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ANNIHILATORS

We begin a cycle of lectures that will lead to a theorem about a matrix representa-
tion of a linear mapping in simple diagonal-like form.

Let
w(x) = anx

n + an−1x
n−1 + . . .+ a1x+ a0

be a polynomial whose domain is K and whose coefficients a0, . . . , an are in K (here
always K = R or K = C). Let V be a linear space (over a field K) and let f : V → V
be a linear mapping. Let us define a mapping w(f) in the following way:

w(f) = an f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸
n times

+an−1 f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸
n−1 times

+ . . . = a1f + a0id.

As the composition of linear mappings is a linear mapping and the sum of linear
mappings is a linear mapping, the mapping w(f) is again a linear mapping from V
to V .

Problem 1. Let a linear mapping f : R2 → R2 be represented by the matrix

F =
[

1, 2
2,−1

]
.

Calculate the matrix of the mapping w(f), where w(x) = 3x2+x−1. Find w(f)(v),
where

v =
[
2
0

]
.

Problem 2. Prove that if f : V → V is a linear mapping and

w(x) = u(x)v(x)

for polynomials u(x), v(x) and w(x) then

w(f) = u(f) ◦ v(f).

Theorem 5. Let V be a linear space (over a field K) of finite dimension dim(V ) =
n ∈ N and let f : V → V be a linear mapping. Let v ∈ V . There exists a polynomial
w(x) 6= 0 of degree n such that wf (v) = 0.

Proof. Consider n+ 1 vectors
v = id(v),

f(v),

f2(v) = (f ◦ f)(v) = f(f(v)),
1
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...,

fn(v) = f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸
n times

(v) = f(f(. . . (f︸ ︷︷ ︸
n times

(v) . . .)).

As the dimension of the space V is n, these vectors must be linearly dependent,
which means that some linear combination of these vectors where not all coefficients
are equal to zero is the zero vector:

anf
n(v) + an−1f

n−1(v) + . . . a1f(v) + a0v = 0.

Thus the polynomial

w(x) = anx
n + an−1x

n−1 + . . . a1x+ a0

satisfies the conclusion of the theorem.
�

Let V be a linear space (over a field K) of finite dimension dim(V ) = n ∈ N and
let f : V → V be a linear mapping. Now, when we already know that for every
vector v ∈ V there exists a polynomial w(x) 6= 0 of degree n such that w(f)(v) = 0,
we can find such a polynomial φ(x) of minimal degree with the coefficient at the
greatest power equal to one. We call this polynomial an annihilator of the vector
v.

Theorem 6. For each v there exists only one annihilator.

Proof. Assume that there are two annihilotors φ and ψ of a vector v. Consider
ξ(x) = ψ(x)− φ(x). Of course

ξ(f)(v) = ψ(f)(v)− φ(f)(v) = 0− 0 = 0.

But, as φ and ψ have the same coefficient equal to 1 at the greatest power, ξ(x)
has a smaller degree than φ and ψ and this is a contradiction.

�

The next theorem identifies the class of these polyniomials w(x) for which w(f)(v) =
0.

Theorem 7. Let V be a linear space (over a field K) of finite dimension dim(V ) =
n ∈ N and let f : V → V be a linear mapping. Let v ∈ V and let φ(x) be an
annihilator of the vector v. Let w(x) be another polynomial. Then w(f)(v) = 0 if
and only if φ(x)|w(x).

Proof. Assume that φ(x)|w(x). Then we have

w(x) = u(x)φ(x)

for some polynomial u(x). Then, by the conclusion of Problem 2, we have

w(f)(v) = u(f) ◦ φ(f)(v) = u(f)(φ(f)(v)) = u(f)(0) = 0.

Now let us prove the inverse implication and assume that

w(f)(v) = 0.
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Assume also that w(x) is not divisible by φ(x). Thus

w(x) = u(x)φ(x) + r(x)

where r(x) is a polynomial of smaller degree than φ(x). But then we obtain

0 = u(f) ◦ φ(f)(v) + r(f)(v) = u(f)(φ(f)(v)) + r(f)(v) = 0 + r(f)(v) = r(f)(v).

Thus r(f)(v) = 0, but this contradicts our choice of φ as a polynomial of the
smallest degree such that φ(f)(r(f)(v)) = 0. This contradiction completes the
proof.

