COMPLETELY NONMEASURABLE UNIONS

ROBERT RAŁOWSKI AND SZYMON ŻEBERSKI

Abstract

Assume that no cardinal $\kappa<2^{\omega}$ is quasi-measurable (κ is quasi-measurable if there exists a κ-additive ideal \mathscr{I} of subsets of κ such that the Boolean algebra $P(\kappa) / \mathscr{I}$ satisfies c.c.c.). We show that for a metrizable separable space X and a proper c.c.c. σ-ideal \mathbb{I} of subsets of X that has a Borel base, each point-finite cover $\mathscr{A} \subseteq \mathbb{I}$ of X contains uncountably many pairwise disjoint subfamilies $\mathscr{A}_{\xi} \subseteq \mathscr{A}, \xi<\omega_{1}$, with \mathbb{I}-Bernstein unions $\bigcup \mathscr{A}_{\xi}$ (a subset $A \subseteq X$ is \mathbb{I}-Bernstein if A and $X \backslash A$ meet each Borel \mathbb{I} positive subset $B \subseteq X)$. This result is a generalization of Four Poles Theorem (see [1]) and results from [2] and [4].

1. Notation and motivation

In this paper X will denote a metrizable separable space. Borel will denote the family of all Borel subsets of X. A family $\mathbb{I} \subseteq P(X)$ will be a σ-ideal of subsets of X with Borel base containing singletons. We will assume that \mathbb{I} is a proper σ-ideal i.e $X \notin \mathbb{I}$. Let us recall that \mathbb{I} has Borel base means that $(\forall I \in \mathbb{I})(\exists J \in \mathbb{I} \cap \operatorname{Borel})(I \subseteq J)$. We say that a set $A \subseteq X$ is \mathbb{I}-positive if $A \notin \mathbb{I}$. We have the following cardinal coefficients:

$$
\begin{aligned}
\operatorname{add}(\mathbb{I}) & =\min \{|\mathscr{C}|: & \mathscr{C} \subseteq \mathbb{I}, \cup \mathscr{C} \notin \mathbb{I}\}, \\
\operatorname{cov}(\mathbb{I}) & =\min \{|\mathscr{C}|: & \mathscr{C} \subseteq \mathbb{I}, \bigcup \mathscr{C}=X\}, \\
\operatorname{cov}(\mathbb{I}) & =\min \{|\mathscr{C}|: & \mathscr{C} \subseteq \mathbb{I},(\exists B \in \operatorname{Borel} \backslash \mathbb{I})(\bigcup \mathscr{C} \supseteq B)\}, \\
\operatorname{cof}(\mathbb{I}) & =\min \{|\mathscr{C}|: & \mathscr{C} \subseteq \mathbb{I},(\forall I \in \mathbb{I})(\exists C \in \mathscr{C})(I \subseteq \bar{C})\} .
\end{aligned}
$$

Similarly for a cover $\mathscr{A} \subseteq P(X)$ we can define

$$
\begin{aligned}
\operatorname{add}(\mathscr{A}) & =\min \{|\mathscr{C}|: \\
\operatorname{cov}_{h}^{\pi}(\mathscr{A}) & =\min \{|\mathscr{C}|: \mathscr{C} \subseteq \mathscr{A}, \bigcup \mathscr{A},(\exists B \in \operatorname{Borel} \backslash \mathbb{I})(\bigcup \mathscr{C} \supseteq B)\} .
\end{aligned}
$$

Recall that the σ-ideal \mathbb{I} has the Steinhaus property if for any two \mathbb{I}-positive Borel sets $A, B \in$ Borel $\backslash \mathbb{I}$ the complex sum $A+B=\{a+b$:

[^0]$a \in A, b \in B\}$ contains a nonempty open set. Let us remark that if the ideal \mathbb{I} has the Steinhaus property, then $\operatorname{cov}_{h}(\mathbb{I})=\operatorname{cov}(\mathbb{I})$.

Let us formulate the definition of the star which will be oftenly used in this paper.

