ADVANCED TOPICS IN ALGEBRA

LECTURE 2

(lecture and problems to solve) 2020/21

ANNIHILATORS

We begin a cycle of lectures that will lead to a theorem about a matrix representation of a linear mapping in simple diagonal-like form.

Let

$$w(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$$

be a polynomial whose domain is \mathcal{K} and whose coefficients a_0, \ldots, a_n are in \mathcal{K} (here always $\mathcal{K} = \mathbb{R}$ or $\mathcal{K} = \mathbb{C}$). Let V be a linear space (over a field \mathcal{K}) and let $f: V \to V$ be a linear mapping. Let us define a mapping w(f) in the following way:

$$w(f) = a_n \underbrace{f \circ f \circ \cdots \circ f}_{n \text{ times}} + a_{n-1} \underbrace{f \circ f \circ \cdots \circ f}_{n-1 \text{ times}} + \ldots = a_1 f + a_0 \text{id.}$$

As the composition of linear mappings is a linear mapping and the sum of linear mappings is a linear mapping, the mapping w(f) is again a linear mapping from V to V.

Problem 1. Let a linear mapping $f : \mathbb{R}^2 \to \mathbb{R}^2$ be represented by the matrix

$$F = \begin{bmatrix} 1, & 2\\ 2, -1 \end{bmatrix}.$$

Calculate the matrix of the mapping w(f), where $w(x) = 3x^2 + x - 1$. Find w(f)(v), where

$$oldsymbol{v} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$$
 .

Problem 2. Prove that if $f: V \to V$ is a linear mapping and

$$w(x) = u(x)v(x)$$

for polynomials u(x), v(x) and w(x) then

$$w(f) = u(f) \circ v(f).$$

Theorem 5. Let V be a linear space (over a field \mathcal{K}) of finite dimension dim $(V) = n \in \mathbb{N}$ and let $f: V \to V$ be a linear mapping. Let $v \in V$. There exists a polynomial $w(x) \neq 0$ of degree n such that $w_f(v) = 0$.

Proof. Consider n + 1 vectors

$$\begin{split} \boldsymbol{v} &= \mathrm{id}(\boldsymbol{v}),\\ f(\boldsymbol{v}),\\ f^2(\boldsymbol{v}) &= (f \circ f)(\boldsymbol{v}) = f(f(\boldsymbol{v})), \end{split}$$

$$f^n(\boldsymbol{v}) = \underbrace{f \circ f \circ \cdots \circ f}_{n \text{ times}}(\boldsymbol{v}) = \underbrace{f(f(\dots(f(\boldsymbol{v})\dots)))}_{n \text{ times}}(\boldsymbol{v})$$

:

As the dimension of the space V is n, these vectors must be linearly dependent, which means that some linear combination of these vectors where not all coefficients are equal to zero is the zero vector:

$$a_n f^n(\boldsymbol{v}) + a_{n-1} f^{n-1}(\boldsymbol{v}) + \dots a_1 f(\boldsymbol{v}) + a_0 \boldsymbol{v} = \boldsymbol{0}.$$

Thus the polynomial

$$w(x) = a_n x^n + a_{n-1} x^{n-1} + \dots a_1 x + a_0$$

satisfies the conclusion of the theorem.

Let V be a linear space (over a field \mathcal{K}) of finite dimension dim $(V) = n \in \mathbb{N}$ and let $f : V \to V$ be a linear mapping. Now, when we already know that for every vector $\mathbf{v} \in V$ there exists a polynomial $w(x) \neq 0$ of degree n such that $w(f)(\mathbf{v}) = 0$, we can find such a polynomial $\phi(x)$ of minimal degree with the coefficient at the greatest power equal to one. We call this polynomial an *annihilator* of the vector \mathbf{v} .

Theorem 6. For each v there exists only one annihilator.

Proof. Assume that there are two annihilotors ϕ and ψ of a vector \boldsymbol{v} . Consider $\xi(x) = \psi(x) - \phi(x)$. Of course

$$\xi(f)(\boldsymbol{v}) = \psi(f)(\boldsymbol{v}) - \phi(f)(\boldsymbol{v}) = \boldsymbol{0} - \boldsymbol{0} = \boldsymbol{0}.$$

But, as ϕ and ψ have the same coefficient equal to 1 at the greatest power, $\xi(x)$ has a smaller degree than ϕ and ψ and this is a contradiction.