�

Theorem 8. Assume that ψ(x) and φ(x) are the annihilators of the vectors u and
v, respectively. Then

(ψ · φ)(f)(u + v) = 0.

Proof. We have

(ψ · φ)(f)(u + u) = (ψ · φ)(f)(u) + (ψ · φ)(f)(u) =

(φ · ψ)(f)(u) + (ψ · φ)(f)(v) = φ(f) ◦ ψ(f)(u) + ψ(f) ◦ φ(f)(v) =

φ(f)(ψ(f)(u)) + ψ(f)(φ(f)(v)) = 0 + 0 = 0.

�

Theorem 9. Assume that ψ(x) and φ(x) are the annihilators of the vectors u and
v, respectively. Assume also that ψ(x) and φ(x) are relatively prime polynomials,
i.e. they do not have common divisors which are polynomials of positive degree.
Then the polynomial ψ(x) · φ(x) is the annihilator of the vector u + v.

Proof. From Theorems 7 and 8 we know that the annihilator ξ(x) of the vector
u + v divides the polynomial ψ(x) · φ(x). Now let us notice that

v = (u + v) + (−u)

and that the annihilator of −u is the same as that of u, namely it is equal to ψ(x).
Hence, again by the previous theorem, the annihilator of v, φ(x), divides ξ(x)ψ̇(x).
Becausde φ(x) and ψ(x) are relatively prime polynomials, φ(x) must divide ξ(x).
Also, by the analogous argument we show that ψ(x) must divide ξ(x). Thus, again
because φ(x) and ψ(x) are relatively prime polynomials, φ(x) · ψ(x) divides ξ(x).
Thus we have

ξ(x)|φ(x) · ψ(x) and φ(x) · ψ(x)|ξ(x)
which implies

ξ(x) = φ(x) · ψ(x).
�

Problem 3. Let V = R2. Let a liner mapping f be given by the matrix

F =
[

1, 2
−2, 1

]
.

Find the annihilators (with respect to f) of the vectors

e1 =
[
1
0

]
, e2 =

[
0
1

]
,−e1 =

[
−1

0

]
,v =

[
1
1

]
,w =

[
−1

1

]
.
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Problem 4. Using induction prove the following generalizations of Theorems 8 and
9.

Theorem 10. Let f be a fixed linear mapping of a vector space V into V . If
φ1(x), φ2(x), . . . , φm(x) are the annihilators (with respect to f) of vectors v1, . . . ,vm,
then the annihilator ψ(x) of their sum w = v1 + . . . + vm divides the product ot
their annihilators φ1(x) · φ2(x) · . . . · φm(x).

Theorem 11. Let f be a fixed linear mapping of a vector space V into V . If the
annihilators φ1(x), φ2(x), . . . , φm(x) (with respect to f) of vectors v1, . . . ,vm are
relatively prime, then the annihilator ψ(x) of their sum w = v1 + . . . + vm is the
product of their annihilators

ψ(x) = φ1(x) · φ2(x) · . . . · φm(x).

Let f be a fixed linear mapping of a vector space V into V . Let 〈e1, . . . , en〉 be a ba-
sis of V and let φ1(x), φ2(x), . . . , φn(x) be the annihilators of the vectors e1, . . . , en,
respectively. Let φ(x) = φ1(x) · φ2(x) · . . . · φn(x). By Theorem 7

φ(f)(ei) = 0

for each 1 ¬ i ¬ n. Because φ(f) is a linear mapping we also have

φ(f)(v) = 0

for each v ∈ V .
Hence the family of these polynomials w(x) for which w(f)(v) = 0 for every

vector v in V is nonempty. Let φV be a polynomial with this property which is
of the smallest possible degree and which has the coefficient at the greatest power
equal to one. We call it an annihilator of the space V (or the minimal polynomial
of the mapping f).

Problem 5. Prove the following theorem.

Theorem 12. There exists only one annihilator of the space V , and for every
polynomial w(x),

w(f)(v) = 0

for every v ∈ V if and only if φV (x)|w(x).

Hint: the method of proof is very similar to that of the proof that there exists only
one annihilator of a vector.

Theorem 13. Let f be a fixed linear mapping of a vector space V into V . Let
〈e1, . . . , en〉 be a basis of v and let φ1(x), φ2(x), . . . , φn(x) be the annihilators of
the vectors e1, . . . , en, respectively. Then the annihilator of the space is the least
common multiple of the polynomials φ1(x), φ2(x), . . . , φn(x).

