed linear mapping of a vector space V into V. The annihilator (with respect to f) of the direct sum of invariant spaces V_{1} and V_{2} is the least common multiple if their annihilators

Proof. Let $\boldsymbol{e}_{\mathbf{1}}, \boldsymbol{e}_{\mathbf{2}}, \ldots, \boldsymbol{e}_{\boldsymbol{k}}$ be a basis of V_{1} and $\boldsymbol{e}_{\mathbf{1}}^{\boldsymbol{\prime}}, \boldsymbol{e}_{\mathbf{2}}^{\boldsymbol{\prime}}, \ldots, \boldsymbol{e}_{\boldsymbol{m}}^{\boldsymbol{\prime}}$ be a basis of V_{2}. Let $\phi_{1}(x), \phi_{2}(x)$ be the annihilators of V_{1} and V_{2}, respectively. By Theorem 13 the annihilator $\xi(x)$ of the space

$$
V_{1} \oplus V_{2}=\operatorname{span}\left\{\boldsymbol{e}_{\mathbf{1}}, \boldsymbol{e}_{\mathbf{2}}, \ldots, \boldsymbol{e}_{\boldsymbol{k}}, \boldsymbol{e}_{\mathbf{1}}^{\prime}, \boldsymbol{e}_{\mathbf{2}}^{\prime}, \ldots, \boldsymbol{e}_{\boldsymbol{m}}^{\prime}\right\}
$$

is the least common multiple of the annihilators of the vectors of the basis

$$
\left\{e_{1}, e_{2}, \ldots, e_{k}, e_{1}^{\prime}, e_{2}^{\prime}, \ldots, e_{m}^{\prime}\right\}
$$

Let $\tau_{i}(x)$ be the annihilator of $\boldsymbol{e}_{\boldsymbol{i}}, 1 \leqslant i \leqslant k$ and $\mu_{i}(x)$ be the annihilator of $\boldsymbol{e}_{\boldsymbol{j}}^{\boldsymbol{\prime}}$, $1 \leqslant j \leqslant m$. Denotnig by $\operatorname{LCM}(\rho(x), \vartheta(x))$ the least common multiple of polynomials $\rho(x), \vartheta(x)$ we have

$$
\begin{gathered}
\xi(x)=\operatorname{LCM}\left(\tau_{1}(x), \ldots, \tau_{k}(x), \mu_{1}(x), \ldots, \mu_{m}(x)\right)= \\
\operatorname{LCM}\left(\operatorname{LCM}\left(\tau_{1}(x), \ldots, \tau_{k}(x)\right), \operatorname{LCM}\left(\mu_{1}(x), \ldots, \mu_{m}(x)\right)\right)=\operatorname{LCM}\left(\phi_{1}(x), \phi_{2}(x)\right)
\end{gathered}
$$

Theorem 15. Let f be a fixed linear mapping of a vector space V into V. There exists a vector \boldsymbol{v} whose annihilator is the same as that of the whole space V.

Proof. Let $\boldsymbol{e}_{\boldsymbol{1}}, \ldots, \boldsymbol{e}_{\boldsymbol{n}}$ be a basis of v. Let

$$
\psi(x)=\phi_{1}^{k_{1}}(x) \phi_{2}^{k_{2}}(x) \ldots \phi_{m}^{k_{m}}(x)
$$

be a decomposition of the annihilator of the space V into relatively prime nondecomposable factors of positive degree whose coefficients at the greatest power are equal to 1 . The polynomial $\psi(x)$ can be represented as

$$
\psi(x)=\phi_{i}^{k_{i}}(x) M_{i}(x)
$$

(where $M_{i}(x)=\prod_{j \neq i} \phi_{j}^{k_{j}}$.) Consider vectors

$$
\boldsymbol{v}_{\mathbf{1}, i}:=M_{1}(f)\left(\boldsymbol{e}_{\boldsymbol{i}}\right)
$$

At least one of the vectors $\phi_{1}^{k_{1}-1}(f)\left(\boldsymbol{v}_{1, i}\right)$ must be a nonzero one, because otherwise $\phi_{1}^{k_{1}-1}(f) \circ M_{1}(f)$ would map each vector of V into zero and the polynomial $\phi_{1}^{k_{1}-1}(x) M_{1}(x)$ is of a smaller degree than $\psi(x)$. Let it be vector $\boldsymbol{v}_{\mathbf{1}, \boldsymbol{i}_{\mathbf{1}}}$. Analogously we find vectors $\boldsymbol{v}_{j, i_{j}}, 1 \leqslant j \leqslant m$, such that $\phi_{j}^{k_{j}-1}(f)\left(\boldsymbol{v}_{j, i_{j}}\right) \neq \mathbf{0}$ and such that $\phi_{j}^{k_{j}}(f)\left(\boldsymbol{v}_{j, i_{j}}\right)=\mathbf{0}$. Note that the annihilator of the vector $\boldsymbol{v}_{j, i_{j}}$ is equal to $\phi_{j}^{k_{j}}(x)$. Thus, by Theorem 10, the annihilator of the vector

$$
\boldsymbol{v}=\sum_{j=1}^{m} \boldsymbol{v}_{j, \boldsymbol{i}_{j}}
$$

is equal to the product $\prod_{j=1}^{m} \phi_{j}^{k_{j}}(x)=\psi(x)$.

Problem 6. Prove that the degree of the annihilator of a space does not exceed the dimension of the space.

Problem 7. Let f be a fixed linear mapping of a vector space V into V. Prove that $w(f)$ maps V into $\mathbf{0}$ if $w(x)$ is the characteristic polynomial of f.

