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Summary. Due to the fact that no NP-complete problem can be solved in polynomial time
(unless P=NP), many approximability results (both positive and negative) of NP-hard opti-
mization problems have appeared in the technical literature. In this compendium, we collect
together a large number of these results.

In the following we refer to standard complexity classes (see [Johnson, 1990]). We recall that
a function ¢(n) is ‘quasi-polynomial’ if a constant ¢ exists such that t(n) < n!°8"" and we denote
by QP, QNP, and QR the analogues of the usual complexity classes in the quasi-polynomial
time domain.

1. NPO Problems: Definitions and Preliminaries

The basic ingredients of an optimization problem are the set of instances or input objects, the
set of feasible solutions or output objects associated to any instance, and the measure defined
for any feasible solution. On the analogy of the theory of NP-completeness, we are interested
in studying a class of optimization problems whose feasible solutions are short and easy-to-
recognize. To this aim, suitable constraints have to be introduced. We thus give the following
definition.

Definition 1. An NP optimization problem A is a fourtuple (I, sol, m,goal) such that

1. I is the set of the instances of A and it is recognizable in polynomial time.

2. Given an instance x of I, sol(z) denotes the set of feasible solutions of x. These solutions
are short, that is, a polynomial p exists such that, for any y € sol(z), |y| < p(|z|). Moreover,
it is decidable in polynomial time whether, for any x and for any y such that |y| < p(|z]),
y € sol(z).

3. Given an instance x and a feasible solution y of x, m(x,y) denotes the positive integer
measure of y. The function m is computable in polynomial time and is also called the
objective function.

4. goal € {max, min}.
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The class NPO is the set of all NP optimization problems.
The goal of an NP O problem with respect to an instance z is to find an optimum solution,
that is, a feasible solution y such that

m(z,y) = goal{m(z,y’) : y' € sol(x)}.

In the following sol* will denote the multi-valued function mapping an instance & to the set
of optimum solutions, while opt will denote the function mapping an instance z to the measure
of an optimum solution.

An NPO problem is said to be polynomially bounded if a polynomial ¢ exists such that, for
any instance z and for any solution y of =, m(z,y) < ¢(|z|). The class NPO PB is the set of
polynomially bounded NPO problems.

2. Approximate Algorithms and Approximation Classes

It is well-known that if an NPO problem can be solved in polynomial time, then its correspond-
ing decision problem can also be solved in polynomial time. As a consequence, if P # NP, then
any NPO problem whose corresponding decision problem is NP-complete is not solvable in
polynomial time. In these cases we sacrifice optimality and start looking for approximate solu-
tions computable in polynomial time.

Definition 2. Let A be an NPO problem. Given an instance x and a feasible solution y of z,
we define the performance ratio of y with respect to = as

_ m(z,y) opt(z)
R(z,y)= max{ opt(a)’ m(w,y)} .

The performance ratio is always a number greater than or equal to 1 and is as close to 1 as
y is close to the optimum solution.

Definition 3. Let A be an NPO problem and let T be an algorithm that, for any instance x
of A, returns a feasible solution T'(z) of x. Given an arbitrary functionr: N — (1,00), we say
that T is an r(n)-approximate algorithm for A if, for any instance x, the performance ratio of
the feasible solution T(z) with respect to x verifies the following inequality:

Rz, T(x)) < r(fe]).

If an NPO problem admits an r(n)-approximate polynomial-time algorithm we say that it
is approximable within 7(n).

Definition 4. An NPO problem A belongs to the class APX if it is approximable within ¢, for
some constant € > 1.

Definition 5. Let A be an NPO problem. An algorithm T is said to be an approximation
scheme for A if, for any instance x of A and for any rational ¢ > 1, T(z,¢) returns a feasible
solution of x whose performance ratio is at most €.

Definition 6. An NPO problem A belongs to the class PTAS if it admits a polynomial-time
approzimation scheme, that is, an approximation scheme whose time complexity is bounded by
q(|z|) where q is a polynomial.
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Observe that the time complexity of an approximation scheme in the above definition may
be of the type 21/(==Up(|z|) or |z|'/(==1) where p is a polynomial. Thus, computations with e
values very close to 1 may turn out to be practically unfeasible. This leads us to the following
definition.

Definition 7. An NPO problem A belongs to the class FPTAS if it admits a fully polynomial-
time approzimation scheme, that is, an approzimation scheme whose time complexity is bounded
by q(|x|,1/(e — 1)) where q is a polynomial.

Clearly, the following inclusions hold:

FPTAS C PTAS C Apx C NPO.

It is also easy to see that these inclusions are strict if and only if P # NP.

3. Completeness in Approximation Classes

In this section we define a natural approximation preserving reducibility and introduce the
notion of completeness both in NPO and in ApX.

Definition 8. Let A and B be two NPO problems. A is said to be PTAS-reducible to B, in
symbols A <pag B, if three functions f, g, and c exist such that:

1. For any x € 14 and for any rational ¢ € (1,00), f(xz,e) € Ip is computable in time
polynomial with respect to |z|.

2. For any x € Iy, for any y € solp(f(x,¢)), and for any rational ¢ € (1,00), g(z,y,€) €
sol4(x) is computable in time polynomial with respect to both |z| and |y|.

3. c:(1,00) — (1,00) is computable and invertible.

4. For any x € 14, for any y € solg(f(x,¢)), and for any rational ¢ € (1, 0),

Re(f(z,e),y) < cle) implies Ra(z,g(x,y,¢)) < €.

Remark 1. In [Papadimitriou and Yannakakis, 1991] a different kind of reducibility between
optimization problems is defined which is a restriction of the PTAS-reducibility and is called
L-reducibility.

It is easy to see that the previous definition satisfies the following fact.

Proposition 1. If A <ppag B and B € APX (respectively, B € PTAS), then A € ApX
(respectively, A € PTAS).

Definition 9. A problem A € NPO is NPO-complete if, for any B € NPO, B <pppg A.
Analogously, we can define the notion of completeness in the class NPO PB.

Definition 10. A problem A € NPO is ApX-hard if, for any B € ApX, B <pTag A. An
APX-hard problem is ApX-complete if it belongs to ArX.
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4. A list of NPO problems

The list contains almost 150 entries. A typical entry consists of eight parts: the first 4 parts
are mandatory while the last 4 parts are optional.

The problem name that also specifies the goal of the problem.

The definition of the instances of the problem.

The definition of the feasible solutions of the problem.

The definition of the measure of a feasible solution.

A ‘good news’ part that contains the best approximation result for the problem.

A ‘bad news’ part that contains the worst approximation negative result for the problem.
A section of additional comments.

A reference to the ‘closest” problem appearing in the list published in [Garey and Johnson,
1979].

O =1 O T = W N —

The list is organized according to subject matter as done in [Garey and Johnson, 1979]. In
particular the entries are divided into the following twelve categories:

GT Graph theory: 40 entries.

ND Network design: 41 entries.

SP Sets and partitions: 10 entries.

SR Storage and retrieval: 5 entries.

SS Sequencing and scheduling: 12 entries.
MP Mathematical programming: 15 entries.
AN Algebra and number theory: 1 entry.
GP Games and puzzles: no entry.

LO Logic: 13 entries.

AL Automata and language theory: 5 entries.
PO Program optimization: 1 entry.

MS Miscellaneous: 9 entry.

We have ignored problems with too obscure definitions and problems for which the mem-
bership in NP was not guaranteed. Certainly, we missed many other results. Indeed, this is
the first compilation of the list and we ask everybody to help us in correcting, improving, and
enlarging it!
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Graph Theory

Covering and Partitioning

GT1. MINIMUM VERTEX COVER

INsTANCE: Graph G = (V, E).

SOLUTION: A vertex cover for GG, i.e., a subset V' C V such that, for each edge (u,v) € F, at
least one of u and v belongs to V.

MEasURE: Cardinality of the vertex cover, i.e., |V|.

