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JORDAN FORM OF A MATRIX OF A LINEAR MAPPING - THE
FIELD OF REALS CASE

In the previous lecture we proved that in the case of a finite-dimensional linear
space V over the field of complex numbers if f : V → V is a linear mapping then
there exists a basis B of V such that the matrix F representing f in this basis has
a diagonal-like form:

(1) F =


D1

D2
. . .

Dr

 .
for some r, where all blocks Di have the form either

Di = [t]

or 
t
1 t

1
. . .

t
1 t

 .

Now we assume that a finite dimensional space V is taken over the field of real
numbers R. Let dim(V ) = n. Let f : V → V be a linear mapping. Fixing any
particular basis in V and taking the matrix representation F of f consider a linear
mapping from Rn to Rn having the matrix representation F in the standard basis.
If we prove that we can change the basis using a transition matrix A to obtain a
new representation F ′ = AFA−1 in the new basis then we can do exactly the same
for f , changing the old basis via means of A. Thus we can consider V as simply Rn.
Let f ′ be the so-called extension of f to the space Cn. Namely, the basis

e1 =


1
0
...
0
0

 , e2 =


0
1
...
0
0

 , . . . , en =


0
0
...
0
1


is also a basis for Cn and we can set f ′(ei) = f(ei) (f(e1) being a real vector is
also a complex vector). Thus f ′ has been defined as a mapping from Cn to Cn and
it has the same matrix representation as f and in the same basis.
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We adopt the following notation for vectors in Cn. If

v =


a1 + ib1
a2 + ib2

...
an−1 + ibn−1
an + ibn


then

Re(v) =


a1
a2
...

an−1
an

 and Im(v) =


b1
b2
...

bn−1
bn

 .
Thus

v = Re(v) + iIm(v).

Let

v := Re(v)− iIm(v).

Thus

v =


a1 − ib1
a2 − ib2

...
an−1 − ibn−1
an − ibn

 .

Problem 1. If vectors v1, . . . ,vn are linearly independent in Rk, then, treated as
complex vectors, they are also linearly independent in Ck.

From Theorem we know that the space Rn (which is the domain of f) is a direct
sum of cyclic spaces:

Rn = V1 ⊕ . . .⊕ Vm
whose annihilators are of the form φi(x) = (ψi(x))ni , where ψi(x) is a prime poly-
nomial, i.e. it is either of the form

(2) ψi(x) = x− ti

or

(3) ψi(x) = x2 + bix+ ci and bi − 4ci < 0.

Let vi be its generator of the space Vi. Let V ′i be the space over the field C having
the same cyclic basis as Vi. Let f ′ be the extension of f . If (2) holds the same
polynomial φi(x) = (x − ti)ni is the annihilator of V ′i . Then, as we know, we can
change the basis of V ′i to obtain the matrix representation of f ′ on V in the form

Di = [t]
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or 
t
1 t

1
. . .

t
1 t

 .

If (3) holds V ′ being cyclic is a direct sum of two subspaces Wi,1 and Wi,2 of the
annihilators φi,1(x) = (x − αi)ni and φi,1(x) = (x − βi)ni , respectively, where, of
course,

(x− αi)(x− βi) = x2 + bx+ c.

Note that, because b, c are real numbers, from the fact that αi is a root of the
polynomial x2 + bx+ c follows that αi is also a root of x2 + bx+ c. Thus βi = αi.

Problem 2. Show that if wi is a generator of the space Wi,1 then wi is a generator
of the space Wi,2.

Problem 3. Show that if wi is a generator of of the space Wi,1 then the vector
wi + wi is a generator of V ′i (Hence we can assume that vi = wi + wi).

We shall now use Jordan bases of the spaces Wi,1 and Wi,2. Namely, for fixed i, let

p1 = wi, p2 = (f ′ − αi · id)(wi), . . . ,pni = (f ′ − αi · id)ni−1(wi)

and
r1 = wi, r2 = (f ′ − αi · id)(wi), . . . , rni = (f ′ − αi · id)ni−1(wi).

We know from the reasoning concerning the complex case (in the previous theorem)
that

f ′(pj) = αipj + pj+1 for j < ni, and f ′(pni) = αipni
and

f ′(rj) = αirj + rj+1 for j < ni, and f ′(rni) = αirni .

Problem 4. Prove that

f ′(rj) = αipj + pj+1 for j < ni, and f ′(rni) = αipni .

Let αi = a+ ib. Then αi = a− ib. Thus we have

f ′(pj) = (a+ ib)pj + pj+1 for j < ni, and f ′(pni) = (a+ ib)pni ,

and

f ′(rj) = (a− ib)pj + pj+1 for j < ni, and f ′(rni) = (a− ib)pni .

Let, for 1 ¬ j ¬ ni,
s2j−1 = pj + rj

and
s2j = i · (pj − rj).

Problem 5. Prove that the vectors sj have real coefficients, i.e. sj ∈ Rn.
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Problem 6. Prove that the vectors sj , j ¬ 2ni are linearly independent in the space
Cn.

By the fact stated in Problem 6 the vectors sj form a basis for the space Vi. We
have

f ′(s1) = f ′(p1) + f ′(r1) = f ′(p1) + f ′(p1) =

(a+ bi)p1 + p2 + (a− ib)p1 + p2 =

a(p1 + p1) + bi(p1 − p1) + (p2 + p2) =

as1 + bs2 + s3,

and
f ′(s2) = f ′(i(p1 − r1)) = if ′(p1)− if ′(r1) = if ′(p1)− if ′(p1) =

if ′(p1)− if ′(p1) = i((a+ bi)p1 + p2)− i(a+ bi)p1 + p2 =

i((a+ bi)p1 + p2)− i((a− bi)p1 + p2) =

−b(p1 + p1) + a(i(p1 − p1)) + i(p2 − p2) =

−bs1 + as2 + s4.

Similarly, for j < ni, we obtain:

f ′(s2j−1) = as2j−1 + bs2j + s2j+1

and
f ′(s2j) = −bs2j−1 + as2j + s2j+2,

and

f ′(s2ni−1) = f ′(pni + pni) = αipni + αipni = a(pni + pni) + ib(pni − pni) =

= as2ni−1 + bs2ni ,

and
f ′(s2ni) = f ′(i(pni − pni)) = iαipni − iαipni

= ai(pni − pni)− b(pni + pni) = −bs2ni−1 + as2ni−1.

Hence in the basis 〈s1, s2, . . . s2ni−1, s2ni〉 the mapping f restricted to the space
V ′ is represented by the matrix

Fi =


A
E A

E
. . .

A
E A


where

A =
[
a,−b
b, a

]
and E =

[
1, 0
0, 1

]
.

Thus we can state the following theorem.
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Theorem. If V is a finite-dimensional linear space over the field of real naumbers
R and f : V → V is a linear mapping, then there exists a basis of V such that in
this basis f is represented by a matrix F

F =


F1

F2
. . .

Fm

 ,
where the blocks Fi are of one of the following three forms:

[t],


t
1 t

1
. . .

t
1 t

 ,

A
E A

E
. . .

A
E A

 ,

where

A =
[
a,−b
b, a

]
and E =

[
1, 0
0, 1

]
.


