ADVANCED TOPICS IN ALGEBRA

LECTURE 3

(lecture and problems to solve)
2020/21

CYCLIC SPACES

Let V be a linear space and $f: V \rightarrow V$ be a linear mapping. Let $\boldsymbol{v} \in V$. Let

$$
\phi(x)=x^{k}+a_{k-1} x^{k-1}+\ldots+a_{1} x+a_{0}
$$

be the annnihilator of $\boldsymbol{v} \in V$.
Theorem 16. For V, f, \boldsymbol{v} and ϕ as above, the vectors

$$
\boldsymbol{v}, f(\boldsymbol{v}), \ldots, f^{k-1}(\boldsymbol{v})
$$

are linearly independent.
Proof. If some nonzero linear combination of these vectors equaled to zero

$$
b_{0} \boldsymbol{v}+b_{1} f(\boldsymbol{v})+\ldots b_{p-1} f^{p-1}(\boldsymbol{v})+b_{p} f^{p}(\boldsymbol{v})=0
$$

where $p \leqslant k-1$ and $b_{p} \neq 0$, then also

$$
\frac{b_{0}}{b_{p}} \boldsymbol{v}+\frac{b_{1}}{b_{p}} f(\boldsymbol{v})+\ldots \frac{b_{p-1}}{b_{p}} f^{p-1}(\boldsymbol{v})+f^{p}(\boldsymbol{v})=0
$$

but this would contradict the fact that $\phi(x)$ is the annihilator of \boldsymbol{v}.

The space

$$
\Gamma(f, \boldsymbol{v}):=\operatorname{span}\left(\boldsymbol{v}, f(\boldsymbol{v}), \ldots, f^{k-1}(\boldsymbol{v})\right)
$$

is called the cyclic space generated by \boldsymbol{v}. The vector \boldsymbol{v} is called its generator. The vectors $\boldsymbol{v}, f(\boldsymbol{v}), \ldots, f^{k-1}(\boldsymbol{v})$ are called the cyclic base.

Problem 1. Find the matrix of f in the cyclic base.
Problem 2. Prove that the characteristic polynomial for the mapping f is equal to the annihilator of the space multiplied by $(-1)^{\operatorname{dim}(\Gamma(f, \boldsymbol{v})}$.

Theorem 17. Let $\xi(x)$ be any polynomial and let $w \in \Gamma(f, \boldsymbol{v})$. Then $\xi(f)(w) \in$ $\Gamma(f, \boldsymbol{v})$.

Proof. We can express $\xi(x)$ as

$$
\xi(x)=D(x) \phi(x)+r(x)
$$

where $D(x)$ is some polynomial and $r(x)$ has degree smaller than k. Then

$$
\xi(f)(\boldsymbol{v})=D(f)(\phi(f)(\boldsymbol{v}))+r(f)(\boldsymbol{v})=D(f)(\mathbf{0})+r(f)(\boldsymbol{v})=r(f)(\boldsymbol{v}) \in \Gamma(f, \boldsymbol{v})
$$

Theorem 18. The space $\Gamma(f, \boldsymbol{v})$ is invariant (with respect to f).

Proof. Let $\boldsymbol{w} \in \Gamma(f, \boldsymbol{v})$. We have $\boldsymbol{w}=\xi(f)(\boldsymbol{v})$ for some polynomial $\xi(x)$. In virtue of Theorem 17 (justifying the last inclusion below) we have:

$$
f(\boldsymbol{w})=f(\xi(f)(\boldsymbol{v}))=(\vartheta)(f)(\boldsymbol{v}) \in \Gamma(f, \boldsymbol{v})
$$

where $\vartheta(x)=x \xi(x)$.