Glood News: Approximable within 2 — lggkl;g”'/‘ﬂ [Bar-Yehuda and Even, 1985].
Bad News: Apx-complete [Papadimitriou and Yannakakis, 1991].
Comment: Transformation from bounded MAXIMUM 3-SATISFIABILITY. Admits a PTAS for

planar graphs [Baker, 1994]. Variation in which each vertex has a nonnegative weight and

the objective is to maximize the total weight of the vertex cover is approximable within
2 — loglog|V|/2log|V| on general graphs and within 3/2 for planar graphs [Bar-Yehuda
and Even, 1985].

Variation in which the degree of G is bounded by a constant B is Apx-complete [Papadim-
itriou and Yannakakis, 1991]. For B = 3 it is approximable within 5/4, for B > 10 it is
approximable within 2B2/(B? + B — 1) [Monien and Speckenmeyer, 1983]. The generaliza-
tion to k-hypergraphs, for & > 2, is approximable within & [Kolaitis and Thakur, 1993].
If the vertex cover is required to be the nodes of a tree in the graph and the objective is
to minimize the number of edges in the tree, the problem is approximable within 2 [Arkin,
Halldérsson, and Hassin, 1993]. If the graph is edge-weighted, the vertex cover is required to
be a cycle, and the objective is to minimize the weight of the edges in the cycle, the problem
is approximable within 3.5 [Arkin, Halld6rsson, and Hassin, 1993]. The constrained varia-
tion in which the input is extended with a positive integer £ and a subset S of V', and the
problem is to find the vertex cover of size k that contains the largest number of vertices
from 9, is not approximable within |V|* for some ¢ > 0 [Zuckerman, 1993].

Garey and Johnson: GT1

GT2. MINIMUM DOMINATING SET

INsTANCE: Graph G = (V, E).

SoLuTION: A dominating set for G, i.e., a subset V/ C V such that for all u € V' — V' there is
a v € V' for which (u,v) € E.

MEAsURE: Cardinality of the dominating set, i.e., |V’

Good News: Approximable within O(log|V]) by reduction to MiNniMmumM SET CoVER [Kann,
1992b].

Bad News: Not approximable within clog|V| for any ¢ < 1/4 unless NP C QP [Lund and
Yannakakis, 1993a]. Not approximable within clog|V| for any ¢ < 1/8, unless NP C
DTIME (|V|loglog|v|) [Bellare, Goldwasser, Lund, and Russell, 1993].

Comment: Fquivalent to MINIMUM SET CoVER under L-reduction. If it is NP-hard to ap-

proximate within w(logn), then it is complete for the class of log-approximable problems
[Khanna, Motwani, Sudan, and Vazirani, 1994]. Admits a PTAS for planar graphs [Baker,
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1994]. Variation in which the degree of G is bounded by a constant B is ApxX-complete
[Papadimitriou and Yannakakis, 1991] and is approximable within Z?:"il % by reduction to
MiNiMUM SET COVER.

Garey and Johnson: GT2

GT3. MINIMUM EDGE DOMINATING SET

INsTANCE: Graph G = (V, E).

SoLUTION: An edge dominating set for G, i.e., a subset E/ C F such that for all ey € F — F’
there is an ey € E’ such that e; and ey are adjacent.

MEasURE: Cardinality of the edge dominating set, i.e., | E’|.

Good News: Admits a PTAS for planar graphs [Baker, 1994].
Garey and Johnson: GT2

GT4. MINIMUM INDEPENDENT DOMINATING SET

INsTANCE: Graph G = (V, E).

SoLuTION: An independent dominating set for G, i.e., a subset V/ C V such that for all
w €V — V' there is a v € V' for which (u,v) € F, and such that no two vertices in V'’ are
joined by an edge in F.

MEASURE: Cardinality of the independent dominating set, i.e., |[V’].

Bad News: NPO PB-complete [Kann, 1993]. Not approximable within |[V[1=¢ for any ¢ > 0
[Halldérsson, 1993b].

Comment: The problem is also called Minimum Mazimal Indepencence Number. Transforma-
tion from SHORTEST PATH WITH FORBIDDEN PAIRS. Variation in which the degree of G is
bounded by a constant B is ApX-complete [Kann, 1992b].

Garey and Johnson: GT2

GT5. MINIMUM GRAPH COLORING

INsTANCE: Graph G = (V, E).

SOLUTION: A coloring of G, i.e., a partition of V into disjoint sets Vi, V3, ..., Vi such that each
V; is an independent set for G.

MEASURE: Cardinality of the coloring, i.e., the number of disjoint independent sets V;.

(loglog [V])?
(log [V])?

Bad News: Not approximable within |V|'/14= for any ¢ > 0 [Bellare and Sudan, 1994].

Comment: The problem is also called Minimum Cromatic Number. Not approximable within
|V|1/19=¢ for any ¢ > 0, unless QNPCco-QR [Bellare and Sudan, 1994].
If the graph is 3-colorable the problem is approximable within O(]V|%*) [Blum, 1989], but
it is not approximable within 5/3 [Khanna, Linial and Safra, 1993]. MINIMUM FRACTIONAL
CHROMATIC NUMBER, the linear programming relaxation in which the independent sets
Vi, Vo, ..., Vi do not need to be disjoint, and in the solution every independent set V; is
assigned a nonnegative value A; such that for each vertex v € V the sum of the values
assigned to the independent sets containing » is at most 1, and the measure is the sum

Good News: Approximable within O (|V| ) [Halldérsson, 1993a].
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> Ai, is not approximable within |V|° for some constant ¢ [Lund and Yannakakis, 1993a].
The corresponding maximization problem, where the number of “not needed colors”, i.e.
|V] — k, is to be maximized, is approximable within 2 [Demange, Grisoni, and Paschos,
1994]. The constrained variation in which the input is extended with a positive integer k, a
vertex vg € V and a subset S of V, and the problem is to find the k-coloring that colors the
largest number of vertices from S in the same way as vg, is not approximable within |V'|
for some ¢ > 0 [Zuckerman, 1993].
Garey and Johnson: GT4

GT6. MINIMUM EDGE COLORING

INsTANCE: Graph G = (V, E).

SOLUTION: A coloring of F. i.e., a partition of F into disjoint sets Fy, Fs,..., F} such that,
for 1 < i <k, no two edges in F; share a common endpoint in G.

MEASURE: Cardinality of the coloring, i.e., the number of disjoint sets F;.

Good News: Approximable within 4/3, and even approximable with an absolute error guarantee
of 1 [Nishizeki and Chiba, 1988].

Bad News: Not approximable within 4/3 — ¢ for any ¢ > 0 [Nishizeki and Chiba, 1988].

Comment: The problem is also called Minimum Cromatic Indez.

Garey and Johnson: OPEN5

GT7. MINIMUM FEEDBACK VERTEX SET

INsTANCE: Directed graph G' = (V, A).

SoruTioN: A feedback vertex set, i.e., a subset V' C V such that V' contains at least one
vertex from every directed cycle in G.

MEasURE: Cardinality of the feedback vertex set, i.e., |V|.

Good News: Approximable within 4 — 2/n [Bar-Yehuda, Geiger, Naor, and Roth, 1994].

Bad News: Aprx-complete [Kann, 1992b].

Comment: Transformations from MINIMUM VERTEX COVER and MINIMUM FEEDBACK ARC
SET [Ausiello, D’Atri, and Protasi, 1980]. The variation in which a weight is assigned to each
vertex it is approximable within min{2A2 4logn} where A denotes the maximum degree in
G. This variation is approximable within 10 for planar graphs and within 4 — 2/n for graphs
in which a prescribed subset of the vertices is not allowed to participate in any feedback
vertex set [Bar-Yehuda, Geiger, Naor, and Roth, 1994]. The constrained variation in which
the input is extended with a positive integer k& and a subset 5 of V, and the problem is to
find the feedback vertex set of size k that contains the largest number of vertices from 9, is
not approximable within |V| for some ¢ > 0 [Zuckerman, 1993].