Definition 1.1. Assume that $\mathscr{A} \subseteq P(X)$ and $x \in X$. We say that $\mathscr{A}(x)$ is the \mathscr{A}-star of a point x if

$$
\mathscr{A}(x)=\{A \in \mathscr{A}: x \in A\} .
$$

We say that a family \mathscr{A} is point-finite if it is a family with finite stars.

We start our consideration with the following theorem [1], known in literature as Four Poles Theorem.

Theorem 1.1 (Brzuchowski, Cichoń, Grzegorek, Ryll-Nardzewski). Let $\mathscr{A} \subseteq \mathbb{I}$ be a point-finite cover of X. Then there exists a subfamily \mathscr{A}^{\prime} such that $\bigcup \mathscr{A}^{\prime}$ is not \mathbb{I}-measurable, i.e. does not belong to the σ-field generating by Borel and \mathbb{I}.

There is a hypothesis stated by J. Cichoń saying that we can improve the conclusion of the above theorem to get $\bigcup \mathscr{A}^{\prime}$ completely \mathbb{I}-nonmeasurable.

Definition 1.2. A subset $A \subseteq X$ is called

- completely \mathbb{I}-nonmeasurable if for any \mathbb{I}-positive Borel subset $B \subseteq X$ both sets $A \cap B$ and $B \backslash A$ are \mathbb{I}-positive;
- \mathbb{I}-Bernstein if both A and $X \backslash A$ meet each \mathbb{I}-positive Borel subset of X.

Let us observe that for the ideal \mathbb{I} of countable subsets, \mathbb{I}-Bernstein sets are Bernstein in the classical sense.

Let us remark that definitions of completely \mathbb{I}-nonmeasurable set and \mathbb{I}-Bernstein are equivalent.
Proposition 1.1. A subset $A \subseteq X$ is completely \mathbb{I}-nonmeasurable if and only if A is \mathbb{I}-Bernstein.

We left the proof as an excercise to the reader.
Recall that \mathbb{I} is c.c.c. if every family $\mathscr{A} \subseteq$ Borel $\backslash \mathbb{I}$ such that

$$
\left(\forall A, A^{\prime} \in \mathscr{A}\right)\left(A=A^{\prime} \vee A \cap A^{\prime} \in \mathbb{I}\right)
$$

is at most countable.
Assume that $\mathscr{A} \subseteq \mathbb{I}$. Let \mathscr{I} be an ideal on $P(\mathscr{A})$ associated with \mathbb{I} in the following way

$$
(\forall \mathscr{X} \in P(\mathscr{A}))(\mathscr{X} \in \mathscr{I} \longleftrightarrow \bigcup \mathscr{X} \in \mathbb{I})
$$

Then $W \subseteq P(\mathscr{A}) \backslash \mathscr{I}$ is an antichain in $P(\mathscr{A}) / \mathscr{I}$ iff $(\forall a, b \in W)(a \neq$ $b \longrightarrow a \cap b \in \mathscr{I})$. We say that $P(\mathscr{A}) / \mathscr{I}$ is c.c.c. iff every antichain on $P(\mathscr{A}) / \mathscr{I}$ is at most countable.

We say that the cardinal number κ is quasi-measurable if there exists κ-additive ideal \mathscr{I} of subsets of κ such that the Boolean algebra $P(\kappa) / \mathscr{I}$ satisfies c.c.c. Cardinal κ is weakly inaccessible if κ is regular cardinal and for every cardinal $\lambda<\kappa$ we have that $\lambda^{+}<\kappa$. Recall that every quasi-measurable cardinal is weakly inaccessible (see [3]), so it is a large cardinal.

Let us recall a result from [4].
Theorem 1.2 (Żeberski). Assume that no cardinal $\kappa \leq 2^{\omega}$ is quasimeasurable. Assume that \mathbb{I} satisfies c.c.c. Let $\mathscr{A} \subseteq \mathbb{I}$ be a point-finite cover of X. Then there exists a subfamily $\mathscr{A}^{\prime} \subseteq \mathscr{A}$ such that $\bigcup \mathscr{A}^{\prime}$ is \mathbb{I}-Bernstein.