Proof. Let w(x) be the least common multiple of the polynomials φ1(x), φ2(x), . . . , φn(x).
Then by Theorem 7 w(f)(ei) = 0 for each vector ei, 1 ¬ i ¬ n. Thus by linearity
of w(f) we have w(f)(v) = 0 for each vector v ∈ V . Hence, by Theorem 12:

φV |w(x).
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Thus we have
w(x) = φV (x)D(x)

for some polynomialD(x). If deg(D(x)) > 1, then φV (x) is not the common multiple
of the polynomials φ1(x), φ2(x), . . . , φn(x). . Let us assume that it is not a multiple
of, say, some φi(x). But then it is not the annihilator of V . Thus D(x) is a constant,
but this constant must be 1, because the coefficients at the greatest power in φV
and w(x) are equal to 1.

�

Let V1, V2 < V be linear subspaces of the space V . If V1 ∩ V2 = {0} then the space
V1 ⊕ V2 spanned over the subspaces V1, V2 (which consists of all the vectors of the
form v1 + v2, v1 ∈ V1, v2 ∈ V2) is called the direct sum of the spaces V1, V2.

Let f be a fixed linear mapping of a vector space V into V . A linear subspace W
of the linear space V is called invariant (with respect to f) if f [W ] ⊆W.

Theorem 14. Let f be a fixed linear mapping of a vector space V into V . The
annihilator (with respect to f) of the direct sum of invariant spaces V1 and V2 is
the least common multiple if their annihilators

Proof. Let e1, e2, . . . , ek be a basis of V1 and e′1, e
′
2, . . . , e

′
m be a basis of V2. Let

φ1(x), φ2(x) be the annihilators of V1 and V2, respectively. By Theorem 13 the
annihilator ξ(x) of the space

V1 ⊕ V2 = span{e1, e2, . . . , ek, e′1, e′2, . . . , e′m}

is the least common multiple of the annihilators of the vectors of the basis

{e1, e2, . . . , ek, e′1, e′2, . . . , e′m}.

Let τi(x) be the annihilator of ei, 1 ¬ i ¬ k and µi(x) be the annihilator of e′j ,
1 ¬ j ¬ m. Denotnig by LCM(ρ(x), ϑ(x)) the least common multiple of polynomials
ρ(x), ϑ(x) we have

ξ(x) = LCM(τ1(x), . . . , τk(x), µ1(x), . . . , µm(x)) =

LCM(LCM(τ1(x), . . . , τk(x)),LCM(µ1(x), . . . , µm(x))) = LCM(φ1(x), φ2(x)).

�

Theorem 15. Let f be a fixed linear mapping of a vector space V into V . There
exists a vector v whose annihilator is the same as that of the whole space V .

Proof. Let e1, . . . , en be a basis of v. Let

ψ(x) = φk11 (x)φk22 (x) . . . φkmm (x)

be a decomposition of the annihilator of the space V into relatively prime non-
decomposable factors of positive degree whose coefficients at the greatest power are
equal to 1. The polynomial ψ(x) can be represented as

ψ(x) = φkii (x)Mi(x),

(where Mi(x) =
∏
j 6=i φ

kj
j .) Consider vectors

v1,i := M1(f)(ei).
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At least one of the vectors φk1−11 (f)(v1,i) must be a nonzero one, because other-
wise φk1−11 (f) ◦M1(f) would map each vector of V into zero and the polynomial
φk1−11 (x)M1(x) is of a smaller degree than ψ(x). Let it be vector v1,i1 . Analogo-
usly we find vectors vj,ij , 1 ¬ j ¬ m, such that φkj−1j (f)(vj,ij ) 6= 0 and such that

φ
kj
j (f)(vj,ij ) = 0. Note that the annihilator of the vector vj,ij is equal to φ

kj
j (x).

Thus, by Theorem 10, the annihilator of the vector

v =
m∑
j=1

vj,ij

is equal to the product
∏m
j=1 φ

kj
j (x) = ψ(x).

�

Problem 6. Prove that the degree of the annihilator of a space does not exceed the
dimension of the space.

Problem 7. Let f be a fixed linear mapping of a vector space V into V . Prove that
w(f) maps V into 0 if w(x) is the characteristic polynomial of f .