Garey and Johnson: GT7

GTS8. MINIMUM FEEDBACK ARC SET

INsTANCE: Directed graph G' = (V, A).
SoruTioN: A feedback arc set, i.e., a subset A’ C A such that A’ contains at least one arc
from every directed cycle in G.
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MEasURE: Cardinality of the feedback arc set, i.e., |A’].

Bad News: Apx-hard [Kann, 1992b].

Comment: Transformation from MiNIMUM VERTEX COVER [Ausiello, D’Atri, and Protasi,
1980]. The constrained variation in which the input is extended with a positive integer
k and a subset S of A, and the problem is to find the feedback edge set of size k that
contains the largest number of edges from S, is not approximable within |E|® for some
€ > 0 [Zuckerman, 1993]. The complementary problem of finding the maximum set of edges
A’ such that G' = (V, A’} is acyclic is approximable within 2/(1 4 Q(1/v/A)) where A is
the maximum degree [Berger and Shor, 1990] and it is ApX-complete [Papadimitriou and
Yannakakis, 1991].

Garey and Johnson: GTS8

GT9. MAXIMUM TRIANGLE PACKING

INsTANCE: Graph G = (V, E).

SOLUTION: A triangle packing for G, i.e., a collection Vi, V3, ..., V} of disjoint subsets of V',
each containing exactly 3 vertices, such that for each V; = {u;, v;,w;}, 1 < i < k, all three
of the edges (u;, v;), (u;, w;), and (v;, w;) belong to F.

MEASURE: Cardinality of the triangle packing, i.e., the number of disjoint subsets V.

Good News: Approximable within 2 [Halldérsson, 1994].

Bad News: Aprx-complete [Kann, 1991].

Comment: Transformation from bounded MAXIMUM 3-DIMENSIONAL MATCHING. Admits a
PTAS for planar graphs [Baker, 1994]. Variation in which the degree of GG is bounded by a
constant B is ApX-complete

Garey and Johnson: GTI11

GT10. MaxiMmuM H-MATCHING

INsTANCE: Graph G = (Vig, Eg) and a fixed graph H = (V, Ep) with at least three vertices
in some connected component.

SorLuTioN: A H-matching for G, i.e., a collection Gy,Go, ..., Gy of disjoint subgraphs of G,
each isomorphic to H.

MEASURE: Cardinality of the H-matching, i.e., the number of disjoint subgraphs G;.

Good News: Approximable within (|Vy|+ 1)/2 [Halldérsson, 1994].

Bad News: Apx-hard [Kann, 1994].

Comment: Transformation from bounded MAXIMUM 3-SATISFIABILITY. Variation in which the
degree of G is bounded by a constant B is Apx-complete [Kann, 1994]. Admits a PTAS
for planar graphs [Baker, 1994], but does not admit an FPTAS unless P = NP [Berman,
Johnson, Leighton, Shor and Snyder, 1990]. Induced MaxiMmum H-MATCHING, i.e., where
the subgraphs G; are induced subgraphs of G, has the same good and bad news as the
ordinary problem, even when the degree of GG is bounded.

Garey and Johnson: GT12

GT11. MiNnIMUM CLIQUE PARTITION

INsTANCE: Graph G = (V, E).
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SOLUTION: A clique partition for G, i.e., a partition of V into disjoint subsets Vi, V3, ..., Vi
such that, for 1 < ¢ <k, the subgraph induced by V; is a complete graph.
MEASURE: Cardinality of the clique partition, i.e., the number of disjoint subsets V;.

(loglog [V])
(log [V])?
Bad News: Not approximable within |V|* for some ¢ > 0 [Lund and Yannakakis, 1993a].
Comment: Equivalent to MiINIMUM GRAPH COLORING [Paz and Moran, 1981]. The corre-
sponding maximization problem, where |V| —k, is to be maximized, is approximable within
2 [Demange, Grisoni, and Paschos, 1994].
Garey and Johnson: GT15

Good News: Approximable within O (|V| ) [Halldérsson, 1993a].

GT12. MINIMUM k-CAPACITATED TREE PARTITION

INsTANCE: Graph G = (V, F), and a weight function w : £ — N.

SOLUTION: A k-capacitated tree partition of G, i.e., a collection of vertex-disjoint subsets
Fy,....F, of E such that, for each 7, the subgraph induced by F; is a tree of at least k
vertices.

MEASURE: The weight of the partition, i.e., ZSEUiEi w(e).

Good News: Approximable within 2 — 1/|V| [Goemans and Williamson, 1992].

Comment: The variation in which the trees must contain exactly k vertices and the triangle
inequality is satisfied is approximable within 4(1 — 1/k)(1 — 1/|V/|). Similar results hold
for the corresponding cycle and path partitioning problems with the triangle inequality
[Goemans and Williamson, 1992].

GT13. MiniMmuM CLIQUE COVER

INsTANCE: Graph G = (V, E).

SOLUTION: A clique cover for G, i.e., a collection Vq, Va5, ..., V} of subsets of V', such that each
Vi induces a complete subgraph of (¢ and such that for each edge (u,v) € F there is some
V; that contains both v and v.

MEASURE: Cardinality of the clique cover, i.e., the number of subsets V;.

Good News: Approximable within O(log|V]) - f(|V]) if Maximum CLIQUE is approximable
within f(|V]) [Simon, 1990].

Bad News: Not approximable within |V'|* for some ¢ > 0, unless P = NP [Lund and Yan-
nakakis, 1993a].

Comment: Equivalent to MINIMUM CLIQUE PARTITION under ratio-preserving reduction [Kou,
Stockmeyer, and Wong, 1978] and [Simon, 1990]. The corresponding maximization problem,
where || —k is to be maximized, is approximable within 2 [Demange, Grisoni, and Paschos,
1994]. The constrained variation in which the input is extended with a positive integer k,
a vertex vg € V and a subset 5 of V', and the problem is to find the clique cover of size
k that contains the largest number of vertices from 9, is not approximable within |V|* for
some ¢ > 0 [Zuckerman, 1993].

Garey and Johnson: GT17
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GT14. MINIMUM COMPLETE BIPARTITE SUBGRAPH COVER

INsTANCE: Graph G = (V, E).

SOLUTION: A complete bipartite subgraph cover for GG, i.e., a collection Vi, Vs, ..., Vi of subsets
of V, such that each V; induces a complete bipartite subgraph of G and such that for each
edge (u,v) € I there is some V; that contains both u and v.

MEASURE: Cardinality of the complete bipartite subgraph cover, i.e., the number of subsets
Vi.

Good News: Approximable within O(log|V]) - f(|V]) if Maximum CLIQUE is approximable
within f(|V]) [Simon, 1990].

Bad News: Not approximable within |V'|* for some ¢ > 0, unless P = NP [Lund and Yan-
nakakis, 1993a].

Comment: Equivalent to MINIMUM CLIQUE PARTITION under ratio-preserving reduction [Si-
mon, 1990].

Garey and Johnson: GTI18

GT15. MINIMUM VERTEX DisjoINT CycLE COVER

INsTANCE: Graph G = (V, E).
SoruTioN: A family F of vertex disjoint cycles covering V.
MEASURE: Number of cycles in F.

Bad News: Not in Apx [Sahni and Gonzalez, 1976].
Comment: Variation in which the graph G is directed is not in ApPX.

GT16. MINIMUM EDGE DisjoINT CycLE COVER

INsTANCE: Graph G = (V, E).
SorLuTIoN: A family F of edge disjoint cycles covering V.
MEASURE: Number of cycles in F.

Bad News: Not in Apx [Sahni and Gonzalez, 1976].
Comment: Variation in which the graph G is directed is not in ApPX.

GT17. MiniMuM CuT COVER

INsTANCE: Graph G = (V, E).

SOLUTION: A collection Vi,...,V,, of cuts, i.e., a collection of subsets V; C V such that, for
each edge (u,v) € F, a subset V; exists such that either v € V; and v ¢ V; or u ¢ V; and
v € V.

MEASURE: Cardinality of the collection, i.e., m.

