COMPLETELY NONMEASURABLE UNIONS

ROBERT RAŁOWSKI AND SZYMON ŻEBERSKI

ABSTRACT. Assume that no cardinal $\kappa < 2^{\omega}$ is quasi-measurable if there exists a κ -additive ideal \mathscr{I} of subsets of κ such that the Boolean algebra $P(\kappa)/\mathscr{I}$ satisfies c.c.c.). We show that for a metrizable separable space X and a proper c.c.c. σ -ideal \mathbb{I} of subsets of X that has a Borel base, each point-finite cover $\mathscr{A} \subseteq \mathbb{I}$ of X contains uncountably many pairwise disjoint subfamilies $\mathscr{A}_{\xi} \subseteq \mathscr{A}, \ \xi < \omega_1$, with \mathbb{I} -Bernstein unions $\bigcup \mathscr{A}_{\xi}$ (a subset $A \subseteq X$ is \mathbb{I} -Bernstein if A and $X \setminus A$ meet each Borel \mathbb{I} -positive subset $B \subseteq X$). This result is a generalization of Four Poles Theorem (see [1]) and results from [2] and [4].

1. NOTATION AND MOTIVATION

In this paper X will denote a metrizable separable space. Borel will denote the family of all Borel subsets of X. A family $\mathbb{I} \subseteq P(X)$ will be a σ -ideal of subsets of X with Borel base containing singletons. We will assume that \mathbb{I} is a proper σ -ideal i.e $X \notin \mathbb{I}$. Let us recall that \mathbb{I} has Borel base means that $(\forall I \in \mathbb{I})(\exists J \in \mathbb{I} \cap \text{Borel})(I \subseteq J)$. We say that a set $A \subseteq X$ is \mathbb{I} -positive if $A \notin \mathbb{I}$. We have the following cardinal coefficients:

$$\begin{aligned} \operatorname{add}(\mathbb{I}) &= \min\{|\mathscr{C}| : \ \mathscr{C} \subseteq \mathbb{I}, \ \bigcup \mathscr{C} \notin \mathbb{I}\},\\ \operatorname{cov}(\mathbb{I}) &= \min\{|\mathscr{C}| : \ \mathscr{C} \subseteq \mathbb{I}, \ \bigcup \mathscr{C} = X\},\\ \operatorname{cov}_h(\mathbb{I}) &= \min\{|\mathscr{C}| : \ \mathscr{C} \subseteq \mathbb{I}, \ (\exists B \in \operatorname{Borel} \setminus \mathbb{I})(\bigcup \mathscr{C} \supseteq B)\},\\ \operatorname{cof}(\mathbb{I}) &= \min\{|\mathscr{C}| : \ \mathscr{C} \subseteq \mathbb{I}, \ (\forall I \in \mathbb{I})(\exists C \in \mathscr{C})(I \subseteq C)\}. \end{aligned}$$

Similarly for a cover $\mathscr{A} \subseteq P(X)$ we can define

$$\operatorname{add}(\mathscr{A}) = \min\{|\mathscr{C}|: \ \mathscr{C} \subseteq \mathscr{A}, \ \bigcup \mathscr{C} \notin \mathbb{I}\},\\ \operatorname{cov}_h^{\mathbb{I}}(\mathscr{A}) = \min\{|\mathscr{C}|: \ \mathscr{C} \subseteq \mathscr{A}, \ (\exists B \in \operatorname{Borel} \setminus \mathbb{I})(\bigcup \mathscr{C} \supseteq B)\}.$$

Recall that the σ -ideal I has the *Steinhaus property* if for any two I-positive Borel sets $A, B \in \text{Borel} \setminus I$ the complex sum $A + B = \{a + b :$

¹⁹⁹¹ Mathematics Subject Classification. Primary 03E35, 03E75; Secondary 28A99.

Key words and phrases. quasi-measurable cardinal, nonmeasurable set, Bernstein set, c.c.c. ideal, Polish space.

 $a \in A, b \in B$ contains a nonempty open set. Let us remark that if the ideal I has the Steinhaus property, then $\operatorname{cov}_h(\mathbb{I}) = \operatorname{cov}(\mathbb{I})$.

Let us formulate the definition of the star which will be oftenly used in this paper.

Definition 1.1. Assume that $\mathscr{A} \subseteq P(X)$ and $x \in X$. We say that $\mathscr{A}(x)$ is the \mathscr{A} -star of a point x if

$$\mathscr{A}(x) = \{ A \in \mathscr{A} : x \in A \}.$$

We say that a family \mathscr{A} is *point-finite* if it is a family with finite stars.

