SOME REMARKS ON TWO POINT SETS

MAREK BIENIAS, SZYMON GLĄB, ROBERT RAŁOWSKI, AND SZYMON ŻEBERSKI

ABSTRACT. A subset of the plane is called two point set provided it intersects any line in exactly two points. Our results are the following. There exists a two point set which is a completely nonmeasurable Hamel base. There exists a two point set which is s_0 Marczewski and a two point set which is *s*-nonmeasurable. We are showing also some properties of a two point set and partial two point set.

1. INTRODUCTION

At the beginning of the XX century Mazurkiewicz in [Maz] constructed a set on the plane which meets any line in exactly two points. Any such set is called a two point set. Any two point set must be somehow complex, namely Larman in [L] show that it cannot be F_{σ} . It is a long standing open problem whether there is a Borel two point set (cf. [Mau]). The best known approximation to that problem is due to Miller who, under some settheoretic assumption, proved that there is a coanalytic two point set [Mi]. Recently Schmerl proved in [S] that there is a two point set which can be covered by countably many circles, in particular there is a two point set which is meager and null.

In this note we show that there exist two point sets which have several properties. In theorem 1 we prove that it can be completely nonmeasurable. In theorem 3 we prove that it can be s_0 Marczewski. In theorem 4 we

¹⁹⁹¹ Mathematics Subject Classification. Primary: 03E75; Secondary: 03E35, 28A05, 15A03.

Key words and phrases. two point set, partial two point set, complete nonmeasurability, Hamel basis, s-Marczewski, s_0 -Marczewski, s-nonmeasurability, Luzin set, Sierpiński set.

² MAREK BIENIAS, SZYMON GLĄB, ROBERT RAŁOWSKI, AND SZYMON ŻEBERSKI prove that it also can be *s*-nonmeasurable. It turns out that a two point set can be neither Luzin nor Sierpiński but partial two point set (i.e. a set that intersects any line in at most two points) can be Luzin or Sierpiński independently what will be shown in Theorem 6. In our constructions we modify that of a two point set given in [Ci, Theorem 6.1.2 p. 76-77].

Let us give a list of notions which will be used in a sequel. Let $A \subseteq \mathbb{R}^2$. We say that A is

- completely nonmeasurable if for every Borel set B of positive measure $A \cap B \neq \emptyset$ and $B \setminus A \neq \emptyset$;
- s_0 Marczewski iff for every perfect set P there exists a perfect set $Q \subseteq P$ such that $Q \cap A = \emptyset$;
- s Marczewski (s-measurable) iff for every perfect set P there exists perfect set $Q \subseteq P$ such that $Q \cap A = \emptyset$ or $Q \subset A$;
- Bernstein if for every perfect $P \subset \mathbb{R}^2$, $A \cap P \neq \emptyset$ and $P \setminus A \neq \emptyset$;
- Luzin if for every Borel set $B \in \mathbb{K}$, $|B \cap A| \leq \omega$;
- strong Luzin if for every Borel set $B \subseteq \mathbb{R}^2$, $|B \cap A| \le \omega \leftrightarrow B \in \mathbb{K}$;
- Sierpiński if for every Borel set $B \in \mathbb{L}$, $|B \cap A| \le \omega$;
- strong Sierpiński if for every Borel set $B \subseteq \mathbb{R}^2$, $|B \cap A| \le \omega \leftrightarrow B \in \mathbb{L}$;

where \mathbb{K} and \mathbb{L} we denote the σ -algebras of meager and null subsets of the real plane respectively. Note that Bernstein sets can be viewed as completely nonmeasurable sets with respect to *s*-Marczewski σ -algebra.

$2.\ {\rm A}$ two point set that is completely nonmeasurable Hamel

BASE

Theorem 1. There exists a two point set $A \subset \mathbb{R}^2$, that is completely nonmeasurable Hamel base.