The main result of this paper is the following theorem.
Theorem 1.3. Assume that no cardinal $\kappa<2^{\omega}$ is quasi-measurable. Assume that the ideal \mathbb{I} is c.c.c. Let $\mathscr{A} \subseteq \mathbb{I}$ be a point-finite cover of X. Then there exist pairwise disjoint subfamilies $\mathscr{A}_{\xi}, \xi \in \omega_{1}$, of \mathscr{A} such that each union $\bigcup \mathscr{A}_{\xi}$ is \mathbb{I}-Bernstein.

2. Auxiliary Results

For a subset $D \subseteq X$ let $\lceil D\rceil_{\mathbb{I}}$ denote the set of minimal elements of the family $\left\{B \in\right.$ Borel : $\left.D \subseteq_{\mathbb{I}} B\right\}$ partially preordered by the relation $A \subseteq_{\mathbb{I}} B$ (meaning that $A \backslash B \in \mathbb{I}$). If the ideal \mathbb{I} is c.c.c., then $\lceil D\rceil_{\mathbb{I}}$ is not empty and thus contains a Borel set $B \supseteq_{\mathbb{I}} D$ such that $B \subseteq_{\mathbb{I}} B^{\prime}$ for each Borel set $B^{\prime} \supseteq_{\mathbb{I}} D$.

Let us recall three technical lemmas from [4] (Theorem 3.3, Lemma 3.4, Lemma 3.5).

Lemma 2.1 (Żeberski). If the ideal \mathbb{I} is c.c.c., then for any uncountable family $\left\{A_{\xi}: \xi \in \omega_{1}\right\}$ of subsets of X there is an uncountable family $\left\{I_{\alpha}\right\}_{\alpha \in \omega_{1}}$ of pairwise disjoint countable subsets of ω_{1} such that $\left\lceil\bigcup_{\xi \in I_{\alpha}} A_{\xi}\right\rceil_{\mathbb{I}}=\left\lceil\bigcup_{\xi \in I_{\beta}} A_{\xi}\right\rceil_{\mathbb{I}}$ for all $\alpha<\beta<\omega_{1}$.

The next lemma is a reformulation of a result obtained in [4].
Lemma 2.2 (Żeberski). If the ideal \mathbb{I} is c.c.c., and $\mathscr{A} \subseteq \mathbb{I}$ be a pointfinite family such that $\bigcup \mathscr{A} \notin \mathbb{I}$ and the algebra $P(\mathscr{A}) / \mathscr{I}$ is not c.c.c., then \mathscr{A} contains uncountably many pairwise disjoint subfamilies \mathscr{A}_{α}, $\alpha \in \omega_{1}$ such that $\left\lceil\bigcup \mathscr{A}_{\alpha}\right\rceil_{\mathbb{I}}=\left\lceil\bigcup \mathscr{A}_{\beta}\right\rceil_{\mathbb{I}} \neq\lceil\emptyset\rceil_{\mathbb{I}}$ for all $\alpha, \beta<\omega_{1}$.

Lemma 2.3 (Żeberski). If the ideal \mathbb{I} is c.c.c., then for each pointfinite cover \mathscr{A} of X the family \mathscr{A}^{\prime} of all sets $A \in \mathscr{A}$ containing an \mathbb{I}-positive Borel subset is at most countable.

In paper [2] (Theorem 3.2) it is shown that if $\operatorname{cov}_{h}(\mathbb{I})=\operatorname{cof}(\mathbb{I})$ and $\mathscr{A} \subseteq \mathbb{I}$ is a cover of X such that $\bigcup \mathscr{A}(x) \in \mathbb{I}$ for every $x \in X$, then there is a family $\mathscr{A}^{\prime} \subseteq \mathscr{A}$ such that $\bigcup \mathscr{A}^{\prime}$ is \mathbb{I}-Bernstein. This result can be generalized. Namely, we have the following theorem.