We start our consideration with the following theorem [1], known in literature as Four Poles Theorem.

Theorem 1.1 (Brzuchowski, Cichoń, Grzegorek, Ryll-Nardzewski). Let $\mathscr{A} \subseteq \mathbb{I}$ be a point-finite cover of X. Then there exists a subfamily \mathscr{A}' such that $\bigcup \mathscr{A}'$ is not \mathbb{I} -measurable, i.e. does not belong to the σ -field generating by Borel and \mathbb{I} .

There is a hypothesis stated by J. Cichoń saying that we can improve the conclusion of the above theorem to get $\bigcup \mathscr{A}'$ completely I-nonmeasurable.

Definition 1.2. A subset $A \subseteq X$ is called

- completely I-nonmeasurable if for any I-positive Borel subset
 B ⊆ X both sets A ∩ B and B \ A are I-positive;
- \mathbb{I} -Bernstein if both A and $X \setminus A$ meet each \mathbb{I} -positive Borel subset of X.

Let us observe that for the ideal $\mathbb I$ of countable subsets, $\mathbb I$ -Bernstein sets are Bernstein in the classical sense.

Let us remark that definitions of completely I-nonmeasurable set and I-Bernstein are equivalent.

Proposition 1.1. A subset $A \subseteq X$ is completely \mathbb{I} -nonmeasurable if and only if A is \mathbb{I} -Bernstein.

We left the proof as an excercise to the reader. Recall that \mathbb{I} is c.c.c. if every family $\mathscr{A} \subseteq \text{Borel} \setminus \mathbb{I}$ such that

$$(\forall A, A' \in \mathscr{A})(A = A' \lor A \cap A' \in \mathbb{I})$$

is at most countable.

Assume that $\mathscr{A} \subseteq \mathbb{I}$. Let \mathscr{I} be an ideal on $P(\mathscr{A})$ associated with \mathbb{I} in the following way

$$(\forall \mathscr{X} \in P(\mathscr{A}))(\mathscr{X} \in \mathscr{I} \longleftrightarrow \bigcup \mathscr{X} \in \mathbb{I}).$$

 $\mathbf{2}$

Then $W \subseteq P(\mathscr{A}) \setminus \mathscr{I}$ is an antichain in $P(\mathscr{A})/\mathscr{I}$ iff $(\forall a, b \in W)(a \neq b \longrightarrow a \cap b \in \mathscr{I})$. We say that $P(\mathscr{A})/\mathscr{I}$ is c.c.c. iff every antichain on $P(\mathscr{A})/\mathscr{I}$ is at most countable.

We say that the cardinal number κ is quasi-measurable if there exists κ -additive ideal \mathscr{I} of subsets of κ such that the Boolean algebra $P(\kappa)/\mathscr{I}$ satisfies c.c.c. Cardinal κ is weakly inaccessible if κ is regular cardinal and for every cardinal $\lambda < \kappa$ we have that $\lambda^+ < \kappa$. Recall that every quasi-measurable cardinal is weakly inaccessible (see [3]), so it is a large cardinal.

Let us recall a result from [4].

Theorem 1.2 (Żeberski). Assume that no cardinal $\kappa \leq 2^{\omega}$ is quasimeasurable. Assume that I satisfies c.c.c. Let $\mathscr{A} \subseteq I$ be a point-finite cover of X. Then there exists a subfamily $\mathscr{A}' \subseteq \mathscr{A}$ such that $\bigcup \mathscr{A}'$ is I-Bernstein.

The main result of this paper is the following theorem.

Theorem 1.3. Assume that no cardinal $\kappa < 2^{\omega}$ is quasi-measurable. Assume that the ideal I is c.c.c. Let $\mathscr{A} \subseteq I$ be a point-finite cover of X. Then there exist pairwise disjoint subfamilies $\mathscr{A}_{\xi}, \xi \in \omega_1$, of \mathscr{A} such that each union $\bigcup \mathscr{A}_{\xi}$ is I-Bernstein.

2. Auxiliary Results

For a subset $D \subseteq X$ let $\lceil D \rceil_{\mathbb{I}}$ denote the set of minimal elements of the family $\{B \in \text{Borel} : D \subseteq_{\mathbb{I}} B\}$ partially preordered by the relation $A \subseteq_{\mathbb{I}} B$ (meaning that $A \setminus B \in \mathbb{I}$). If the ideal \mathbb{I} is c.c.c., then $\lceil D \rceil_{\mathbb{I}}$ is not empty and thus contains a Borel set $B \supseteq_{\mathbb{I}} D$ such that $B \subseteq_{\mathbb{I}} B'$ for each Borel set $B' \supseteq_{\mathbb{I}} D$.