Good News: Approximable within 14 (log |V|—3loglog |V|)/opt(G) [Motwani and Naor, 1993].

Bad News: There is no polynomial-time algorithm with relative error less than 1.5. [Motwani
and Naor, 1993].

Comment: The negative result is obtained by relating the problem with the coloring problem.

Solvable in polynomial time for planar graphs. Observe that any graph has a cut cover of
cardinality [log|V].

Subgraphs and Supergraphs
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GT18. MaxiMmuM CLIQUE

INsTANCE: Graph G = (V, E).

SoruTioN: A clique in &, i.e. a subset V/ C V such that every two vertices in V' are joined
by an edge in F.

MEasURE: Cardinality of the clique, i.e., |V|.

Good News: Approximable within O (]V|/(log|V])?) [Boppana and Halldérsson, 1992].

Bad News: Not approximable within |V|'/6== for any ¢ > 0 [Bellare and Sudan, 1994].

Comment: The same problem as MAXIMUM INDEPENDENT SET on the complementary graph.
Not approximable within |V|1/4=¢ for any ¢ > 0, unless QNPCco-QR [Bellare and Sudan,
1994].

Garey and Johnson: GT19

GT19. MAXIMUM INDEPENDENT SET

INsTANCE: Graph G = (V, E).

SoruTioN: An independent set of vertices, i.e. a subset V/ C V such that no two vertices in
V' are joined by an edge in F.

MEasURE: Cardinality of the independent set, i.e., |[V'].

Good News: See MaXIMUM CLIQUE.

Bad News: See MaxiMmuM CLIQUE.

Comment: The same problem as MAXIMUM CLIQUE on the complementary graph. Admits a
PTAS for planar graphs [Baker, 1994]. Variation in which the degree of G is bounded by
a constant B is Apx-complete [Papadimitriou and Yannakakis, 1991] and is approximable
within (B +3)/5—¢ if B is even and within (B +3.25)/5 —¢ if B is odd where ¢ is any fixed
number greater than 0 [Berman and Firer, 1994]. For large values of B it is approximable
within O(B/loglog B) [Halldérsson and Radhakrishnan, 1994].

Garey and Johnson: GT20

GT20. MAXIMUM INDEPENDENT SEQUENCE

INsTANCE: Graph G = (V, E).

SOLUTION: An independent sequence for (G, i.e., a sequence vy, ..., v, of independent vertices
of G such that, for all « < m, a vertex v; € V exists which is connected to v;41 but is not
connected to any v; for j <.

MEASURE: Length of the sequence, i.e., m.

Bad News: Not approximable within |V|* for some ¢ > 0. [Blundo, De Santis, and Vaccaro,
1994].
Comment: Transformation from MaXiMuM CLIQUE.

GT21. MAXIMUM INDUCED SUBGRAPH WITH PROPERTY II

INnsTANCE: Graph G' = (V, F). The property Il must be hereditary, i.e., every subgraph of G’
satisfies II whenever G’ satisfies II, and non-trivial, i.e., it is satisfied for infinitely many
graphs and false for infinitely many graphs.
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SoruTioN: A subset V' C V such that the subgraph induced by V' has the property II.
MEASURE: Cardinality of the induced subgraph, i.e., |V/|.

Bad News: Not approximable within |V|* for some ¢ > 0 unless P=NP, if II is false for some
clique or independent set (for example planar, outerplanar, bipartite, complete bipartite,
acyclic, degree-constrained, chordal, interval). Not approximable within 208" = IV fop any
e > 0 unless NPCQP, if Il is a non-trivial hereditary graph property (for example compara-
bility, permutation, perfect, circular-arc, circle, line graph) [Lund and Yannakakis, 1993b].

Comment: The same problem on directed graphs is not approximable within 208" V| for any
e > 0 unless NPCQP, if Il is a non-trivial hereditary digraph property (for example acyclic,
transitive, symmetric, antisymmetric, tournament, degree-constrained, line digraph) [Lund
and Yannakakis, 1993b]. Admits a PTAS for planar graphs if IT is hereditary and determined
by the connected components, i.e., G’ satisfies Il whenever every connected component of
G’ satisfies II [Nishizeki and Chiba, 1988].

Garey and Johnson: GT21

GT22. MINIMUM VERTEX DELETION TO OBTAIN SUBGRAPH WITH PROPERTY Il

INsTANCE: Directed or undirected graph G' = (V, E).
SoruTioN: A subset V! C V such that the subgraph induced by V — V' has the property II.
MEAsSURE: Cardinality of the set of deleted vertices, i.e., |[V’|.

Good News: Approximable within some constant for any hereditary property II with a finite
number of minimal forbidden subgraphs (for example transitive digraph, symmetric, anti-
symmetric, tournament, line graph, and interval) [Lund and Yannakakis, 1993b]. Approx-
imable within some constant for any property II that can be expressed as a universal first
order sentence over subsets of edges of the graph [Kolaitis and Thakur, 1991].

Bad News: Apx-hard for any non-trivial hereditary property Il [Lund and Yannakakis, 1993b].

Comment: 1t is approximable within O(log|V|) if the subgraph has to be bipartite [Garg,
Vazirani, and Yannakakis, 1994].

GT23. MINIMUM EDGE DELETION TO OBTAIN SUBGRAPH WITH PROPERTY II

INsTANCE: Directed or undirected graph G' = (V, E).
SoLuTioN: A subset E/ C F such that the subgraph G = (V, ' — E’) has the property II.
MEasURE: Cardinality of the set of deleted edges, i.e., |E’|.

Good News: Approximable within some constant for any property Il that can be expressed as

a universal first order sentence over subsets of edges of the graph [Kolaitis and Thakur,
1991].

GT24. MAXIMUM INDUCED CONNECTED SUBGRAPH WITH PROPERTY II

INsTANCE: Graph G = (V, E).

SoLUTION: A subset V/ C V such that the subgraph induced by V' is connected and has the
property II.

MEASURE: Cardinality of the induced connected subgraph, i.e., |V/].
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Bad News: Not approximable within |V|!=% for any ¢ > 0 if Il is a non-trivial hereditary graph
property that is satisfied by all paths and is false for some complete bipartite graph (for
example path, tree, planar, outerplanar, bipartite, chordal, interval) [Lund and Yannakakis,
1993b].

Comment: NPO PB-complete when II is either path or chordal [Berman and Schnitger, 1992].

Garey and Johnson: GT22 and GT23

GT25. MINIMUM VERTEX DELETION TO OBTAIN CONNECTED SUBGRAPH WITH
PropPERTY 1II

INsTANCE: Directed or undirected graph G' = (V, E).

SoruTioN: A subset V' C V such that the subgraph induced by V' — V' is connected and has
the property II.

MEAsSURE: Cardinality of the set of deleted vertices, i.e., |[V’|.

Bad News: Not approximable within |V|1=% for any ¢ > 0 if II is any non-trivial hereditary
property determined by the blocks (for example planar, outerplanar, bipartite, chordal,
cactus, acyclic graph, acyclic digraph, without cycles of specified length, symmetric digraph,
antisymmetric digraph) [Yannakakis, 1979].

GT26. MINIMUM EDGE-DELETION BIPARTIZATION

INsTANCE: Graph G = (V, E) and a weight function w: £/ — N.

SOLUTION: An edge-deletion bipartization, i.e., a subset £’ C E such that G = (V, E — E') is
bipartite.

MEAsURE: The weight of the bipartization, i.e., 3" cp w(F).

Good News: Approximable within logn [Garg, Vazirani, and Yannakakis, 1993b].

Bad News: Apx-hard [Garg, Vazirani, and Yannakakis, 1993b].

GT27. MAXIMUM k-COLORABLE SUBGRAPH

INsTANCE: Graph G = (V, E).

SoLuTION: A subset £’ C F such that the subgraph G’ = (V, E’) is k-colorable, i.e., there is
a coloring for G’ of cardinality at most k.

MEasURE: Cardinality of the subgraph, i.e., |E’|.