The next theorem identifies the class of these polynomials w(x) for which w(f)(v) = 0.

Theorem 7. Let V be a linear space (over a field \mathcal{K}) of finite dimension dim $(V) = n \in \mathbb{N}$ and let $f: V \to V$ be a linear mapping. Let $v \in V$ and let $\phi(x)$ be an annihilator of the vector v. Let w(x) be another polynomial. Then $w(f)(v) = \mathbf{0}$ if and only if $\phi(x)|w(x)$.

Proof. Assume that $\phi(x)|w(x)$. Then we have

$$w(x) = u(x)\phi(x)$$

for some polynomial u(x). Then, by the conclusion of Problem 2, we have

$$w(f)(\boldsymbol{v}) = u(f) \circ \phi(f)(\boldsymbol{v}) = u(f)(\phi(f)(\boldsymbol{v})) = u(f)(\boldsymbol{0}) = \boldsymbol{0}.$$

Now let us prove the inverse implication and assume that

$$w(f)(\boldsymbol{v}) = \boldsymbol{0}$$

Assume also that w(x) is not divisible by $\phi(x)$. Thus

$$w(x) = u(x)\phi(x) + r(x)$$

where r(x) is a polynomial of smaller degree than $\phi(x)$. But then we obtain $\mathbf{0} = u(f) \circ \phi(f)(\mathbf{v}) + r(f)(\mathbf{v}) = u(f)(\phi(f)(\mathbf{v})) + r(f)(\mathbf{v}) = \mathbf{0} + r(f)(\mathbf{v}) = r(f)(\mathbf{v})$. Thus $r(f)(\mathbf{v}) = \mathbf{0}$, but this contradicts our choice of ϕ as a polynomial of the smallest degree such that $\phi(f)(r(f)(\mathbf{v})) = 0$. This contradiction completes the proof.

Theorem 8. Assume that $\psi(x)$ and $\phi(x)$ are the annihilators of the vectors \boldsymbol{u} and \boldsymbol{v} , respectively. Then

$$(\psi \cdot \phi)(f)(\boldsymbol{u} + \boldsymbol{v}) = \boldsymbol{0}.$$

Proof. We have

$$(\psi \cdot \phi)(f)(\boldsymbol{u} + \boldsymbol{u}) = (\psi \cdot \phi)(f)(\boldsymbol{u}) + (\psi \cdot \phi)(f)(\boldsymbol{u}) = (\phi \cdot \psi)(f)(\boldsymbol{u}) + (\psi \cdot \phi)(f)(\boldsymbol{v}) = \phi(f) \circ \psi(f)(\boldsymbol{u}) + \psi(f) \circ \phi(f)(\boldsymbol{v}) = \phi(f)(\psi(f)(\boldsymbol{u})) + \psi(f)(\phi(f)(\boldsymbol{v})) = \boldsymbol{0} + \boldsymbol{0} = \boldsymbol{0}.$$

Theorem 9. Assume that $\psi(x)$ and $\phi(x)$ are the annihilators of the vectors \boldsymbol{u} and \boldsymbol{v} , respectively. Assume also that $\psi(x)$ and $\phi(x)$ are relatively prime polynomials, i.e. they do not have common divisors which are polynomials of positive degree. Then the polynomial $\psi(x) \cdot \phi(x)$ is the annihilator of the vector $\boldsymbol{u} + \boldsymbol{v}$.

Proof. From Theorems 7 and 8 we know that the annihilator $\xi(x)$ of the vector u + v divides the polynomial $\psi(x) \cdot \phi(x)$. Now let us notice that

$$\boldsymbol{v} = (\boldsymbol{u} + \boldsymbol{v}) + (-\boldsymbol{u})$$

and that the annihilator of -u is the same as that of u, namely it is equal to $\psi(x)$. Hence, again by the previous theorem, the annihilator of v, $\phi(x)$, divides $\xi(x)\dot{\psi}(x)$. Becausde $\phi(x)$ and $\psi(x)$ are relatively prime polynomials, $\phi(x)$ must divide $\xi(x)$. Also, by the analogous argument we show that $\psi(x)$ must divide $\xi(x)$. Thus, again because $\phi(x)$ and $\psi(x)$ are relatively prime polynomials, $\phi(x) \cdot \psi(x)$ divides $\xi(x)$. Thus we have

$$\xi(x)|\phi(x)\cdot\psi(x)$$
 and $\phi(x)\cdot\psi(x)|\xi(x)$

which implies

$$\xi(x) = \phi(x) \cdot \psi(x).$$

Problem 3. Let $V = \mathbb{R}^2$. Let a liner mapping f be given by the matrix

$$F = \begin{bmatrix} 1, 2\\ -2, 1 \end{bmatrix}.$$

Find the annihilators (with respect to f) of the vectors

$$\boldsymbol{e_1} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \boldsymbol{e_2} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, -\boldsymbol{e_1} = \begin{bmatrix} -1 \\ 0 \end{bmatrix}, \boldsymbol{v} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \boldsymbol{w} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}.$$