Proof. Let $\{L_{\xi} : \xi < \mathfrak{c}\}$ be an enumeration of all straight lines in the plane \mathbb{R}^2 , let $\{B_{\xi} : \xi < \mathfrak{c}\}$ be an enumeration of all Borel sets on a plane \mathbb{R}^2 of positive Lebesgue measure and let $\{h_{\xi} : \xi < \mathfrak{c}\}$ be a Hamel base of \mathbb{R}^2 over

Q. We will define, by induction on $\xi < \mathfrak{c}$, the sequences $\{A_{\xi} : \xi < \mathfrak{c}\}$ of subsets of \mathbb{R}^2 and $\{x_{\xi} : \xi < \mathfrak{c}\}$ of elements of \mathbb{R}^2 such that for every $\xi < \mathfrak{c}$,

(1) $|A_{\xi}| < \omega;$ (2) $\bigcup_{\zeta \leq \xi} A_{\zeta}$ does not have three collinear points; (3) $\bigcup_{\zeta \leq \xi} A_{\zeta}$ contains precisely two points of $L_{\xi};$ (4) $B_{\xi} \cap \bigcup_{\zeta \leq \xi} A_{\zeta} \neq \emptyset;$ (5) $x_{\xi} \in B_{\xi}$ and $A_{\xi} \cap \{x_{\zeta} : \zeta \leq \xi\} = \emptyset;$ (6) $\bigcup_{\zeta \leq \xi} A_{\zeta}$ is linearly independent over $\mathbb{Q};$ (7) $h_{\xi} \in span_{\mathbb{Q}}(\bigcup_{\zeta \leq \xi} A_{\zeta}).$

Then, the set $A = \bigcup_{\xi < \mathfrak{c}} A_{\xi}$ will have desired property. Evidently, conditions (2) and (3) imply that the set A is a two point set, (5) implies the set Adoes not contain any set from $\{B_{\xi} : \xi < \mathfrak{c}\}$ and (4) makes sure it intersects all of them, so the set A is completely nonmeasurable; moreover conditions (6) and (7) imply that A is a Hamel base of \mathbb{R}^2 over \mathbb{Q} .

To end an inductive construction assume that for some $\xi < \mathfrak{c}$ sequences $\{A_{\zeta} : \zeta < \xi\}$ and $\{x_{\zeta} : \zeta < \xi\}$ are already defined. We will prove that there exist A_{ξ} and x_{ξ} satisfying (1)-(7). Let $\mathbb{B} = \bigcup_{\zeta < \xi} A_{\zeta}$ and $X = \bigcup_{\zeta < \xi} \{x_{\zeta}\}$. Clearly $|\mathbb{B}| < \mathfrak{c}$ and $|X| < \mathfrak{c}$. Let \mathcal{G} be the family of all lines which meet \mathbb{B} in exactly two points. Then $|\mathcal{G}| \leq |\mathbb{B}^2| < \mathfrak{c}$. Consequently $|span_{\mathbb{Q}}(\mathbb{B})| < \mathfrak{c}$. We will define A_{ξ} and x_{ξ} in three steps. In each step we will focus on one of desired properties of A_{ξ} and x_{ξ} .

I. Let us focus on two point property. Note that (2) implies $L_{\xi} \cap \mathbb{B}$ has at most two points. Indeed, if ξ is a successor, i.e. $\xi = \xi_0 + 1$, then $\mathbb{B} = \bigcup_{\zeta \leq \xi_0} A_{\zeta}$ and $|\mathbb{B} \cap L_{\xi}| > 2$ would led us to a contradiction with (2); if ξ is a limit ordinal, then $\mathbb{B} = \bigcup_{\zeta < \xi} (\bigcup_{\eta \leq \zeta} A_{\eta})$ and since the sequence $(\bigcup_{\eta \leq \zeta} A_{\eta})_{\zeta < \xi}$ is increasing, there exist $\zeta_0 < \xi$ such that $\mathbb{B} \cap L_{\xi} \subset \bigcup_{\eta \leq \zeta_0} A_{\eta}$ and $|\mathbb{B} \cap L_{\xi}| > 2$ would led us to a contradiction with (2) as well. Consider following two cases:

- (a) If $|L_{\xi} \cap \mathbb{B}| = 2$, then put $A_{\xi}^{(1)} = \emptyset$;
- (b) If $|L_{\xi} \cap \mathbb{B}| < 2$ then $|L_{\xi} \cap l| \leq 1$ for any $l \in \mathcal{G}$. In fact, if there would exist $l \in \mathcal{G}$ with $|L_{\xi} \cap l| = 2$, then $L_{\xi} \in \mathcal{G}$ and by the definition of \mathcal{G} , we would obtain $|L_{\xi} \cap \mathbb{B}| = 2$, which gives a contradiction. Therefore $L_{\xi} \cap \bigcup \mathcal{G} = \bigcup_{l \in \mathcal{G}} l \cap L_{\xi}$ has cardinality less than \mathfrak{c} .

Choose

$$x^{(1)} \in L_{\xi} \setminus \left(span_{\mathbb{Q}}(\mathbb{B}) \cup X \cup \bigcup_{l \in \mathcal{G}} l \cap L_{\xi} \right)$$

and

$$y^{(1)} \in L_{\xi} \setminus \left(span_{\mathbb{Q}}(\mathbb{B} \cup \{x^{(1)}\}) \cup X \cup \bigcup_{l \in \mathcal{G}} l \cap L_{\xi} \right).$$

Put $A_{\xi}^{(1)} = \{x^{(1)}, y^{(1)}\}$ if $\mathbb{B} \cap L_{\xi} = \emptyset$ and put $A_{\xi}^{(1)} = \{x^{(1)}\}$ if $\mathbb{B} \cap L_{\xi}$ is a singleton. This can be done, because $|L_{\xi}| < \mathfrak{c}$,

$$\left| span_{\mathbb{Q}}(\mathbb{B}) \cup X \cup \bigcup_{l \in \mathcal{G}} l \cap L_{\xi} \right| < \mathfrak{c},$$

and

$$\left| span_{\mathbb{Q}}(\mathbb{B} \cup \{x^{(1)}\}) \cup X \cup \bigcup_{l \in \mathcal{G}} l \cap L_{\xi} \right| < \mathfrak{c}.$$

II. Let us focus on the complete nonmeasurability property

Let \mathcal{G}' be the family of all lines which meet $\mathbb{B} \cup A_{\xi}^{(1)}$ in exactly two points. Then $|\mathcal{G}'| < \mathfrak{c}$ and $\mathcal{G} \subset \mathcal{G}'$. Since B_{ξ} is positive Borel set, \mathfrak{c} many of its vertical sections are of positive measure in particular of cardinality \mathfrak{c} . Therefore we can find a vertical line L such that:

- $L \cap (\mathbb{B} \cup A_{\mathcal{E}}^{(1)}) = \emptyset;$
- $|L \cap B_{\xi}| = \mathfrak{c}.$

It exists since $|\mathbb{B} \cup A_{\xi}^{(1)}| < \mathfrak{c}$. Notice that $|l \cap L| \leq 1$ for any $l \in \mathcal{G}'$. Choose

$$x^{(2)} \in (L \cap B_{\xi}) \setminus \left(span_{\mathbb{Q}}(\mathbb{B} \cup A_{\xi}^{(1)}) \cup X \cup \bigcup_{l \in \mathcal{G}'} l \cap L \right),$$

and

$$y^{(2)} \in (L \cap B_{\xi}) \setminus \left(span_{\mathbb{Q}}(\mathbb{B} \cup A_{\xi}^{(1)} \cup \{x^{(2)}\}) \cup X \cup \bigcup_{l \in \mathcal{G}'} l \cap L \right),$$

and put $A_{\xi}^{(2)} = \{x^{(2)}, y^{(2)}\}.$

This can be done, since $|L \cap B_{\xi}| = \mathfrak{c}$,

$$\left| span_{\mathbb{Q}}(\mathbb{B} \cup A_{\xi}^{(1)}) \cup X \cup \bigcup_{l \in \mathcal{G}'} l \cap L \right| < \mathfrak{c},$$

and

$$span_{\mathbb{Q}}(\mathbb{B} \cup A_{\xi}^{(1)} \cup \{x^{(2)}\}) \cup X \cup \bigcup_{l \in \mathcal{G}'} l \cap L \bigg| < \mathfrak{c}.$$