Good News: Approximable within % [Vitanyi, 1981].

Bad News: Apx-complete for k > 2 [Papadimitriou and Yannakakis, 1991].
Comment: Fquivalent to Maximum CuTt for k& = 2.

GT28. MAXIMUM EDGE SUBGRAPH

InsTaANCE: Graph G = (V, F) and positive integer k.
SoLUTION: A subset V/ CV such that |V'| = k.
MEAsSURE: Cardinality of the edges in the subgraph induced by V.

Good News: Approximable within O(]V]%3%%%) [Kortsarz and Peleg, 1993].
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GT29. MINIMUM EDGE 2-SPANNER

INsTANCE: Connected graph G = (V, E).

SorLuTION: A 2-spanner of (7, i.e., a spanning subgraph G’ of GG such that, for any pair of
vertices u and v, the shortest path between « and » in G’ is at most twice the shortest path
between u and v in G.

MEASURE: The number of edges in G.

Good News: Approximable within O(logn) [Kortsarz and Peleg, 1992].

Comment: The variation in which the goal is to minimize the maximum degree in G’ is approx-
imable within O(y/Tog nA'Y/*) where A is the maximum degree in  [Kortsarz and Peleg,
1994].

GT30. MaAXIMUM k-COLORABLE INDUCED SUBGRAPH

INsTANCE: Graph G = (V, E).

SoLuTioN: A subset V/ C V such that the induced subgraph G’ = (V') E’) is k-colorable, i.e.,
there is a coloring for G’ of cardinality at most k.

MEAsURE: Cardinality of the vertex set of the induced subgraph, i.e., |[V’].

Bad News: As hard to approximate as MAXIMUM INDEPENDENT SET for & > 1 [Panconesi
and Ranjan, 1993].

Comment: Transformation from MAXIMUM INDEPENDENT SET. Equivalent to MAXiMUM IN-
DEPENDENT SET for £ = 1. Admits a PTAS if GG is restricted to be planar [Nishizeki and
Chiba, 1988].

GT31. MINIMUM EQUIVALENT DIGRAPH

INsTANCE: Directed graph G = (V, E).

SoLUTION: A subset E' C F such that, for every ordered pair of vertices u,v € V, the graph
G' = (V, E') contains a directed path from u to v if and only if G does.

MEasURE: Cardinality of F’, i.e., |E’|.

Good News: Approximable within about 1.61 [Khuller, Raghavachari, and Young, 1994b].
Garey and Johnson: GT33

GT32. MINIMUM INTERVAL GRAPH COMPLETION

INsTANCE: Graph G = (V, E).

SOLUTION: An interval graph G’ = (V, E’) that contains G as a subgraph, i.e., E C E’. An
interval graph is a graph whose vertices can be mapped to distinct intervals in the real
line such that two vertices in the graph have an edge between them if and only if their
corresponding intervals overlap.

MEASURE: The cardinality of the interval graph, i.e., |E’|

Good News: Approximable within O (log2 |V|) [Ravi, Agrawal, and Klein, 1991].
Garey and Johnson: GT35
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GT33. MINIMUM CHORDAL GRAPH COMPLETION

INsTANCE: Graph G = (V, E).

SoLuTION: A chordal graph completion, i.e., a superset E’ containing F such that G’ = (V, E)
is chordal, that is, for every simple cycle of more than 3 vertices in GG’, there is some edge
in E’ that is not involved in the cycle but that joins two vertices in the cycle.

MEASURE: The size of the completion, i.e., |E' — F|.

Good News: Approximable within O(|E|Y/*log? |V]) [Klein, Agrawal, Ravi, and Rao, 1990].

Comment: Approximable within O(log* [V|) for graphs with bounded degree [Klein, Agrawal,
Ravi, and Rao, 1990].

Garey and Johnson: OPEN4

GT34. MaXIMUM CONSTRAINED HAMILTONIAN CIRCUIT

INsTANCE: Graph G = (V, F) and subset 5 C E of the edges.

SoruTioN: A Hamiltonian circuit €' in G, i.e., a circuit that visits every vertex in V once.
MEASURE: Cardinality of the edges in S that are used in the circuit C, i.e., |5 N C|.

Bad News: Not approximable within |F|® for some ¢ > 0 [Zuckerman, 1993].

Comment: Variation in which the graph is directed has the same bad news [Zuckerman, 1993].
Garey and Johnson: Similar to GT37 and GT38

Vertex Ordering

Iso- and Other Morphisms

GT35. MaAXIMUM COMMON SUBGRAPH

InsTaANCE: Graphs Gy = (Vi, Fq) and Gy = (Va, Ea).

SOLUTION: A common subgraph, i.e. subsets Fy’ C E; and Ey’ C F; such that the two
subgraphs G = (V1, Ey') and G, = (V;, E5') are isomorphic.

MEAsURE: Cardinality of the common subgraph, i.e., |E'].

Good News: Not harder to approximate than Maximum CrLiQuE [Kann, 1992a].

Comment: Transformation to MAXIMUM CLIQUE. Variation in which the degree of the graphs
(G1 and G is bounded by the constant B is not harder to approximate than the bounded
degree induced common subgraph problem [Kann, 1992a] and is approximable within B+ 1.

Garey and Johnson: GT49

GT36. MaXIMUM COMMON INDUCED SUBGRAPH

InsTaANCE: Graphs Gy = (Vi, Fq) and Gy = (Va, Ea).

SoLuTION: A common induced subgraph, i.e. subsets Vi’ C V; and V5’ C V5 such that |V{/| =
|V2'], and the subgraph of i1 induced by Vi’ and the subgraph of (3 induced by V3’ are
isomorphic.

MEasURE: Cardinality of the common induced subgraph, i.e., |V7/|.

Bad News: Not approximable within |V|* for some ¢ > 0 [Kann, 1992a].
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Comment: Transformations to and from MAXiMUM CLIQUE. Variation in which the degree
of the graphs GG; and G is bounded by the constant B is ApX-hard and is approximable
within B+ 1. If the induced subgraph is restricted to be connected the problem is NPO PB-
complete and not approximable within (|V;| + [V2|)!7 for any ¢ > 0 [Kann, 1992a].

GT37. MaxiIMuUM CoMMON EMBEDDED SUB-TREE

INSTANCE: Trees T7 and T3 with labels on the nodes.

SoLuTION: A common embedded sub-tree, i.e. a labeled tree T’ that can be embedded into
both 77 and T5. An embedding from 77 to T is an injective function from the nodes of T’
to the nodes of T that preserves labels and ancestorship. Note that since fathership does
not need to be preserved, 77 does not need to be an ordinary subtree.

MEASURE: Cardinality of the common embedded sub-tree, i.e., |T7].

Bad News: Aprx-hard [Zhang and Jiang, 1994].
Comment: Transformation from MAXIMUM k-SET PACKING. Variation in which the problem
is to minimize the edit distance between the two trees is also Arx-hard.

Miscellaneous

GT38. LONGEST PATH WITH FORBIDDEN PAIRS

InsTANCE: Graph G = (V, F) and a collection C' = {{a1,b1),...,{(am,by,)} of pairs of vertices
from V.

SOLUTION: A simple path in G that contains at most one vertex from each pair in C'.
MEASURE: Length of the path, i.e., the number of edges in the path.

Bad News: NPO PB-complete [Berman and Schnitger, 1992].
Comment: Transformation from LONGEST COMPUTATION.
Garey and Johnson: GTH4

GT39. SHORTEST PATH WITH FORBIDDEN PAIRS

INsTANCE: Graph G’ = (V, E), a collection C' = {(a1,b1),...,(@m, )} of pairs of vertices from
V', an initial vertex s € V, and a final vertex f € V.

SOLUTION: A simple path from s to f in G that contains at most one vertex from each pair
in C.

MEASURE: Length of the path, i.e., the number of edges in the path.

Bad News: NPO PB-complete [Kann, 1993].
Comment: Transformation from SHORTEST COMPUTATION.