Problem 4. Using induction prove the following generalizations of Theorems 8 and 9.

Theorem 10. Let f be a fixed linear mapping of a vector space V into V. If $\phi_1(x), \phi_2(x), \ldots, \phi_m(x)$ are the annihilators (with respect to f) of vectors v_1, \ldots, v_m then the annihilator $\psi(x)$ of their sum $w = v_1 + \ldots + v_m$ divides the product ot their annihilators $\phi_1(x) \cdot \phi_2(x) \cdot \ldots \cdot \phi_m(x)$.

Theorem 11. Let f be a fixed linear mapping of a vector space V into V. If the annihilators $\phi_1(x), \phi_2(x), \ldots, \phi_m(x)$ (with respect to f) of vectors v_1, \ldots, v_m are relatively prime, then the annihilator $\psi(x)$ of their sum $w = v_1 + \ldots + v_m$ is the product of their annihilators

$$\psi(x) = \phi_1(x) \cdot \phi_2(x) \cdot \ldots \cdot \phi_m(x).$$

Let f be a fixed linear mapping of a vector space V into V. Let $\langle e_1, \ldots, e_n \rangle$ be a basis of V and let $\phi_1(x), \phi_2(x), \ldots, \phi_n(x)$ be the annihilators of the vectors e_1, \ldots, e_n , respectively. Let $\phi(x) = \phi_1(x) \cdot \phi_2(x) \cdot \ldots \cdot \phi_n(x)$. By Theorem 7

 $\phi(f)(\boldsymbol{e_i}) = \boldsymbol{0}$

for each $1 \leq i \leq n$. Because $\phi(f)$ is a linear mapping we also have

 $\phi(f)(\boldsymbol{v}) = \boldsymbol{0}$

for each $\boldsymbol{v} \in V$.

Hence the family of these polynomials w(x) for which w(f)(v) = 0 for every vector v in V is nonempty. Let ϕ_V be a polynomial with this property which is of the smallest possible degree and which has the coefficient at the greatest power equal to one. We call it an *annihilator of the space* V (or the *minimal polynomial of the mapping* f).

Problem 5. Prove the following theorem.

Theorem 12. There exists only one annihilator of the space V, and for every polynomial w(x),

$$w(f)(\boldsymbol{v}) = \boldsymbol{0}$$

for every $\boldsymbol{v} \in V$ if and only if $\phi_V(x)|w(x)$.

Hint: the method of proof is very similar to that of the proof that there exists only one annihilator of a vector.

Theorem 13. Let f be a fixed linear mapping of a vector space V into V. Let $\langle e_1, \ldots, e_n \rangle$ be a basis of v and let $\phi_1(x), \phi_2(x), \ldots, \phi_n(x)$ be the annihilators of the vectors e_1, \ldots, e_n , respectively. Then the annihilator of the space is the least common multiple of the polynomials $\phi_1(x), \phi_2(x), \ldots, \phi_n(x)$.

Proof. Let w(x) be the least common multiple of the polynomials $\phi_1(x), \phi_2(x), \ldots, \phi_n(x)$. Then by Theorem 7 $w(f)(e_i) = 0$ for each vector e_i , $1 \le i \le n$. Thus by linearity of w(f) we have w(f)(v) = 0 for each vector $v \in V$. Hence, by Theorem 12:

 $\phi_V | w(x).$

Thus we have

$$w(x) = \phi_V(x)D(x)$$

for some polynomial D(x). If $\deg(D(x)) > 1$, then $\phi_V(x)$ is not the common multiple of the polynomials $\phi_1(x), \phi_2(x), \ldots, \phi_n(x)$. Let us assume that it is not a multiple of, say, some $\phi_i(x)$. But then it is not the annihilator of V. Thus D(x) is a constant, but this constant must be 1, because the coefficients at the greatest power in ϕ_V and w(x) are equal to 1.