Theorem 19. The annihilator $\phi(x)$ of a vector \boldsymbol{v} is the annihilator $\phi_{\Gamma(f, \boldsymbol{v})}$ of the whole cyclic space $\Gamma(f, \boldsymbol{v})$

Proof. Let $\boldsymbol{u} \in \Gamma(f, \boldsymbol{v})$. Then

$$
\boldsymbol{u}=\xi(f)(\boldsymbol{v})
$$

for some polynomial $\xi(x)$ (one can choose $\xi(x)$ of degree smaller than $\operatorname{deg}(\phi(x)$), but this is irrelevant here). We have

$$
\phi(f)(\xi(f)(\boldsymbol{u}))=\xi(f)(\phi(f)(\boldsymbol{u}))=\xi(f)(\mathbf{0})=\mathbf{0}
$$

Theorem 20. Let V be a linear space and $f: V \rightarrow V$ be a linear mapping. Let $W<V$ be a linear subspace of V which is invariant with respect to f. Then there exists $\boldsymbol{v} \in W$ such that $W=\Gamma(f, \boldsymbol{v})$ (in other words W is cyclic) if and oly if $\operatorname{dim}(W)=\operatorname{deg}\left(\phi_{W}\right)$, where ϕ_{W} is the annihilator of W.

Proof. If $W=\Gamma(f, \boldsymbol{v})$, then $\operatorname{dim}(W)=\operatorname{dim}\left(\phi_{W}\right)$ by the definition of a cyclic space $\Gamma(f, \boldsymbol{v})$ and Theorem 19.
Let us prove the opposite implication. Thus assume that $\operatorname{dim}(W)=\operatorname{deg}\left(\phi_{W}\right)$ and recall that W is invariant. By Theorem 15 there exists a vector \boldsymbol{v} such that its annihilator is the annihilator of W. But then the space $\Gamma(f, \boldsymbol{v})<W$ has dimension $\operatorname{deg}\left(\phi_{W}\right)=\operatorname{dim}(W)$, and therefore $\Gamma(f, \boldsymbol{v})=W$.

Theorem 21. Let W be a cyclic space and let it be a direct sum of invariant subspaces $W_{1}, W_{2}<W$. Then W_{1} and W_{2} are also cyclic spaces.

Proof. Let ϕ_{W} be the annihilator of the space W. Let $\phi_{1}(x)=\phi_{W_{1}}(x), \phi_{2}(x)=$ $\phi_{W_{2}}(x)$ be the annihilators of the spaces W_{1}, W_{2}, respectively. By Theorem 14

$$
\phi(x)=L C M\left(\phi_{1}(x), \phi_{2}(x)\right) .
$$

By Problem 6.2 (Problem 6, Lecture 2)

$$
\operatorname{deg}\left(\phi_{1}(x)\right) \leqslant \operatorname{dim}\left(W_{1}\right)
$$

and

$$
\operatorname{deg}\left(\phi_{2}(x)\right) \leqslant \operatorname{dim}\left(W_{2}\right)
$$

If, say,

$$
\operatorname{deg}\left(\phi_{1}(x)\right)<\operatorname{dim}\left(W_{1}\right)
$$

then

$$
\operatorname{deg}(\phi(x)) \leqslant \operatorname{deg}\left(\phi_{1}(x)\right)+\operatorname{deg}\left(\phi_{2}(x)\right)<\operatorname{dim}\left(W_{1}\right)+\operatorname{dim}\left(W_{2}\right)=\operatorname{dim}(W)
$$

but this is not true because, by Theorem 20, $\operatorname{deg}(\phi(x))=\operatorname{dim}(W)$. Thus

$$
\operatorname{deg}\left(\phi_{1}(x)\right)=\operatorname{dim}\left(W_{1}\right)
$$

and, again by Theorem 20, W_{1} is cyclic. In the same way we see that W_{2} is cyclic.