GT40. MINIMUM PoINT-To-PoINT CONNECTION

INsTANCE: Graph G = (V, E), a weight function w : £ — N, aset 5 = {s1,...,s,} of sources,
and a set D = {dy,...,d,} of destinations.



A compendium of NP optimization problems 17

SOLUTION: A point-to-point connection, i.e., a subset £/ C F such that each source-destination
pair is connected in E’.

MEASURE: The weight of the connection, i.e., 3" cp w(e).

Good News: Approximable within 2 — 1/p [Goemans and Williamson, 1992].

Network Design

Spanning Trees

ND1. MINIMUM k-SPANNING TREE

INsTANCE: Graph G = (V, F), an integer k < n, and a weight function w: £ — N.

SOLUTION: A k-spanning tree, i.e., a subtree T of G of at least k nodes.

MEASURE: The weight of the tree, i.e., 3" o7 w(e).

Good News: Approximable within 3v/k [Ravi, Sundaram, Marathe, Rosenkrantz, and Ravi,
1994].

Comment: The restriction to points in the Euclidean plane is approximable within O(logk)
[Garg and Hochbaum, 1994]. The analogous diameter and communication-cost k-spanning
tree problems are not in APX [Ravi, Sundaram, Marathe, Rosenkrantz, and Ravi, 1994].

ND2. MINIMUM DEGREE SPANNING TREE

INsTANCE: Graph G = (V, E).
SOLUTION: A spanning tree for G.
MEASURE: The maximum degree of the spanning graph.

Good News: Approximable with an absolute error guarantee of 1 [Fiirer and Raghavachari,
1992].
Garey and Johnson: NDI1

ND3. MINIMUM WEIGHTED 3-DEGREE SPANNING TREE

INsTANCE: Graph G = (V, E) and a weight function w: £/ — N.

SOLUTION: A spanning tree T for G in which no vertex has degree larger than 3.

MEASURE: The weight of the spanning tree, i.e., 37, e w(u,v).

Good News: Approximable within 3/2 [Khuller, Raghavachari, and Young, 1994a]

Comment: The 4-degree spanning tree problem is approximable within 5/4. The 5-degree prob-
lem is polynomial-time solvable.

ND4. MINIMUM STEINER TREE

InsTANCE: Complete graph G = (V, F), edge weights s : ¥ — N and a subset S C V of
required vertices.

SOLUTION: A Steiner tree, i.e., a subtree of G that includes all the vertices in 5.

MEASURE: The sum of the weights of the edges in the subtree.

Good News: Approximable within 16/9 [Berman and Ramaiyer, 1992].
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Bad News: Aprx-complete [Bern and Plassmann, 1989].

Comment: Variation in which the weights are only 1 or 2 is still ApX-complete, but ap-
proximable within 4/3 [Bern and Plassmann, 1989]. When all weights lie in an interval
[, (1 + 1/k)] the problem is approximable within 1+ 1/ek + O(1/k?) [Halldérsson, Ueno,
Nakao, and Kajitani, 1992]. A prize-collecting variation in which a penalty is associated to
each vertex and the goal is to minimize the cost of the tree and the vertices in 5 not in the
tree is approximable within 2 —1/(|V]—1) [Goemans and Williamson, 1992]. The variation
in which an integer k& < || is given in input and at least k vertices of .S must be included
in the subtree is approximable within 6v/k [Ravi, Sundaram, Marathe, Rosenkrantz, and
Ravi, 1994]. Variation in which there are groups of required vertices and each group must be
touched by the Steiner tree is approximable within ¢ — 1, where ¢ is the number of groups
[Thler, 1991]. The constrained variation in which the input is extended with a positive inte-
ger k and a subset T of F/, and the problem is to find the Steiner tree of weight at most k
that contains the largest number of edges from 7', is not approximable within | F|® for some
€ > 0 [Zuckerman, 1993]. If the solution is allowed to be a forest with at most ¢ trees, for a
given constant ¢, the problem is approximable within 2(1 — 1/(|S| — ¢ + 1)) [Ravi, 1994].

Garey and Johnson: NDI12

ND5. MINIMUM (FEOMETRIC STEINER TREE

INSTANCE: Set P C Z x Z of points in the plane.

SOLUTION: A finite set of Steiner points, i.e., Q C Z X Z.

MEASURE: The total weight of the minimum spanning tree for the vertex set PU(Q), where the
weight of an edge ((z1,%1), (22, 92)) is the discretized Euclidean length

[\/(901 —z2)* + (1 — 3/2)2-‘ :

Good News: Approximable within % — ¢ for some ¢ > 0 [Du, Zhang, and Feng, 1991].

Comment: If the rectilinear metric | ((z1,31), (z2,92)) | = |1 —22|+|y1 —y2| is used the problem
admits a PTAS [Berman and Ramaiyer, 1992]. Variation of the rectilinear metric problem
in which there are groups of required vertices and each group must be touched by the Steiner
tree is APX-hard, even if the groups are defined by non-overlapping intervals on one of two
parallel lines [Ihler, 1991].

Garey and Johnson: NDI13

ND6. MINIMUM (GENERALIZED STEINER NETWORK

INsTANCE: Graph G = (V| E), a weigh function w : £ — N, a capacity function ¢ : £ — N,
and a requirement function r: V. x V — N.

SOLUTION: A Steiner network over (G that satisfies all the requirements and obeys all the
capacities, i.e., a function f : ' — N such that, for each edge e, f(e) < ¢(e) and, for any
pair of nodes ¢ and j, the number of edge-disjoint paths between ¢ and j is at least r(4, )
where, for each edge e, f(e) copies of e are available.

MEeAsURE: The cost of the network, i.e., Y cp w(e)f(e).

Good News: Approximable within 2-H(R) where R is the maximum requirement and, for any
n, H(n) =", % [Goemans, Goldberg, Plotkin, Shmoys, Tardos, and Williamson, 1994].
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Comment: When all the requirements are equal, it is approximable within 2 [Khuller and
Vishkin, 1994]. The variation in which there are no capacity constraints on the edges is
approximable within 2 - H(|V|) [Aggarwal and Garg, 1994].

ND7. MINIMUM RoUTING TREE CONGESTION

INsTANCE: Graph G = (V, E) and a weight function w: £/ — N.

SOLUTION: A routing tree 7' for 4, i.e., a tree T in which each internal vertex has degree 3
and the leaves correspond to vertices of G.

MEASURE: The congestion of the routing tree, i.e., the maximum, for any edge e, of

Z w(u,v)

(uw,v)EE ueSwgS

where 5 is one of the two connected components obtained by deleting e from 7.

Good News: Approximable within logn [Khuller, Raghavachari, and Young, 1993].

Comment: The algorithm extends to the case when the routing tree is allowed to have vertices
of higher degree. If T is required to be a spanning tree and G is complete, the problem is
solvable in polynomial time.

NDS8. MINIMUM BICONNECTED SPANNING SUBGRAPH

INsTANCE: Graph G = (V, E).

SOLUTION: A biconnected spanning subgraph G’ = (V, £') for G (connectivity refers to both
edge and vertex connectivity).

MEASURE: The cardinality of the spanning subgraph, i.e., |F’|.

Good News: Approximable within 5/4 for edge connectivity and within 3/2 for vertex connec-
tivity [Garg, Santosh, and Singla, 1993].

Comment: Variation in which each edge has a nonnegative weight and the objective is to
minimize the total weight of the spanning subgraph is approximable within 2. [Khuller and

Vishkin, 1994].

Cuts and Connectivity

ND9. MaximuMm CuUT

INsTANCE: Graph G = (V, E).

SOLUTION: A partition of V' into disjoint sets V; and V5.

MEASURE: The cardinality of the cut, i.e., the number of edges with one end point in V} and
one endpoint in V5.

Good News: Approximable within 1.14 [Goemans and Williamson, 1994].

Bad News: Apx-complete [Papadimitriou and Yannakakis, 1991].