Let $V_1, V_2 < V$ be linear subspaces of the space V. If $V_1 \cap V_2 = \{\mathbf{0}\}$ then the space $V_1 \oplus V_2$ spanned over the subspaces V_1, V_2 (which consists of all the vectors of the form $v_1 + v_2, v_1 \in V_1, v_2 \in V_2$) is called the *direct sum* of the spaces V_1, V_2 .

Let f be a fixed linear mapping of a vector space V into V. A linear subspace W of the linear space V is called *invariant* (with respect to f) if $f[W] \subseteq W$.

Theorem 14. Let f be a fixed linear mapping of a vector space V into V. The annihilator (with respect to f) of the direct sum of invariant spaces V_1 and V_2 is the least common multiple if their annihilators

Proof. Let e_1, e_2, \ldots, e_k be a basis of V_1 and e'_1, e'_2, \ldots, e'_m be a basis of V_2 . Let $\phi_1(x), \phi_2(x)$ be the annihilators of V_1 and V_2 , respectively. By Theorem 13 the annihilator $\xi(x)$ of the space

$$V_1 \oplus V_2 = \text{span}\{e_1, e_2, \dots, e_k, e'_1, e'_2, \dots, e'_m\}$$

is the least common multiple of the annihilators of the vectors of the basis

$$\{e_1, e_2, \ldots, e_k, e'_1, e'_2, \ldots, e'_m\}.$$

Let $\tau_i(x)$ be the annihilator of e_i , $1 \leq i \leq k$ and $\mu_i(x)$ be the annihilator of e'_j , $1 \leq j \leq m$. Denoting by LCM($\rho(x), \vartheta(x)$) the least common multiple of polynomials $\rho(x), \vartheta(x)$ we have

$$\xi(x) = \operatorname{LCM}(\tau_1(x), \dots, \tau_k(x), \mu_1(x), \dots, \mu_m(x)) =$$

LCM(LCM($\tau_1(x), \dots, \tau_k(x)$), LCM($\mu_1(x), \dots, \mu_m(x)$)) = LCM($\phi_1(x), \phi_2(x)$).

Theorem 15. Let f be a fixed linear mapping of a vector space V into V. There exists a vector v whose annihilator is the same as that of the whole space V.

Proof. Let e_1, \ldots, e_n be a basis of v. Let

$$\psi(x) = \phi_1^{k_1}(x)\phi_2^{k_2}(x)\dots\phi_m^{k_m}(x)$$

be a decomposition of the annihilator of the space V into relatively prime nondecomposable factors of positive degree whose coefficients at the greatest power are equal to 1. The polynomial $\psi(x)$ can be represented as

$$\psi(x) = \phi_i^{k_i}(x) M_i(x),$$

(where $M_i(x) = \prod_{j \neq i} \phi_j^{k_j}$.) Consider vectors

$$\boldsymbol{v_{1,i}} := M_1(f)(\boldsymbol{e_i}).$$

At least one of the vectors $\phi_1^{k_1-1}(f)(\boldsymbol{v}_{1,i})$ must be a nonzero one, because otherwise $\phi_1^{k_1-1}(f) \circ M_1(f)$ would map each vector of V into zero and the polynomial $\phi_1^{k_1-1}(x)M_1(x)$ is of a smaller degree than $\psi(x)$. Let it be vector \boldsymbol{v}_{1,i_1} . Analogously we find vectors $\boldsymbol{v}_{j,i_j}, 1 \leq j \leq m$, such that $\phi_j^{k_j-1}(f)(\boldsymbol{v}_{j,i_j}) \neq \mathbf{0}$ and such that $\phi_j^{k_j}(f)(\boldsymbol{v}_{j,i_j}) = \mathbf{0}$. Note that the annihilator of the vector \boldsymbol{v}_{j,i_j} is equal to $\phi_j^{k_j}(x)$. Thus, by Theorem 10, the annihilator of the vector

$$oldsymbol{v} = \sum_{j=1}^m oldsymbol{v}_{j,i_j}$$

is equal to the product $\prod_{j=1}^{m} \phi_j^{k_j}(x) = \psi(x)$.

Problem 6. Prove that the degree of the annihilator of a space does not exceed the dimension of the space.

Problem 7. Let f be a fixed linear mapping of a vector space V into V. Prove that w(f) maps V into **0** if w(x) is the characteristic polynomial of f.