Let us recall three technical lemmas from [4] (Theorem 3.3, Lemma 3.4, Lemma 3.5).

Lemma 2.1 (Zeberski). If the ideal I is c.c.c., then for any uncountable family $\{A_{\xi} : \xi \in \omega_1\}$ of subsets of X there is an uncountable family $\{I_{\alpha}\}_{\alpha\in\omega_1}$ of pairwise disjoint countable subsets of ω_1 such that $[\bigcup_{\xi\in I_{\alpha}} A_{\xi}]_{\mathbb{I}} = [\bigcup_{\xi\in I_{\beta}} A_{\xi}]_{\mathbb{I}}$ for all $\alpha < \beta < \omega_1$.

The next lemma is a reformulation of a result obtained in [4].

Lemma 2.2 (Žeberski). If the ideal I is c.c.c., and $\mathscr{A} \subseteq I$ be a pointfinite family such that $\bigcup \mathscr{A} \notin I$ and the algebra $P(\mathscr{A})/\mathscr{I}$ is not c.c.c., then \mathscr{A} contains uncountably many pairwise disjoint subfamilies \mathscr{A}_{α} , $\alpha \in \omega_1$ such that $[\bigcup \mathscr{A}_{\alpha}]_{I} = [\bigcup \mathscr{A}_{\beta}]_{I} \neq [\emptyset]_{I}$ for all $\alpha, \beta < \omega_1$. Lemma 2.3 (Zeberski). If the ideal \mathbb{I} is c.c.c., then for each pointfinite cover \mathscr{A} of X the family \mathscr{A}' of all sets $A \in \mathscr{A}$ containing an I-positive Borel subset is at most countable.

In paper [2] (Theorem 3.2) it is shown that if $\operatorname{cov}_h(\mathbb{I}) = \operatorname{cof}(\mathbb{I})$ and $\mathscr{A} \subseteq \mathbb{I}$ is a cover of X such that $\bigcup \mathscr{A}(x) \in \mathbb{I}$ for every $x \in X$, then there is a family $\mathscr{A}' \subseteq \mathscr{A}$ such that $\bigcup \mathscr{A}'$ is \mathbb{I} -Bernstein. This result can be generalized. Namely, we have the following theorem.

Theorem 2.1. Let $\mathscr{A} \subseteq \mathbb{I}$ be a cover of X such that for any subset $D \subseteq X$ of cardinality $|D| < 2^{\omega}$ the union $\bigcup_{x \in D} \bigcup \mathscr{A}(x)$ contains no \mathbb{I} positive Borel subset of X. Then \mathscr{A} contains continuum many pairwise disjoint subfamilies $\mathscr{A}_{\alpha}, \ \alpha \in 2^{\omega}$, with \mathbb{I} -Bernstein unions $\bigcup \mathscr{A}_{\alpha}$.

Proof. Let us enumerate the set of all Borel I-positive sets Borel \setminus I = $\{B_{\alpha}: \alpha < 2^{\omega}\}$. By transfinite induction we will construct a sequence

$$((A_{\xi,\eta}, d_{\xi}) \in \mathscr{A} \times B_{\xi} : \xi, \eta < 2^{\omega})$$

with the following conditions:

(1) $(\forall \xi, \eta < 2^{\omega})(A_{\xi,\eta} \cap B_{\xi} \neq \emptyset),$

- $\begin{array}{l} (1) \\ (2) \\ (3) \\ (\forall \xi, \xi' < 2^{\omega})(\forall \eta, \eta' < 2^{\omega})(\eta \neq \eta' \longrightarrow A_{\xi,\eta} \neq A_{\xi',\eta'}). \end{array}$

Let us fix $\alpha < 2^{\omega}$ and assume that we have defined the sequence

 $((A_{\xi,\eta}, d_{\xi}) \in \mathscr{A} \times B_{\xi} : \xi, \eta < \alpha)$

with the following conditions:

- (4) $(\forall \xi, \eta < \alpha)(A_{\xi,\eta} \cap B_{\xi} \neq \emptyset),$
- $\begin{array}{l} (5) \bigcup_{\xi,\eta<\alpha} A_{\xi,\eta} \cap \{d_{\xi}: \xi < \alpha\} = \emptyset, \\ (6) \ (\forall \xi, \xi' < \alpha) (\forall \eta, \eta' < \alpha) (\eta \neq \eta' \longrightarrow A_{\xi,\eta} \neq A_{\xi',\eta'}). \end{array}$