Comment: Transformation from MAXIMUM NOT-ALL-EQUAL 3-SATISFIABILITY. Variation in
which the degree of G is bounded by a constant B is still Apx-complete [Papadimitriou
and Yannakakis, 1991]. The weighted problem, where every edge is assigned a nonnegative
weight and the objective is to maximize the total weight of the edges in the cut is also
approximable within 1.14 [Goemans and Williamson, 1994].

Garey and Johnson: ND16
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ND10. MaxiMmuM DIRECTED CUT

INsTANCE: Directed graph G' = (V, A).

SOLUTION: A partition of V' into disjoint sets V; and V5.

MEASURE: The cardinality of the cut, i.e., the number of arcs with one end point in V; and
one endpoint in V5.

Good News: Approximable within 1.26 [Goemans and Williamson, 1994].

Bad News: Apx-complete [Papadimitriou and Yannakakis, 1991].

Comment: The weighted problem, where every arc is assigned a nonnegative weight and the
objective is to maximize the total weight of the arcs in the cut is also approximable within
1.26 [Goemans and Williamson, 1994].

ND11. MaxiMmuM k-CuT

INsTANCE: Graph G = (V, F), a weight function w : F' — N, and an integer k € [2..|V]].
SoLuTION: A partition of V into k disjoint sets F' = {Cy,Cy,...,Cg}.
MEASURE: The sum of the weight of the edges between the disjoint sets, i.e.,

>3 Y el

1=1 j=i+1 v1€C,
’U2€CJ

Good News: Approximable within & [Sahni and Gonzalez, 1976].

Bad News: ApX-complete.

Comment: The constrained variation in which the input is extended with a positive integer W,
a vertex vg € V' and a subset § of V', and the problem is to find the 2-cut of weight at least
W with the largest number of vertices from 5 on the same side as vg, is not approximable
within |V|* for some ¢ > 0 [Zuckerman, 1993].

ND12. MINIMUM NETWORK INHIBITION ON PLANAR (GRAPHS

INsTANCE: Planar graph G = (V, F), capacity function ¢ : £ — N, destruction cost function
d:F — N, and budget B.

SOoLUTION: An attack strategy to the network, i.e., a function a : E — [0,1] such that
S.ep ale)d(e) < B.

MEASURE: The capability left in the damaged network, i.e., the minimum cut in G with ca-
pacity ¢ defined as ¢/(e) = a(e)c(e).

Good News: Admits an FPTAS [Phillips, 1993].

ND13. MINIMUM k-CUT

INsTANCE: Graph G = (V, F), a weight function w : F' — N, and an integer k € [2..|V]].
SoLuTION: A partition of V into k disjoint sets F' = {Cy,Cy,...,Cg}.
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MEASURE: The sum of the weight of the edges between the disjoint sets, i.e.,

>3 Y el

1=1 j=i+1 v1€C,
’U2€CJ

Good News: Approximable within 2 — % [Saran and Vazirani, 1991].
Comment: Solvable in polynomial time O(|V|¥*) for fixed k [Goldschmidt and Hochbaum,

1988]. If the sets in the partition are restricted to be of equal size, the problem is approx-
imable within [V|-(k —1)/k [Saran and Vazirani, 1991].

ND14. MINIMUM VERTEX k-CUT

InsTANCE: Graph G = (V, E), a set S = {s1,1,...,5k, i} of special vertices, and a weight
function w:V — 5 — N, and an integer k.
SOLUTION: A vertex k-cut, i.e., a subset C' C V — 5 of vertices such that their deletion from
G disconnects each s; from t; for 1 <i < k.
MEASURE: The sum of the weight of the vertices in the cut, i.e., Z w(w).
vel

Good News: Approximable within O(log|V|) [Garg, Vazirani, and Yannakakis, 1994].

ND15. MINIMUM MuLrTiway CUT

INsTANCE: A graph G = (V, F), aset S C V of terminals, and a weight function w: £ — N.

SoruTioN: A multiway cut, i.e., a set £/ C F such that the removal of E’ from F disconnects
each terminal from all the others.

MEASURE: The weight of the cut, i.e., ZeeE' w(e).

Good News: Approximable within 2 — |S| [Dahlhaus, Johnson, Papadimitriou, Seymour, and
Yannakakis, 1992].

Bad News: Aprx-complete [Dahlhaus, Johnson, Papadimitriou, Seymour, and Yannakakis, 1992].

Comment: It remains ApX-complete even if |5| > 3 is fixed. For |S| = 4 and |5]| = 8 it is
approximable within 4/3 and 12/7, respectively. In the case of directed graphs the problem
is approximable within O(log|S|) and ApX-hard [Garg, Vazirani, and Yannakakis, 1994].
The vertex deletion variation is approximable within 2 — 2/|S| and is Apx-complete [Garg,
Vazirani, and Yannakakis, 1994]. If S is formed by pairs of vertices s; and ¢; and we require to
disconnect only these pairs, the problem is approximable within O(log|S]) both in the case
of edge deletion [Garg, Vazirani, and Yannakakis, 1993b] and in the case of vertex deletion
[Garg, Vazirani, and Yannakakis, 1994]. It is ApX-complete and approximable within 2 for
trees of height one and unit edge weight.

ND16. MINIMUM RaTio-CuT

INsTANCE: Graph G = (V, E).
SOLUTION: A partition of V' into disjoint sets V; and V5.
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MEASURE: The cardinality of the cut divided by the product of the cardinalities of the disjoint
sets, i.e., ¢/(|V4| - [V2|) where ¢ is the number of edges with one end point in V; and one
endpoint in V3.

Good News: Approximable within O(log|V|) [Leighton and Rao, 1988].

ND17. MiNniMUM QUuoTIENT CUT

INsTANCE: Graph G = (V, F), a vertex-weight function ¢ : V' — N, and an edge-cost function
w:k — N.

SOLUTION: A cut (', i.e., a subsets C' C V.

MEAsURE: The quotient of the cut, i.e.,

()
min{w(C),w(C)}

where ¢(C') denotes the sum of the costs of the edges (u, v) such that either v € C'and v ¢ C
oru ¢ C'and v € C and, for any subset V' C V, w(V') denotes the sum of the weights of
the vertices in V.

Good News: Approximable within O(log|V|) [Leighton and Rao, 1988].
Comment: Admits a PTAS for planar graphs [Park and Phillips, 1993].

ND18. MINIMUM BICONNECTIVITY AUGMENTATION

INsTANCE: Graph G = (V, ) and a symmetric weight function w: V x V. — N.

SOLUTION: A connectivity augmenting set E' for GG, i.e., a set £’ of unordered pairs of vertices
from V such that G’ = (V, E U E’) is biconnected.

Measure: The weight of the augmenting set, i.e., 3¢, e w(u,v).

Good News: Approximable within 2 [Khuller and Thurimella, 1993].

Comment: If the weight function satisfies the triangle inequality, the problem is approximable
within 3/2 [Frederickson and J&jd, 1981].

Routing Problems

ND19. TRAVELING SALESPERSON PROBLEM

INSTANCE: Set C' of m cities, distances d(¢;,¢;) € N for each pair of cities ¢;,¢; € C.
SoLuTION: A tour of C, i.e., a permutation 7 : [1..m] — [1..m].

m—1
MEASURE: The length of the tour, i.e., d ({cr(m), qu(l)}) + Z d ({cr(i), cﬂ(H_l)}).
=1

Bad News: NPO-complete [Orponen and Mannila, 1987].
Garey and Johnson: ND22
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ND20. METRIC TRAVELING SALESPERSON PROBLEM

INSTANCE: Set C of m cities, distances d(¢;,¢;) € N satisfying the triangle inequality.

SoLuTION: A tour of C, i.e., a permutation 7 : [1..m] — [1..m].

MEASURE: The length of the tour.

Good News: Approximable within 3/2 [Christofides, 1976].

Bad News: Apx-complete [Papadimitriou and Yannakakis, 1993].

