ADVANCED TOPICS IN ALGEBRA

LECTURE 6
(lecture and problems to solve)
2020/21

JORDAN FORM OF A MATRIX OF A LINEAR MAPPING - THE
FIELD OF REALS CASE

In the previous lecture we proved that in the case of a finite-dimensional linear
space V over the field of complex numbers if f : V' — V is a linear mapping then
there exists a basis B of V such that the matrix F' representing f in this basis has
a diagonal-like form:

D,
(1) F= D

D,
for some r, where all blocks D; have the form either
D; = [t]

or

—_ -
—

t
1 ¢

Now we assume that a finite dimensional space V is taken over the field of real
numbers R. Let dim(V) = n. Let f : V — V be a linear mapping. Fixing any
particular basis in V' and taking the matrix representation F' of f consider a linear
mapping from R™ to R™ having the matrix representation F' in the standard basis.
If we prove that we can change the basis using a transition matrix A to obtain a
new representation F’ = AFA~! in the new basis then we can do exactly the same
for f, changing the old basis via means of A. Thus we can consider V' as simply R™.

Let f’ be the so-called extension of f to the space C". Namely, the basis

1 0 0

0 1 0
€1 = , €2 = yeroy€n =

0 0 0

0 0 1

is also a basis for C"™ and we can set f'(e;) = f(e;) (f(e1) being a real vector is
also a complex vector). Thus f’ has been defined as a mapping from C" to C" and
it has the same matrix representation as f and in the same basis.
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We adopt the following notation for vectors in C™. If

a1 + Zbl
as + ibsy
v = :
Ap—1 + Z‘bn—l
a, + ib,
then
a b1
a9 b2
Re(v) = | : and Im(v) =
Ap—1 bn—l
Qp bn
Thus
v = Re(v) + iIm(v).
Let
T := Re(v) —iIm(v).
Thus
a) — ibl
ags — ibg
v =
Gp—1 — ibnfl
a, — ib,
Problem 1. If vectors v, ..., v, are linearly independent in R*, then, treated as

complex vectors, they are also linearly independent in C*.

From Theorem we know that the space R™ (which is the domain of f) is a direct
sum of cyclic spaces:

R'=Vi&...0V,

whose annihilators are of the form ¢;(x) = (¢;(x))™, where 1;(x) is a prime poly-
nomial, i.e. it is either of the form

(2) Yi(xr) =z —t;
or
(3) Vi(x) = 2% + bz 4+ ¢; and b; — 4e; < 0.

Let v; be its generator of the space V;. Let V/ be the space over the field C having
the same cyclic basis as V;. Let f’ be the extension of f. If (2) holds the same
polynomial ¢;(z) = (x — t;)™ is the annihilator of V. Then, as we know, we can
change the basis of V/ to obtain the matrix representation of f’ on V in the form

D, = [f



or

—_
—

t
1 ¢

If (3) holds V' being cyclic is a direct sum of two subspaces W; 1 and W, 2 of the
annihilators ¢; 1(x) = (z — a;)™ and ¢; 1(x) = (z — 8;)™, respectively, where, of
course,

(x— )z — B) =2 +bx+c.
Note that, because b, ¢ are real numbers, from the fact that «; is a root of the
polynomial 22 + bz + ¢ follows that @; is also a root of 2% 4 bx + c. Thus §; = ;.

Problem 2. Show that if w; is a generator of the space W; ; then wj is a generator
of the space W; ».

Problem 3. Show that if w; is a generator of of the space W, then the vector
w; + w; is a generator of V; (Hence we can assume that v; = w; + ;).

We shall now use Jordan bases of the spaces W; 1 and W; ». Namely, for fixed i, let

p1 = w;, P2 = (f — i -id)(w3), ..., pn, = (f — a -1d)™ (w;)
and
T1 :Wi; T2 = (f/ _OTzld)(Wl)a7rn = (f/ _OTlld)nY_l(Wl)

We know from the reasoning concerning the complex case (in the previous theorem)
that

f/(Pj) = a;pj + pjy1 for j <n;, and f'(Pn;) = aipn,
and
f(rj) =airj +rjqa for j <ny, and f'(rp,) = @rn,.

Problem 4. Prove that
f'(rj) = @p; + Pjt1 for j <ni, and f'(ry,) = Qipn,.

Let a; = a 4+ ib. Then @; = a — ¢b. Thus we have
f'(pj) = (a+ib)pj + pjt1 for j <ni, and f'(pn,) = (a+ib)py,,
and
f'(rj) = (a —ib)pj + Pjz1 for j <n;, and f'(rp,) = (a — ib)Pn,.
Let, for 1 < j < ny,
82j-1 =Pj +T;j

and

Szj =1- (pj — ’I‘j).

Problem 5. Prove that the vectors s; have real coefficients, i.e. s; € R™.
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Problem 6. Prove that the vectors s;, j < 2n; are linearly independent in the space
cn.

By the fact stated in Problem 6 the vectors s; form a basis for the space V;. We
have

f'(s1) = f'(p1) + f'(r1) = ['(p1) + ['(P1) =
(a+ bi)p1 + p2 + (a — ib)p1 + p2 =
a(p1 +P1) +bi(p1 — P1) + (P2 +P2) =
asy + bss + s3,

and
f(s2) = f'(i(pr — 1)) = if'(p1) —if'(r1) = if'(p1) —if'(P1) =
if'(p1) —if'(p1) = i((a+ bi)p1 + p2) —i(a+ bi)p1 + p2 =
i((a +bi)py + p2) —i((a — bi)P1 + P2) =
—b(p1 + p1) + ali(p1 — P1)) +i(p2 — P2) =
—bsy1 + asa + S4.
Similarly, for j < n;, we obtain:
['(82j-1) = aszj_1 + bsaj + S2j4+1
and
['(825) = —bsaj_1 + aszj + s2j42,
and
f'(s2n,—1) = f'(Pn, + Pn;) = @iPn, + AP, = a(pn, + Pn,) + ib(Pn, — Pn;) =
= aS2pn,—1 + bsa2y,,
and
f'(82n;) = f'(i(Pn; — Pr;)) = 1P, — i@iPn;
= ai(Pn; — Pn;) — 0(Pn; + Pn;) = —bS2n,—1 + aSa2n,—1.

Hence in the basis (s1, S2, ... S2n;—1, S2n;) the mapping f restricted to the space
V' is represented by the matrix

A
E A
E
A
E A

where

a,—b _{1,0
A

Thus we can state the following theorem.
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Theorem. If V is a finite-dimensional linear space over the field of real naumbers

R and f:V — V is a linear mapping, then there exists a basis of V' such that in

this basis f is represented by a matrix F’

Fy

F = s
F,

where the blocks F; are of one of the following three forms:

1],
t
1t
1
t
1t
A
E A
E
A
E A

where