Theorem 2.1. Let $\mathscr{A} \subseteq \mathbb{I}$ be a cover of X such that for any subset $D \subseteq X$ of cardinality $|D|<2^{\omega}$ the union $\bigcup_{x \in D} \bigcup \mathscr{A}(x)$ contains no \mathbb{I} positive Borel subset of X. Then \mathscr{A} contains continuum many pairwise disjoint subfamilies $\mathscr{A}_{\alpha}, \quad \alpha \in 2^{\omega}$, with \mathbb{I}-Bernstein unions $\bigcup \mathscr{A}_{\alpha}$.

Proof. Let us enumerate the set of all Borel \mathbb{I}-positive sets Borel $\backslash \mathbb{I}=$ $\left\{B_{\alpha}: \alpha<2^{\omega}\right\}$. By transfinite induction we will construct a sequence

$$
\left(\left(A_{\xi, \eta}, d_{\xi}\right) \in \mathscr{A} \times B_{\xi}: \quad \xi, \eta<2^{\omega}\right)
$$

with the following conditions:
(1) $\left(\forall \xi, \eta<2^{\omega}\right)\left(A_{\xi, \eta} \cap B_{\xi} \neq \emptyset\right)$,
(2) $\bigcup_{\xi, \eta<2^{\omega}} A_{\xi, \eta} \cap\left\{d_{\xi}: \xi<2^{\omega}\right\}=\emptyset$,
(3) $\left(\forall \xi, \xi^{\prime}<2^{\omega}\right)\left(\forall \eta, \eta^{\prime}<2^{\omega}\right)\left(\eta \neq \eta^{\prime} \longrightarrow A_{\xi, \eta} \neq A_{\xi^{\prime}, \eta^{\prime}}\right)$.

Let us fix $\alpha<2^{\omega}$ and assume that we have defined the sequence

$$
\left(\left(A_{\xi, \eta}, d_{\xi}\right) \in \mathscr{A} \times B_{\xi}: \quad \xi, \eta<\alpha\right)
$$

with the following conditions:
(4) $(\forall \xi, \eta<\alpha)\left(A_{\xi, \eta} \cap B_{\xi} \neq \emptyset\right)$,
(5) $\bigcup_{\xi, \eta<\alpha} A_{\xi, \eta} \cap\left\{d_{\xi}: \xi<\alpha\right\}=\emptyset$,
(6) $\left(\forall \xi, \xi^{\prime}<\alpha\right)\left(\forall \eta, \eta^{\prime}<\alpha\right)\left(\eta \neq \eta^{\prime} \longrightarrow A_{\xi, \eta} \neq A_{\xi^{\prime}, \eta^{\prime}}\right)$.

For every $\xi<\alpha$ let us consider the star $\mathscr{A}\left(d_{\xi}\right)$. By assumption the family $\bigcup_{\xi<\alpha} \mathscr{A}\left(d_{\xi}\right)$ does not cover any \mathbb{I}-positive Borel set. So, assumption guarantees that we can choose a set $\left\{A_{\alpha, \eta} \in \mathscr{A}: \eta<\alpha\right\} \subseteq \mathscr{A} \backslash\left\{A_{\xi, \eta}\right.$: $\xi, \eta<\alpha\}$ of pairwise distinct sets such that
(7) $(\forall \eta<\alpha)\left(A_{\alpha, \eta} \cap B_{\alpha} \neq \emptyset\right)$,
(8) $(\forall \xi, \eta<\alpha)\left(d_{\xi} \notin A_{\alpha, \eta}\right)$.

The same argument gives us the set $\left\{A_{\xi, \alpha} \in \mathscr{A}: \quad \xi \leq \alpha\right\} \subseteq \mathscr{A} \backslash\left\{A_{\xi, \eta}\right.$: $\xi \leq \alpha, \eta<\alpha\}$ of pairwise distinct sets with the following property:

$$
(\forall \xi \leq \alpha)\left(A_{\xi, \alpha} \cap B_{\xi} \neq \emptyset \wedge A_{\xi, \alpha} \cap\left\{d_{\xi^{\prime}}: \xi^{\prime}<\alpha\right\}=\emptyset\right) .
$$

Once again by assumption we can find $d_{\alpha} \in B_{\alpha}$ such that $\left(\bigcup_{\xi, \eta \leq \alpha} A_{\xi, \eta}\right) \cap$ $\left\{d_{\alpha}\right\}=\emptyset$. It finishes the α-step of our construction.

