Zał. nr 5 do ZW 16/2020

	COURSE				
Name of the course in polish	: Kryptografia				
Name of the course in english	: Cryptography				
Field of study	: Algoritmic Computer Science				
Specialty (if applicable)	:				
Level and form of studies	: II degree	e, stationary			
Type of course	: compuls	ory			
Course code	: W04INA-SM4008G				
Group of courses	: Yes				
	Lectures	Exercides	Laboratory	Project	Seminar
Number of classes held in schools (ZZU)	30	30	15		
The total number of hours of student wor-	45	60	45		
kload (CNPS)					
Assesment	exam				
For a group of courses final course mark	X				
Number of ECTS credits	2	2	1		
including the number of points correspon-		2	1		
ding to the classes of practical (P)					
including the number of points correspon-	2	2	1		
ding occupations requiring direct contact					
(BK)					
PREREQUISITES FOR I	KNOWLEDG	E, SKILLS A	ND OTHER PO	OWERS	
Standard knowledge of the field: abstract					computational
complexity.	2 0				*
	COURSE OB	IFCTIVES			

C1 presentation of advanced cryptographic techniques used in practice

C2 understanding advanced mechanisms of modern cryptography

C3 getting skills in implementing cryptographic techniques

COURSE LEARNING OUTCOMES

The scope of the student's knowledge:

W1 knows most important techniques of modern cryptography

W2 knows tools and mathematical structures used to construct cryptographic schemes

W3 knows the most important problems and challenges of modern cryptography and cryptoanalysis

The student skills:

U1 is able to build cryptographic tools to ensure security

U2 is able to build and use cryptographic tools

U3 is able to use abstract mathematical structures used to implement cryptographic schemes

U4 is able to evaluate and select apropriate cryptographic schemes according to a set of given requirements

The student's social competence:

K1 understands need of use of cryptographic techniques

K2 is able to apply cryptographic techniques to the end-user needs and behaviours

K3 is able to adjust a cryptographic solution to the law and economical requirements

K4 is able to estimate and predict possible treads and attack surfaces

COURSE CONTENT

	Type of classes - lectures	
Wy1	Cryptography - history and overview	2h
Wy2	One time pad. Stream ciphers	2h
Wy3	Block ciphers	2h
Wy4	PRPs and PRFs as block cipher abstractions	2h
Wy5	Message integrity. Collision resistant hash functions.	2h
Wy6	Security against active attacks - authenticate encryption	2h
Wy7	Discrete-log assumptions	2h
Wy8	Cryptography using arithmetic modulo composites	2h
Wy9	Digital signatures	2h
Wy10	Secure Multi Party Computation. Obliovious transfer	2h
Wy11	Zero knowledge proofs	2h
Wy12	Bit commitments, verifiable secret sharing	2h
Wy13	Quantum cryptography	2h
Wy14	Post Quantum Cryptography	4h
	Sum of hours	30h

	Type of classes - exercises	
Ćw1	Perfect secrecy. Ciphertext-only attacks	2h
Ćw2	Attacks on block ciphers	2h
Ćw3	Attacks on stream ciphers. Properties of pseudorandom generators	2h
Ćw4	Hash functions, message authentication codes. Properties of pseudorandom functions.	2h
Ćw5	Attacks on RSA. Integer factorization.	2h
Ćw6	Key agreement. ElGamal. Discreete log problem	2h
Ćw7	CPA and CCA	2h
Ćw8	Timing attacks on RSA implementation	2h
Ćw9	Oblivious transfer	2h
Ćw10	Interactive proofs. Zero-knowledge proofs	4h
Ćw11	Homomorphic encryption	2h
Ćw12	Secure multiparty computations	2h
Ćw13	Quantum cryptography	2h
Ćw14	Post-Quantum cryptography	2h
	Sum of hours	30h
	Type of classes - laboratory	1
Lab1	How to implement a cryptographic provider	2h
Lab2	Securing data	2h
Lab3	Hash functions	2h
Lab4	Primality testing	2h
Lab5	Discrete logarithm	2h
Lab6	Factoring	2h
Lab7	Implementation of a chosen digital signature scheme	3h
	Sum of hours	15h
	Applied learning tools	