Theorem 22. Let $\phi_{W}(x)$ be the annihilator of a cyclic space $W=\Gamma(f, \boldsymbol{v})$. If the annihilator $\phi_{W}(x)$ of W is a product of two relatively prime polynomials

$$
\phi_{W}(x)=\phi_{1}(x) \cdot \phi_{2}(x)
$$

then

$$
W=\Gamma\left(f, \phi_{1}(\boldsymbol{v})\right) \oplus \Gamma\left(f, \phi_{2}(\boldsymbol{v})\right)
$$

and the annihilators of the spaces $\Gamma\left(f, \phi_{1}(\boldsymbol{v})\right), \Gamma\left(f, \phi_{2}(\boldsymbol{v})\right)$ are $\phi_{2}(x), \phi_{1}(x)$, respectively.

Proof. Because the spaces $\Gamma\left(f, \phi_{1}(f)(\boldsymbol{v})\right)$ and $\Gamma\left(f, \phi_{2}(f)(\boldsymbol{v})\right)$ consist of some vectors of the form $\xi(f)(\boldsymbol{v})$ by Theorem 17 they are subspaces of the space W.
Note that the annihilator of the vector $\phi_{1}(f)(\boldsymbol{v})$ is $\phi_{2}(x)$. Indeed, let us temporarily call this annihilator $\psi(x)$; because

$$
\phi_{2}(f)\left(\phi_{1}(f)(\boldsymbol{v})\right)=\left(\phi_{1} \cdot \phi_{2}\right)(f)(\boldsymbol{v})=\mathbf{0}
$$

$\psi(x)$ must divide $\phi_{2}(x)$. If it is not $\phi_{2}(x)$, then it has degree smaller than $\phi_{2}(x)$ and

$$
\psi(f)\left(\phi_{1}(f)(\boldsymbol{v})\right)=\mathbf{0}
$$

Hence $\phi_{2}(x) \phi_{1}(x) \mid \psi(x) \phi_{2}(x)$ which implies $\phi_{2}(x) \mid \psi(x)$ and thus $\psi(x)=\phi_{2}(x)$.
Analogously, the annihilator of the vector $\phi_{2}(f)(\boldsymbol{v})$ is $\phi_{1}(x)$.
We shall show that the only common element of the spaces $\Gamma\left(f, \phi_{1}(f)(\boldsymbol{v})\right)$ and $\Gamma\left(f, \phi_{2}(f)(\boldsymbol{v})\right)$ is $\mathbf{0}$. Let $\boldsymbol{w} \in \Gamma\left(f, \phi_{1}(f)(\boldsymbol{v})\right) \cap \Gamma\left(f, \phi_{2}(f)(\boldsymbol{v})\right)$. Then

$$
\phi_{1}(f)(\boldsymbol{w})=\mathbf{0}
$$

and

$$
\phi_{2}(f)(\boldsymbol{w})=\mathbf{0}
$$

Hence the annihilator of \boldsymbol{w} divides both $\phi_{1}(x)$ and $\phi_{2}(x)$, which implies that this annihilator is a constant and consequently $\boldsymbol{w}=\mathbf{0}$.
It remains to show that

$$
\operatorname{dim}\left(\Gamma\left(f, \phi_{1}(f)(\boldsymbol{v})\right)\right)+\operatorname{dim}\left(\Gamma\left(f, \phi_{2}(f)(\boldsymbol{v})\right)\right)=\operatorname{dim}(\Gamma(f, \boldsymbol{v}))
$$

But this is obvious now, because

$$
\begin{array}{r}
\operatorname{dim}\left(\Gamma\left(f, \phi_{1}(f)(\boldsymbol{v})\right)\right)=\operatorname{deg}\left(\phi_{2}(x)\right) \\
\operatorname{dim}\left(\Gamma\left(f, \phi_{2}(f)(\boldsymbol{v})\right)\right)=\operatorname{deg}\left(\phi_{1}(x)\right), \\
\operatorname{dim}(\Gamma(f, \boldsymbol{v}))=\operatorname{deg}\left(\phi_{1}(x) \cdot \phi_{2}(x)\right)
\end{array}
$$

and

$$
\operatorname{deg}\left(\phi_{1}(x)\right)+\operatorname{deg}\left(\phi_{2}(x)\right)=\operatorname{deg}\left(\phi_{1}(x) \cdot \phi_{2}(x)\right)
$$

The following theorem is a straightforward (but important) generalization of Theorem 22 .