Choose $x_{\xi} \in (L \cap B_{\xi}) \setminus (X \cup \mathbb{B} \cup A_{\xi}^{(1)} \cup A_{\xi}^{(2)}).$

- III. Let us focus on the condition (7). We have the following possibilities:
 - (a) If $h_{\xi} \in span_{\mathbb{Q}}(\mathbb{B} \cup A_{\xi}^{(1)} \cup A_{\xi}^{(2)})$, then (6) and (7) are satisfied by the set $\mathbb{B} \cup A_{\xi}^{(1)} \cup A_{\xi}^{(2)}$ and we are done by putting $A_{\xi}^{(3)} = \emptyset$;
 - (b) Assume that $h_{\xi} \notin span_{\mathbb{Q}}(\mathbb{B} \cup A_{\xi}^{(1)} \cup A_{\xi}^{(2)})$. Let \mathcal{G}'' be the family of all lines which meet $\mathbb{B} \cup A_{\xi}^{(1)} \cup A_{\xi}^{(2)}$ in exactly two points. Then $|\mathcal{G}''| < \mathfrak{c}$ and $\mathcal{G} \subset \mathcal{G}' \subset \mathcal{G}''$. Choose the line L parallel to h_{ξ} , with $L \cap (\mathbb{B} \cup A_{\xi}^{(1)} \cup A_{\xi}^{(2)}) = \emptyset$. This can be done, since there is \mathfrak{c} many lines parallel to h_{ξ} and $|\mathbb{B} \cup A_{\xi}^{(1)} \cup A_{\xi}^{(2)}| < \mathfrak{c}$. Since $L \notin \mathcal{G}''$, then $|l \cap L| \leq 1$ for any $l \in \mathcal{G}''$.

Choose

$$x^{(3)} \in L \setminus \left(span_{\mathbb{Q}}(\mathbb{B} \cup A_{\xi}^{(1)} \cup A_{\xi}^{(2)} \cup \{h_{\xi}\}) \cup \left(\bigcup_{l \in \mathcal{G}''} l \cap L\right) \right),$$

such that

$$y^{(3)} = x^{(3)} + h_{\xi} \in L \setminus \left(span_{\mathbb{Q}}(\mathbb{B} \cup A_{\xi}^{(1)} \cup A_{\xi}^{(2)}) \cup (X \cup \{x_{\xi}\}) \cup \left(\bigcup_{l \in \mathcal{G}''} l \cap L\right) \right).$$

It is possible since

$$\left|L \setminus \left(span_{\mathbb{Q}}(\mathbb{B} \cup A_{\xi}^{(1)} \cup A_{\xi}^{(2)} \cup \{h_{\xi}\}) \cup \left(\bigcup_{l \in \mathcal{G}''} l \cap L\right) \right) \right| = \mathfrak{c}$$

and

$$\left|span_{\mathbb{Q}}(\mathbb{B}\cup A_{\xi}^{(1)}\cup A_{\xi}^{(2)})\cup (X\cup \{x_{\xi}\})\cup \left(\bigcup_{l\in \mathcal{G}''}l\cap L\right)\right|<\mathfrak{c},$$

so there is less than \mathfrak{c} many points x such that

$$y^{(3)} = x^{(3)} + h_{\xi} \in span_{\mathbb{Q}}(\mathbb{B} \cup A_{\xi}^{(1)} \cup A_{\xi}^{(2)}) \cup (X \cup \{x_{\xi}\}) \cup \left(\bigcup_{l \in \mathcal{G}''} l \cap L\right).$$

Let $A_{\xi}^{(3)} = \{x^{(3)}, y^{(3)}\}.$

Finally put $A_{\xi} = A_{\xi}^{(1)} \cup A_{\xi}^{(2)} \cup A_{\xi}^{(3)}$. Conditions (1)-(7) are satisfied.

3. A two point set that is s_0 Marczewski

For $p \in \mathbb{R}^2$ the symbol ||p|| stands for the length of p. We know ([W]) that there exists a set $A \subseteq (0, 1)$ which is s_0 and has cardinality \mathfrak{c} . We can get the following immediate proposition.