For every $\xi < \alpha$ let us consider the star $\mathscr{A}(d_{\xi})$. By assumption the family $\bigcup_{\xi < \alpha} \mathscr{A}(d_{\xi})$ does not cover any I-positive Borel set. So, assumption guarantees that we can choose a set $\{A_{\alpha,\eta} \in \mathscr{A} : \eta < \alpha\} \subseteq \mathscr{A} \setminus \{A_{\xi,\eta} : \eta < \alpha\}$ $\{\xi, \eta < \alpha\}$ of pairwise distinct sets such that

- (7) $(\forall \eta < \alpha)(A_{\alpha,\eta} \cap B_{\alpha} \neq \emptyset),$
- (8) $(\forall \xi, \eta < \alpha) (d_{\xi} \notin A_{\alpha,\eta}).$

The same argument gives us the set $\{A_{\xi,\alpha} \in \mathscr{A} : \xi \leq \alpha\} \subseteq \mathscr{A} \setminus \{A_{\xi,\eta} : \xi \leq \alpha\}$ $\xi \leq \alpha, \eta < \alpha$ of pairwise distinct sets with the following property:

$$(\forall \xi \le \alpha) (A_{\xi,\alpha} \cap B_{\xi} \ne \emptyset \land A_{\xi,\alpha} \cap \{d_{\xi'} : \xi' < \alpha\} = \emptyset).$$

Once again by assumption we can find $d_{\alpha} \in B_{\alpha}$ such that $(\bigcup_{\xi,\eta \leq \alpha} A_{\xi,\eta}) \cap$ $\{d_{\alpha}\} = \emptyset$. It finishes the α -step of our construction.

Now, let us put $\mathscr{A}_{\eta} = \{A_{\xi,\eta} \in \mathscr{A} : \xi < 2^{\omega}\}$ for any $\eta < 2^{\omega}$. The family $\{\mathscr{A}_{\eta}: \eta < 2^{\omega}\}$ fulfills the assertion of our Theorem.

Corollary 2.1. If $\operatorname{cov}_h(\mathbb{I}) = 2^{\omega}$ and $\mathscr{A} \subseteq \mathbb{I}$ is a cover of X such that $|\mathscr{A}(x)| < cf(2^{\omega})$ for every $x \in X$, then there exists continuum many pairwise disjoint subfamilies $\{\mathscr{A}_{\alpha}: \alpha \in 2^{\omega}\}$ of the family \mathscr{A} such that for every $\alpha \in 2^{\omega}$ the set $\bigcup \mathscr{A}_{\alpha}$ is completely \mathbb{I} -nonmeasurable.

Theorem 2.2. Assume that no cardinal $\kappa < 2^{\omega}$ is quasi-measurable. Let $\mathscr{A} \subseteq \mathbb{I}$ be a family with stars of size $< 2^{\omega}$. If $\bigcup \mathscr{A} \notin \mathbb{I}$ then $P(\mathscr{A})/\mathscr{I}$ is not c.c.c.

Proof. Assume that $\mathscr{A} \subseteq \mathbb{I}$ satisfies the following conditions

- (1) $\bigcup \mathscr{A} \notin \mathbb{I}$,
- (2) $P(\mathscr{A})/\mathscr{I}$ is c.c.c.

Since 2^{ω} is the minimal possible quasi-measurable cardinal, $|\mathscr{A}| = 2^{\omega}$ and 2^{ω} is regular. Moreover $\operatorname{add}(\mathscr{A}) = 2^{\omega}$. By the regularity of the continuum and the fact that every star have size $< 2^{\omega}$ we get that $\operatorname{add}(\{\bigcup \mathscr{A}(x): x \in X\}) = 2^{\omega}$. So the family \mathscr{A} fulfils the assumptions of Theorem 2.1 (for $X = \bigcup \mathscr{A}$). By Theorem 2.1 there exists $\{\mathscr{C}_{\alpha} : \mathscr{C}_{\alpha} \}$ $\alpha < 2^{\omega}$ such that

- (3) $\mathscr{C}_{\alpha} \subseteq \mathscr{A}$ for any $\alpha < 2^{\omega}$,
- (4) $\forall \alpha < 2^{\omega} \bigcup \mathscr{C}_{\alpha}$ is completely I-nonmeasurable,
- (5) $\forall \alpha, \beta < 2^{\omega} \quad \alpha \neq \beta \longrightarrow \mathscr{C}_{\alpha} \cap \mathscr{C}_{\beta} = \emptyset.$

In particular, the family $\{\mathscr{C}_{\alpha}: \ \alpha < 2^{\omega}\}$ forms an antichain in $P(\mathscr{A})/\mathscr{I}$, what gives a contradiction.