Theorem 23. Let $\phi_{W}(x)$ be the annihilator of a cyclic space $W=\Gamma(f, \boldsymbol{v})$. If the annihilator $\phi_{W}(x)$ of W is equal to $\psi_{1}^{k_{1}}(x) \cdot \psi_{2}^{k_{2}}(x) \cdot \ldots \cdot \psi_{m}^{k_{m}}(x)$, where the polynomials $\psi_{1}(x), \ldots, \psi_{m}(x)$ are relatively prime then

$$
W=\Gamma\left(f, \xi_{1}(f)(\boldsymbol{v})\right) \oplus \Gamma\left(f, \xi_{2}(f)(\boldsymbol{v})\right) \oplus \ldots \oplus \Gamma\left(f, \xi_{m}(f)(\boldsymbol{v})\right),
$$

where

$$
\xi_{i}(x)=\prod_{j \neq i} \psi_{j}^{k_{j}}(x)
$$

Proof. It is easy to prove the theorem by induction with respect to m using Theorem 22.

Firstly, set $m=2$. Then the conclusion follows from Theorem 22 .
Now assume that the conclusion holds for some $m-1 \geqslant 2$. And assume the hypothesis of the theorem for m. Then consider two polynomials

$$
\phi_{1}(x)=\psi_{1}^{k_{1}}(x) \cdot \psi_{2}^{k_{2}}(x) \cdot \ldots \cdot \psi_{m-1}^{k_{m-1}}(x) \text { and } \phi_{1}(x)=\psi_{m}^{k_{m}}(x)
$$

Again by Theorem 22, we know that

$$
W=\Gamma\left(f, \phi_{1}(\boldsymbol{v})\right) \oplus \Gamma\left(f, \phi_{2}(\boldsymbol{v})\right)
$$

and the annihilators of the spaces $\Gamma\left(f, \phi_{1}(\boldsymbol{v})\right), \Gamma\left(f, \phi_{2}(\boldsymbol{v})\right)$ are $\phi_{2}(x), \phi_{1}(x)$, respectively. Now we are applying the inductive hypothesis to the space $\Gamma\left(f, \phi_{2}(\boldsymbol{v})\right)$.

Problem 3. Find a mapping $f: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ such that \mathbb{R}^{4} becomes a cyclic space

$$
\mathbb{R}^{4}=\Gamma\left(f,\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]\right)
$$

where $\phi(x)=(x-2)^{2}(x-1)^{2}$ is the annihilator of the space and the standard base is the cyclic base. Find the matrix of f. Find the representation of \mathbb{R}^{4} from Theorem 22 as a direct sum of two cyclic spaces whose annihilators are powers of prime polynomials. Find the cyclic bases of the summand spaces of the form given in Theorem 22. Write a matrix of f in the basis which is the union of these bases.

Problem 4. Is any system of n independent vectors in \mathbb{R}^{n} a cyclic base in \mathbb{R}^{n} for some mapping f ?

Problem 5. Let $W<V$ and W be invariant with respect to a linear mapping $f: V \rightarrow V$. If $W=W_{1} \oplus W_{2}, W_{1}, W_{2}$ are cyclic, and the annihilators of W_{1} and W_{2} are relatively prime, then W is cyclic.

Problem 6. Consider the space of polynomials of degree $<n$ with real coefficients. Is it cyclic with respect to the mapping $\phi(x) \mapsto \phi(x+1)$? (Mostowski, Stark)

Hint. Prove, using induction (with respect to k), that for each $k \in \mathbb{N}$ and for each $i \in \mathbb{N}$ the polynomials

$$
(x+i)^{k},(x+i+1)^{k}, \ldots,(x+i+k-1)^{k}
$$

are linearly independent. Then use Theorem 20.