Proposition 2. There is a set $B \subseteq (0, \infty)$ which is s_0 and satisfies following conditions

- (1) $|B \cap (0,\epsilon)| = \mathfrak{c}$, for every $\epsilon > 0$;
- (2) $|B \cap (T, \infty)| = \mathfrak{c}$, for every T > 0.

Proof. Let $A \subseteq (0,1)$ be a s_0 set of cardinality \mathfrak{c} . Define B by the following formula:

$$B = \bigcup_{n < \omega} f_n[A] \cup g_n[B],$$

where $f_n: (0,1) \to (\frac{1}{n+2}, \frac{1}{n+1})$ and $g_n: (0,1) \to (n+1, n+2)$ are increasing linear functions. The set *B* as a union of countably many s_0 sets is still s_0 and fulfils our requirements.

Theorem 3. There exists a two point set $A \subset \mathbb{R}^2$, that is s_0 Marczewski.

Proof. Let $\{L_{\xi} : \xi < \mathfrak{c}\}$ be an enumeration of all straight lines in \mathbb{R}^2 . Let $B \subseteq (0, \infty)$ be s_0 set from Proposition 2. We will define inductively a sequence $\{A_{\xi} : \xi < \mathfrak{c}\}$ of subsets of \mathbb{R}^2 such that for every $\xi < \mathfrak{c}$,

- (1) $|A_{\xi}| < \omega;$
- (2) $\bigcup A_{\zeta}$ does not have three collinear points;
- (3) $\bigcup_{\zeta \leq \xi}^{\zeta \leq \xi} A_{\zeta}$ contains precisely two points of L_{ξ} ;
- (4) $||p|| \in B$ for every $p \in A_{\xi}$;
- (5) for every different $p, q \in \bigcup_{\zeta < \varepsilon} A_{\zeta}$ we have $||p| \neq ||q||$.

The existence of the sequence $\{A_{\xi} : \xi < \mathfrak{c}\}$ follows exactly in the same way as in Theorem 1. We repeat the proof of an existence of two point set in $\{p \in \mathbb{R}^2 : ||p|| \in B\}$ instead of \mathbb{R}^2 . Here the key observation is that for each line L a set $\{p \in L : ||p|| \in B\}$ has cardinality continuum and therefore the construction can be done.

Put $A = \bigcup_{\xi < \mathfrak{c}} A_{\xi}$. Let us check that A is s_0 . Take any perfect set $P \subseteq \mathbb{R}^2$. We have following cases

- I. There is r > 0 such that $P_r = \{p \in P : ||p|| = r\}$ has cardinality continuum. Then $|P_r \cap A| \leq 1$ so we can find a perfect set $Q \subseteq P_r \setminus A \subseteq P \setminus A$ and we are done.
- II. For every r > 0 a set P_r is countable. Then $\overline{P} = \{r > 0 : P_r \neq \emptyset\}$ is of size continuum. Moreover it is analytic, so \overline{P} contains a perfect set \overline{P}' . Now, since B is s_0 , we can find a perfect set \overline{Q} such that $\overline{Q} \subseteq \overline{P}' \setminus B$. The set $Q = \{p \in P : ||p|| \in \overline{Q}\}$ is a required perfect set disjoint from A.

4. A two point set that is s-nonmeasurable

Let us note here that the unit circle is a partial two point set but it cannot be extended to a two point set. In [DM] and [DKM] it was investigated how small should be a subset of the unit circle to be extendable to a two point set. It turns out that sets of inner positive measure on the unit circle cannot be extended to two point sets. We show that there is a subset of the unit circle of full outer measure which can be extended to a two point set. **Theorem 4.** There exists a two point set $A \subset \mathbb{R}^2$, that is s-nonmeasurable. Moreover A contains a subset of the unit circle of full outer measure.