Now, let us put $\mathscr{A}_{\eta}=\left\{A_{\xi, \eta} \in \mathscr{A}: \xi<2^{\omega}\right\}$ for any $\eta<2^{\omega}$. The family $\left\{\mathscr{A}_{\eta}: \eta<2^{\omega}\right\}$ fulfills the assertion of our Theorem.

Corollary 2.1. If $\operatorname{cov}_{h}(\mathbb{I})=2^{\omega}$ and $\mathscr{A} \subseteq \mathbb{I}$ is a cover of X such that $|\mathscr{A}(x)|<c f\left(2^{\omega}\right)$ for every $x \in X$, then there exists continuum many pairwise disjoint subfamilies $\left\{\mathscr{A}_{\alpha}: \alpha \in 2^{\omega}\right\}$ of the family \mathscr{A} such that for every $\alpha \in 2^{\omega}$ the set $\bigcup \mathscr{A}_{\alpha}$ is completely \mathbb{I}-nonmeasurable.

Theorem 2.2. Assume that no cardinal $\kappa<2^{\omega}$ is quasi-measurable. Let $\mathscr{A} \subseteq \mathbb{I}$ be a family with stars of size $<2^{\omega}$. If $\bigcup \mathscr{A} \notin \mathbb{I}$ then $P(\mathscr{A}) / \overline{\mathscr{I}}$ is not c.c.c.

Proof. Assume that $\mathscr{A} \subseteq \mathbb{I}$ satisfies the following conditions
(1) $\bigcup \mathscr{A} \notin \mathbb{I}$,
(2) $P(\mathscr{A}) / \mathscr{I}$ is c.c.c.

Since 2^{ω} is the minimal possible quasi-measurable cardinal, $|\mathscr{A}|=2^{\omega}$ and 2^{ω} is regular. Moreover $\operatorname{add}(\mathscr{A})=2^{\omega}$. By the regularity of the continuum and the fact that every star have size $<2^{\omega}$ we get that $\operatorname{add}(\{\bigcup \mathscr{A}(x): \quad x \in X\})=2^{\omega}$. So the family \mathscr{A} fulfils the assumptions of Theorem 2.1 (for $X=\bigcup \mathscr{A}$). By Theorem 2.1 there exists $\left\{\mathscr{C}_{\alpha}\right.$: $\left.\alpha<2^{\omega}\right\}$ such that
(3) $\mathscr{C}_{\alpha} \subseteq \mathscr{A}$ for any $\alpha<2^{\omega}$,
(4) $\forall \alpha<2^{\omega} \bigcup \mathscr{C}_{\alpha}$ is completely \mathbb{I}-nonmeasurable,
(5) $\forall \alpha, \beta<2^{\omega} \quad \alpha \neq \beta \longrightarrow \mathscr{C}_{\alpha} \cap \mathscr{C}_{\beta}=\emptyset$.

In particular, the family $\left\{\mathscr{C}_{\alpha}: \alpha<2^{\omega}\right\}$ forms an antichain in $P(\mathscr{A}) / \mathscr{I}$, what gives a contradiction.

Now, let us focus on the proof of main result.
Proof of Theorem 1.3. By transfinite induction we construct a family $\left\{B_{\alpha}\right\}$ of pairwise disjoint \mathbb{I}-positive Borel sets and a family $\left\{\left\{\mathscr{A}_{\xi}^{\alpha}\right\}_{\xi \in \omega_{1}}\right\}$ of subfamilies of \mathscr{A} satisfying the following conditions
(1) $\left(\forall \xi<\zeta<\omega_{1}\right)\left(\mathscr{A}_{\xi}^{\alpha} \cap \mathscr{A}_{\zeta}^{\alpha}=\emptyset\right)$,
(2) $\left(\forall \xi<\omega_{1}\right)\left(B_{\alpha} \in\left\lceil\bigcup \mathscr{A}_{\xi}^{\alpha} \backslash \bigcup_{\beta<\alpha} B_{\beta}\right\rceil_{\mathbb{I}}\right)$.