Now, let us focus on the proof of main result.

Proof of Theorem 1.3. By transfinite induction we construct a family $\{B_{\alpha}\}\$ of pairwise disjoint \mathbb{I} -positive Borel sets and a family $\{\{\mathscr{A}_{\xi}^{\alpha}\}_{\xi\in\omega_1}\}\$ of subfamilies of \mathscr{A} satisfying the following conditions

- (1) $(\forall \xi < \zeta < \omega_1)(\mathscr{A}^{\alpha}_{\xi} \cap \mathscr{A}^{\alpha}_{\zeta} = \emptyset),$ (2) $(\forall \xi < \omega_1)(B_{\alpha} \in [\bigcup \mathscr{A}^{\alpha}_{\xi} \setminus \bigcup_{\beta < \alpha} B_{\beta}]_{\mathbb{I}}).$

At α -step we consider the family $\mathscr{A}^{\alpha} = \{A \setminus \bigcup_{\xi < \alpha} B_{\xi} : A \in \mathscr{A} \setminus$ $\bigcup_{\xi < \alpha} \mathscr{A}_{\xi}$. If $\bigcup \mathscr{A}^{\alpha} \in \mathbb{I}$ then we finish our construction. If $\bigcup \mathscr{A}^{\alpha} \notin \mathbb{I}$ then by Theorem 2.2 the algebra $P(\mathscr{A}^{\alpha})/\mathscr{I}$ is not c.c.c. We use Lemma 2.2 to obtain a required family $\{\mathscr{A}^{\alpha}_{\xi}\}_{\xi\in\omega_1}$. We put B_{α} to be any member of $\left[\bigcup \mathscr{A}_0^{\alpha} \setminus \bigcup_{\zeta < \alpha} B_{\zeta}\right]_{\mathbb{I}}$.

Since I satisfies c.c.c., the construction have to end up at some step $\gamma < \omega_1$.

Now put $\mathscr{A}'_{\xi} = \bigcup_{\alpha < \gamma} \mathscr{A}^{\alpha}_{\xi}$. By construction for each $\xi < \omega_1$ we have

$$\left[\bigcup \mathscr{A}'_{\xi}\right]_{\mathbb{I}} = \left[\bigcup_{\alpha < \gamma} B_{\alpha}\right]_{\mathbb{I}} = \lceil X \rceil_{\mathbb{I}}.$$

The family $\{\bigcup \mathscr{A}'_{\xi} : \xi \in \omega_1\}$ is point-finite because for every $x \in X$

$$\left|\left\{\bigcup\mathscr{A}'_{\xi}: x \in \bigcup\mathscr{A}'_{\xi}\right\}\right| \le |\{A \in \mathscr{A}: x \in A\}| < \omega.$$

Now using Lemma 2.3 we can find a countable set $C \in [\omega_1]^{\omega}$ such that each member of the family $\{\bigcup \mathscr{A}'_{\xi} : \xi \in \omega_1 \setminus C\}$ does not contain any \mathbb{I} -positive Borel subset of X. So, the family $\{\mathscr{A}'_{\xi} : \xi \in \omega_1 \setminus C\}$ satisfies required conditions. \Box

3. Acknowledgements

Autors would like to thank the referee for careful revision which gives vital improvement of the presentation of the paper.

References

- Brzuchowski J., Cichoń J., Grzegorek E., Ryll-Nardzewski C., On the existence of nonmeasurable unions, Bull. Polish Acad. Sci. Math. 1979, 27, 447-448
- [2] Cichoń J., Morayne M., Rałowski R., Ryll-Nardzewski C., Żeberski S., On nonmeasurable unions, Topol. and Its Appl., 2007, 154, 884-893
- [3] Jech T., Set Theory, 3. milenium ed., Springer-Verlag, 2003
- [4] Žeberski S., On completely nonmeasurable unions, Math. Log. Quart., 2007, 53(1), 38-42

INSTITUTE OF MATHEMATICS AND COMPUTER SCIENCE, WROCŁAW UNIVER-SITY OF TECHNOLOGY, WYBRZEŻE WYSPIAŃSKIEGO 27, 50-370 WROCŁAW, POLAND.

E-mail address, Robert Rałowski: robert.ralowski@pwr.wroc.pl *E-mail address*, Szymon Żeberski: szymon.zeberski@pwr.wroc.pl