Faculty of Information and Communication Technology/Department of Fundamentals of Computer Science COURSE CARD					
Name of the course in polish	: Wstęp do Elektroniki dla Systemów Bezpieczeństwa				
Name of the course in english	Introduction to Electronics for Security Engineers				
Field of study	Algoritmic Computer Science				
Specialty (if applicable)	: Ald				
Level and form of studies	: II degree, stationary				
Type of course	optional				
Course code	W04INA-SM4107G				
Group of courses	Yes				
	Lectures	Exercides	Laboratory	Project	Seminar
Number of classes held in schools (ZZU)	30	30			
The total number of hours of student workload (CNPS)	60	120			
Assesment	pass				
For a group of courses final course mark	X				
Number of ECTS credits	3	3			
including the number of points corresponding to the classes of practical (P)		3			
including the number of points corresponding occupations requiring direct contact (BK)	2	2			
PREREQUISITES FOR KNOWLEDGE, SKILLS AND OTHER POWERS Basic knowledge of electromagnetism and electricity derived from science classes at high-school level.					
COURSE OBJECTIVES					
C1 understanding fundamental mechanism of functionality of electronic systems C2 skills in analysis and modelling of electronic systems					

COURSE LEARNING OUTCOMES

The scope of the student's knowledge:

W1 electronics background for information systems
W2 analytical models for fundamental electronic systems
W3 security technologies in electronics
The student skills:

U1 can adapt a computer system to security requirements taking into account electronics
U2 can analyze functionality of simple electronic components
U3 can design simple electronic components
U4 can carry out basic experiments and interpret the measurement results
The student's social competence:

K1 Can co-operate with electronic engineers - security specialists.
K2 Is capable of understanding non-polish literature on the subject.
K3 Can identify risks beyond his/her own field of expertise.
K4 Constructs requirements for software/hardware systems including information from other areas of knowledge.

COURSE CONTENT		
Type of classes - lectures		2 h
Wy1	Electronic properties of materials	4 h
Wy2	Diodes and diode circuits	2 h
Wy3	MOS transistors and biasing	4 h
Wy4	MOS logic families	4 h
Wy5	Bipolar transistors and logic families	2 h
Wy6	Design parameters and issues	2 h
Wy7	Storage elements	2 h
Wy8	Interfacing logic families and standard buses	2 h
Wy9	Amplifiers	2 h
Wy10	Circuit modeling and simulation	2 h
Wy11	Information leakage	2 h
Wy12	Tamper evidence and resistance	30 h
	Sum of hours	4 h
		Type of classes - exercises
Ćw1	Current consumption in logic circuits.	4 h
Ćw2	Random bits generation.	4 h
Ćw3	Race condition in flip-flops. Random bits generation.	4 h
Ćw4	Tapping of communcation bus.	4 h
Ćw5	Radio sniffer.	30 h
	Sum of hours	

MATRIX OF LEARNING OUTCOMES FOR THE SUBJECT

Wstęp do Elektroniki dla Systemów Bezpieczeństwa
WITH LEARNING OUTCOMES IN THE FIELD OF ALGORITHMIC COMPUTER SCIENCE

Subject learning effect	Relating the subject effect to the learning outcomes defined for the field of study	Objectives of the course**	Program content**	Teaching tool number**
W1	$\begin{array}{llll} \text { K2_W01 } & \text { K2_W03 K2_W04 } & \text { K2_W05 } \\ \text { K2_W09 } & & & \end{array}$	C1	Wy1-Wy12	1245
W2	K2_W01 K2_W02 K2_W04 K2_W07	C1	Wy1-Wy12	1245
W3	$\begin{array}{lll} \hline \text { K2_W04 K2_W05 K2_W06 } & \text { K2_W07 } \\ \text { K2_W08 K2_W09 K2_W10 } \end{array}$	C1	Wy1-Wy12	1245
U1	$\begin{array}{llll} \hline \text { K2_U03 K2_U05 } & \text { K2_U06 } & \text { K2_U11 } \\ \text { K2_U12 K2_U13 } & & \\ \hline \end{array}$	C2	Ćw1-Ćw5	345
U2	K2_U01 K2_U02 K2_U03 K2_U04 K2_U05 K2_U06 K2_U08 K2_U10 K2_U12	C2	Ćw1-Ćw5	345
U3	$\begin{aligned} & \text { K2_U01 K2_U02 } \\ & \text { K2_U08 K2_U12 } \end{aligned}$	C2	Ćw1-Ćw5	345
U4	K2_U04 K2_U05 K2_U08 K2_U12	C2	Ćw1-Ćw5	345
K1	$\begin{array}{llll} \hline \text { K2_K02 K2_K03 } & \text { K2_K06 } & \text { K2_K07 } \\ \text { K2_K09 K2_K10 } & & \end{array}$	C1 C2	$\begin{aligned} & \text { Wy1-Wy12 } \\ & \text { Ćw1-Ćw5 } \end{aligned}$	12345
K2	K2_K03 K2_K06 K2_K07 K2_K09	C1 C2	$\begin{aligned} & \text { Wy1-Wy12 } \\ & \text { Ćw1-Ćw5 } \end{aligned}$	12345
K3	K2_K02 K2_K03 K2_K07 K2_K09	C1 C2	$\begin{aligned} & \text { Wy1-Wy12 } \\ & \text { Ćw1-Ćw5 } \end{aligned}$	12345
K4	$\begin{array}{llll} \hline \text { K2_K02 K2_K03 } & \text { K2_K04 } & \text { K2_K08 } \\ \text { K2_K09 K2_K10 } & & \end{array}$	C1 C2	$\begin{aligned} & \text { Wy1-Wy12 } \\ & \text { Ćw1-Ćw5 } \end{aligned}$	12345