At α-step we consider the family $\mathscr{A}^{\alpha}=\left\{A \backslash \bigcup_{\xi<\alpha} B_{\xi}: A \in \mathscr{A} \backslash\right.$ $\left.\bigcup_{\xi<\alpha} \mathscr{A}_{\xi}\right\}$. If $\bigcup \mathscr{A}^{\alpha} \in \mathbb{I}$ then we finish our construction. If $\bigcup \mathscr{A}^{\alpha} \notin \mathbb{I}$ then by Theorem 2.2 the algebra $P\left(\mathscr{A}^{\alpha}\right) / \mathscr{I}$ is not c.c.c. We use Lemma 2.2 to obtain a required family $\left\{\mathscr{A}_{\xi}^{\alpha}\right\}_{\xi \in \omega_{1}}$. We put B_{α} to be any member of $\left\lceil\bigcup \mathscr{A}_{0}^{\alpha} \backslash \bigcup_{\zeta<\alpha} B_{\zeta}\right\rceil \mathbb{I}$.

Since \mathbb{I} satisfies c.c.c., the construction have to end up at some step $\gamma<\omega_{1}$.

Now put $\mathscr{A}_{\xi}^{\prime}=\bigcup_{\alpha<\gamma} \mathscr{A}_{\xi}^{\alpha}$. By construction for each $\xi<\omega_{1}$ we have

$$
\left\lceil\bigcup \mathscr{A}_{\xi}^{\prime}\right\rceil_{\mathbb{I}}=\left\lceil\bigcup_{\alpha<\gamma} B_{\alpha}\right\rceil_{\mathbb{I}}=\lceil X\rceil_{\mathbb{I}} .
$$

The family $\left\{\bigcup \mathscr{A}_{\xi}^{\prime}: \xi \in \omega_{1}\right\}$ is point-finite because for every $x \in X$

$$
\left|\left\{\bigcup \mathscr{A}_{\xi}^{\prime}: x \in \bigcup \mathscr{A}_{\xi}^{\prime}\right\}\right| \leq|\{A \in \mathscr{A}: x \in A\}|<\omega .
$$

Now using Lemma 2.3 we can find a countable set $C \in\left[\omega_{1}\right]^{\omega}$ such that each member of the family $\left\{\bigcup \mathscr{A}_{\xi}^{\prime}: \xi \in \omega_{1} \backslash C\right\}$ does not contain any \mathbb{I}-positive Borel subset of X. So, the family $\left\{\mathscr{A}_{\xi}^{\prime}: \xi \in \omega_{1} \backslash C\right\}$ satisfies required conditions.

3. Acknowledgements

Autors would like to thank the referee for careful revision which gives vital improvement of the presentation of the paper.

References

[1] Brzuchowski J., Cichoń J., Grzegorek E., Ryll-Nardzewski C., On the existence of nonmeasurable unions, Bull. Polish Acad. Sci. Math. 1979, 27, 447-448
[2] Cichoń J., Morayne M., Rałowski R., Ryll-Nardzewski C., Żeberski S., On nonmeasurable unions, Topol. and Its Appl., 2007, 154, 884-893
[3] Jech T., Set Theory, 3. milenium ed., Springer-Verlag, 2003
[4] Żeberski S., On completely nonmeasurable unions, Math. Log. Quart., 2007, 53(1), 38-42

Institute of Mathematics and Computer Science, Wroceaw University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroceaw, Poland.

E-mail address, Robert Rałowski: robert.ralowski@pwr.wroc.pl
E-mail address, Szymon Żeberski: szymon.zeberski@pwr.wroc.pl

[^0]: 1991 Mathematics Subject Classification. Primary 03E35, 03E75; Secondary 28A99.

 Key words and phrases. quasi-measurable cardinal, nonmeasurable set, Bernstein set, c.c.c. ideal, Polish space.