Proof. Let us observe that if B is a Bernstein set in some uncountable closed set C then B is s-nonmeasurable. Moreover if a set D is such that $D \cup C = B$ then D also is s-nonmeasurable. We construct two point set A such that its intersection with the unit circle is a Bernstein subset of the unit circle. Let $\{L_{\xi}: \xi < \mathfrak{c}\}$ be an enumeration of all straight lines in \mathbb{R}^2 . Let $\{P_{\xi}: \xi < \mathfrak{c}\}$ be an enumeration of all perfect subsets of unit circle. We will define inductively a sequence $\{A_{\xi}: \xi < \mathfrak{c}\}$ of subsets of \mathbb{R}^2 and a sequence $\{y_{\xi}: \xi < \mathfrak{c}\}$ of points from the unit circle such that for every $\xi < \mathfrak{c}$,

- (1) $|A_{\mathcal{E}}| < \omega;$
- (2) $\bigcup A_{\zeta}$ does not contain three collinear points;
- (3) $\bigcup_{\zeta \leq \xi} A_{\zeta}$ contains precisely two points of L_{ξ} ; (4) $P_{\xi} \cap \bigcup_{\zeta \leq \xi} A_{\zeta} \neq \emptyset$; (5) $z \in \xi$

- (5) $y_{\mathcal{E}} \in P_{\mathcal{E}}$
- (6) $A_{\xi} \cap \{y_{\zeta} : \zeta \leq \xi\} = \emptyset.$

The existence of the sequence $\{A_{\xi} : \xi < \mathfrak{c}\}$ follows exactly in the same way as in Theorem 1. Here the key observation is that for each perfect set P_{ξ} of unit circle there exist \mathfrak{c} many straight lines passing through P_{ξ} and the origin.

Putting $A = \bigcup_{\xi < \mathfrak{c}} A_{\xi}$ we obtain a two point *s*-nonmeasurable set. Clearly A is of full outer measure on the unit circle.

5. A partial two point set that is Luzin set

The following remark holds

Remark 5. Assume $A \subseteq \mathbb{R}^2$ is two point set. Then

- (1) A is not Bernstein;
- (2) A is not Luzin;
- (3) A is not Sierpiński.

Proof. 1) Each line L is a perfect set such that $|A \cap L| = 2$, so A cannot be Bernstein.

2) Let M be a perfect meager subset of \mathbb{R} . Then $M \times \mathbb{R}$ is meager and $|(M \times \mathbb{R}) \cap A| = 2|M| = \mathfrak{c}$.

3) Let N be a perfect null subset of \mathbb{R} . Then $N \times \mathbb{R}$ is null and $|(N \times \mathbb{R}) \cap A| = 2|N| = \mathfrak{c}$.

Theorem 6. (CH)

- (1) There exists partial two point set A that is strong Luzin set.
- (2) There exists partial two point set B that is strong Sierpiński set.

Proof. Let us focus on the Luzin set. The case of the Sierpiński is similar.

Fix $\{B_{\alpha} : \alpha < \omega_1\}$ base of the ideal of meager sets and let $\{D_{\alpha} : \alpha < \omega_1\}$ be the enumeration of Borel nonmeager sets such that each set appears ω_1 many times. We will construct a sequence $\{x_{\alpha} : \alpha < \omega_1\}$ satisfying the following properties:

(1) $A_{\alpha} = \{x_{\xi} : \xi \leq \alpha\}$ does not contain three collinear points; (2) $x_{\alpha} \in D_{\alpha} \setminus | \downarrow B_{\xi}$.

(2) $x_{\alpha} \in D_{\alpha} \setminus \bigcup_{\xi < \alpha} B_{\xi}.$

We will show that at any α step we can pick x_{α} such that (1) and (2) are fulfilled. Since A_{ξ} is countable so is $\bigcup_{\xi < \alpha} A_{\xi}$. Therefore the set $\{L : L \text{ is a line and } |L \cup \bigcup_{\xi < \alpha} A_{\xi}| \ge 2\} = \{L : L \text{ is a line and } |L \cup \bigcup_{\xi < \alpha} A_{\xi}| = 2\}$ is countable. Hence both $\{L : L \text{ is a line and } |L \cup \bigcup_{\xi < \alpha} A_{\xi}| = 2\}$ and $\bigcup_{\xi < \alpha} B_{\xi}$ are meager. Consequently one can pick a point x_{α} from D_{α} that meets neither $\{L : L \text{ is a line and } |L \cup \bigcup_{\xi < \alpha} A_{\xi}| = 2\}$ nor $\bigcup_{\xi < \alpha} B_{\xi}$. Then $A_{\alpha} = \{x_{\xi} : \xi \le \alpha\}$ does not contain three collinear points. At the end $A = \{x_{\alpha} : \alpha < \omega_1\}$ and it is a required partial two point set that is strong Luzin. \Box