- 1. Traditional lecture
- 2. Solving tasks and problems
- 3. Solving programming tasks
- 4. Consultation
- 5. Self-study students

EVALUATION OF THE EFFECTS OF EDUCATION ACHIEVEMENTS

Value	Number of training effect	Way to evaluate the effect of educa-
		tion
F1	W1-W3, K1-K4	
F2	U1-U4, K1-K4	
F3	U1-U4, K1-K4	
P=%*F1+%*F2+%*F3	·	

BASIC AND ADDITIONAL READING

- 1. Introduction to modern cryptography. Jonathan Katz, Yehuda Lindell
- 2. Handbook of Applied Cryptography. Alfred J. Menezes, Paul C. van Oorschot and Scott A. Vanstone, ISBN:0-8493-8523-7
- 3. Cryptography. Theory and practice Douglas R. Stinson
- 4. The Foundations of Cryptography (https://www.wisdom.weizmann.ac.il/ oded/foc-drafts.html) Oded Goldreich
- 5. Lecture Notes on Cryptography (https://cseweb.ucsd.edu/mihir/papers/gb.pdf) S. Goldwasser, M. Bellare

SUPERVISOR OF COURSE

dr Filip Zagórski

MATRIX OF LEARNING OUTCOMES FOR THE SUBJECT Kryptografia WITH LEARNING OUTCOMES IN THE FIELD OF ALGORITHMIC COMPUTER SCIENCE

WITH LEARNING OUTCOMES IN THE FIELD OF ALGORITHMIC COMPUTER SCIENCE				
Subject lear-	Relating the subject effect to the learning	Objectives of		Teaching tool
ning effect	outcomes defined for the field of study	the course**	tent**	number**
W1	K2_W01 K2_W02 K2_W03 K2_W04	C1	Wy1-Wy14	145
W2	K2_W01 K2_W02 K2_W03 K2_W04	C1	Wy1-Wy14	145
	K2_W05 K2_W07 K2_W08			
W3	K2_W01 K2_W02 K2_W03 K2_W04	C1	Wy1-Wy14	145
	K2_W05 K2_W08			
U1	K2_U05 K2_U06 K2_U10 K2_U12	C2 C3	Ćw1-Ćw14	2345
			Lab1-Lab7	
U2	K2_U01 K2_U03 K2_U04 K2_U05	C2 C3	Ćw1-Ćw14	2345
	K2_U06 K2_U12 K2_U13		Lab1-Lab7	
U3	K2 U03 K2 U06	C2 C3	Ćw1-Ćw14	2345
			Lab1-Lab7	
U4	K2_U01 K2_U02 K2_U03 K2_U04	C2 C3	Ćw1-Ćw14	2345
	K2_U05 K2_U06 K2_U09 K2_U10		Lab1-Lab7	
	K2_U11 K2_U12			
K1	K2_K02 K2_K03 K2_K05 K2_K07	C1 C2 C3	Wy1-Wy14	1 2 3 4 5
	K2_K09 K2_K10		Ćw1-Ćw14	
			Lab1-Lab7	
K2	K2_K02 K2_K03 K2_K05 K2_K07	C1 C2 C3	Wy1-Wy14	12345
	K2_K08 K2_K09 K2_K10		Ćw1-Ćw14	
			Lab1-Lab7	
K3	K2_K01 K2_K05 K2_K09 K2_K12	C1 C2 C3	Wy1-Wy14	1 2 3 4 5
			Ćw1-Ćw14	
			Lab1-Lab7	
K4	K2_K01 K2_K02 K2_K03 K2_K05	C1 C2 C3	Wy1-Wy14	1 2 3 4 5
	K2_K07 K2_K09 K2_K10		Ćw1-Ćw14	
			Lab1-Lab7	