Let us remark that sets A and B constructed in Theorem 6 are s_0 Marczewski. Moreover A is strongly null and B is strongly meager. For the definitions of strongly meager and strongly null we refer the reader to [Car]. Theorem 6 can be strengthen. If we assume that $add(\mathbb{K}) = cof(\mathbb{K}) = \kappa$ then we can construct partial two point set A such that $|A| = \kappa$ and for every Borel set $B, |B \cap A| < \kappa$ if and only if $B \in \mathbb{K}$.

The analogous observation is true in the case of null sets.

References

- [Car] Carlson T.J., Strong measure zero and strongly meager sets, Proc. Amer. Math. Soc. 118 No. 2 (1993), 577-586.
- [Ci] Ciesielski, Krzysztof, Set theory for the working mathematician. London Mathematical Society Student Texts, 39. Cambridge University Press, Cambridge, 1997. xii+236 pp. ISBN: 0-521-59441-3; 0-521-59465-0.
- [DKM] Dijkstra, J.J., Kunen K., van Mill J., Hausdorff measures and two point set extensions, Fund. Math., 157 (1998), 43-60.
- [DM] Dijkstra, J.J. and van Mill J., Two point set extensions a counterexample, Proc. Amer. Math. Soc. 125 (1997), 2501-2502.
- [L] Larman, D. G., A problem of incidence. J. London Math. Soc. 43 1968 407–409.
- [Mau] Mauldin, R. D., On sets which meet each line in exactly two points. Bull. London Math. Soc. 30 (1998), no. 4, 397–403.
- [Maz] Mazurkiewicz S., O pewnej mnogości płaskiej, która ma z każdą prostą dwa i tylko dwa punkty wspólne (Polish), Comptes Rendus des Séances de la Société des Sciences et Lettres de Varsovie 7 (1914), 382–384; French transl.: Sur un ensemble plan qui a avec chaque droite deux et seulement deux points communs, in: Stefan Mazurkiewicz, Traveaux de Topologie et ses Applications (K. Borsuk et al., eds.), PWN, Warsaw, 1969, pp. 46–47.
- [Mi] Miller, A. W., Infinite combinatorics and definability. Ann. Pure Appl. Logic 41 (1989), no. 2, 179–203.
- [S] Schmerl, James H., Some 2-point sets. Fund. Math. 208 (2010), no. 1, 8791.
- [W] Walsh, J.T., Marczewski sets, measure and the Baire property, Fund. Math., 129 (1988), 83-89.

INSTITUTE OF MATHEMATICS, TECHNICAL UNIVERSITY OF ŁÓDŹ, WÓLCZAŃSKA 215, 93-005 ŁÓDŹ, POLAND

E-mail address: marek.b4@wp.pl

Institute of Mathematics, Technical University of Łódź, Wólczańska 215, 93-005 Łódź, Poland

E-mail address: szymon.glab@p.lodz.pl

INSTITUTE OF MATHEMATICS AND COMPUTER SCIENCE, WROCŁAW UNIVERSITY OF TECHNOLOGY, WYBRZEŻE WYSPIAŃSKIEGO 27, 50-370 WROCŁAW, POLAND *E-mail address*: robert.ralowski@pwr.wroc.pl

INSTITUTE OF MATHEMATICS AND COMPUTER SCIENCE, WROCŁAW UNIVERSITY OF TECHNOLOGY, WYBRZEŻE WYSPIAŃSKIEGO 27, 50-370 WROCŁAW, POLAND *E-mail address*: szymon.zeberski@pwr.wroc.pl