Comment: Variation in which the distances are only 1 or 2 is still ApX-complete, but approx-
imable within 7/6 [Papadimitriou and Yannakakis, 1993]. A prize-collecting variation in
which a penalty is associated to each vertex and the goal is to minimize the cost of the
tour and the vertices not in the tour is approximable within 2 — 1/(|V| — 1) [Goemans and
Williamson, 1992].

Garey and Johnson: ND23

ND21. METRIC TRAVELING k-SALESPERSON PROBLEM

INSTANCE: Set C' of m cities, an initial city s € (', distances d(c;, ¢;) € N satisfying the triangle
inequality.

SOLUTION: A collection of k subtours, each containing the initial city s, such that each city is
in at least one subtour.

MEASURE: The maximum length of the k& subtours.

Good News: Approximable within 1 — 1/k plus the performance ratio of the METRIC TRAV-
ELING SALESPERSON PROBLEM, i.e., within 5 — 1 [Frederickson, Hecht, and Kim, 1978].

ND22. METRIC BOTTLENECK WANDERING SALESPERSON PROBLEM

INSTANCE: Set C' of m cities, an initial city s € C, a final city f € C, distances d(¢;,¢;) € N
satisfying the triangle inequality.

SoLUTION: A simple path from the initial city s to the final city f passing through all cities
in C, i.e., a permutation 7 : [1..m] — [1..m] such that v,y = s and vy, = f.

MEASURE: The length of the largest distance in the path, i.e.,

max d ({Cﬂ—(i)acﬂ'(i-l—l)}) .

1€[1..m—1]

Good News: Approximable within 2 [Hochbaum and Shmoys, 1986].

Bad News: Not approximable within 2 — ¢ for any ¢ > 0 [Hochbaum and Shmoys, 1986].

Comment: The same positive and negative results hold even if X is a set of point in d-
dimensional space with the Ly or L., metric. If the Ly metric is used then the upper
bound is 1.969 [Feder and Greene, 1988]. Similar results hold for the variation in which it is
required to minimize the distance between any point in a cluster and a cluster center which
can be any point in the space [Feder and Greene, 1988].

Garey and Johnson: ND24

ND23. MINIMUM CHINESE PoSTMAN FOR MIXED (GRAPHS

INsTANCE: Mixed graph G = (V, A, E), length [(e) € N for each e € AU E.
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SOoLUTION: A cycle in GG (possibly containing repeated vertices) that includes each directed
and undirected edge at least once, traversing directed edges only in the specified direction.
MEASURE: The total length of the cycle.

Good News: Approximable within 5/3 [Frederickson, 1979].
Comment: Approximable within 3/2 for planar graphs [Frederickson, 1979].
Garey and Johnson: ND25

ND24. MINIMUM k-CHINESE PosSTMAN PROBLEM

INsTANCE: Multigraph G = (V, E), initial vertex s € V, length {(e) € N for each e € E.

SOLUTION: A collection of k cycles, each containing the initial vertex s, that collectively tra-
verse every edge in the graph at least once.

MEASURE: The maximum length of the k cycles.

Good News: Approximable within 2 — 1/k [Frederickson, Hecht, and Kim, 1978].

ND25. MINIMUM STACKER CRANE PROBLEM

INsTANCE: Mixed graph G = (V, A, F), length [(e) € N for each e € AU F such that for every
arc there is a parallel edge of no greater length.

SOoLUTION: A cycle in GG (possibly containing repeated vertices) that includes each directed
edge in A at least once, traversing such edges only in the specified direction.

MEASURE: The total length of the cycle.

Good News: Approximable within 9/5 [Frederickson, Hecht, and Kim, 1978].
Garey and Johnson: ND26

ND26. MINIMUM k-STACKER CRANE PROBLEM

INsTANCE: Mixed graph G = (V, A, F), initial vertex s € V, length l(e) € N foreach e € AUFE,

SOLUTION: A collection of k cycles, each containing the initial vertex s, that collectively tra-
verse each directed edge in A at least once.

MEASURE: The maximum length of the k cycles.

Good News: Approximable within 14/5 — 1/k [Frederickson, Hecht, and Kim, 1978].

ND27. MINIMUM GENERAL ROUTING

INsTANCE: Graph G = (V, E), length I(e) € N for each e € E, subset E' C E, subset V/ C V.

SOLUTION: A cycle in G that visits each vertex in V'’ exactly once and traverses each edge in
E'.

MEASURE: The total length of the cycle.

Good News: Approximable within 3/2 [Jansen, 1992].

Comment: The special case where V/ = V is called the rural postman problem.
Garey and Johnson: Generalization of ND27
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ND28. LONGEST PaTH

INsTANCE: Graph G = (V, E).

SoLuTION: Simple path in G, i.e., a sequence of distinct vertices vy, s, ..., v, such that, for
any 1 <i<m—1, (v;,v;41) € E.

MEASURE: Length of the path, i.e., the number of edges in the path.

Bad News: Not in Apx [Karger, Motwani, and Ramkumar, 1993].

Comment: Transformation from MiN TSP(1,2): Apx-hard and self-improvable. Not approx-
imable within 2" " VI for any ¢ > 0 unless NPCQP [Karger, Motwani, and Ramkumar,
1993]. Approximable within O(|V|/log|V]) for 1-tough graphs, i.e., graphs such that, for any
subset V! C V, the induced graph G = (V — V', E) has at most |V’| connected components
(observe that Hamiltonian graphs are 1-tough). If a polynomial-time algorithm exists with
relative error |V|/(|V|—|V]|?) then P = NP. Similar results hold for a chromatic version of
the problem [Bellare, 1993].

Garey and Johnson: ND29

ND29. SHORTEST WEIGHT-CONSTRAINED PATH

INsTANCE: Graph &' = (V, F), length function [ : £ — N, weight function w : £ — N,
specified vertices s, € V', and integer W.

SOLUTION: A simple path in G with total weight at most W, i.e., a sequence of distinct
vertices s = wvy,v9,...,0, = t such that, for any 1 < ¢ < m — 1, (v;,v41) € F and
i w(vg vigr) S WL

MeAsURE: The length of the path, i.e., 37" I(v;, vi41).

Good News: Admits an FPTAS [Phillips, 1993].

ND30. MINIMUM RECTILINEAR (GLOBAL ROUTING

INSTANCE: m X n-array of gates, collection C' of nets, i.e., 3-sets of gates.
SoruTioN: Wires following rectilinear paths connecting the gates in each net.
MEASURE: The largest number of wires in the same channel between two gates in the array.

Good News: Admits a PTAS™ if opt € w(Iln(mn)) [Raghavan and Thompson, 1991].

Comment: Approximable within 1+ (e — 1)y/2In(mn)/opt if opt > 2In(mn). In APX if opt €
Q(In(mn)). The approximation algorithm will work also for nets with more than three gates,
but the running time is exponential in the number of terminals.

Flow Problems

ND31. MAXIMUM k-MULTICOMMODITY FLOW

InsTANCE: Graph G = (V, F), edge capacities v : £ — Z%*, a set of k commodities C' =
{{s1,t1,d1) ..., (s, tr,dp)} where s; € V specifies the source, t; € V the sink, and d; € Z+
the demand for each commodity.

SOLUTION: The flow of each commodity through each edge in F.
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MEASURE: The proportion of the demand of the flow of the commodity that has the smallest
proportion, i.e.,
the flow of the commodity (s;,%;,d;) from s to ¢

min
1<i<k d;

Good News: Admits an FPTAS [Klein, Agrawal, Ravi, and Rao, 1990].
Comment: Approximable within 14 ¢ in time O ((|E||V| log? |V |k? log k)/52) for each ¢ > 0
[Leighton, Makedon, Plotkin, Stein, Tardos, and Tragoudas, 1991].

ND32. MAXIMUM INTEGRAL k-MUuLTICOMMODITY FLOW ON TREES

INSTANCE: A tree T' = (V, E), a capacity function ¢ : £ — N and k pairs of vertices (s;, ;).

SoruTioN: A flow f; for each pair (s;,t;) with f; € N such that, for each e € F, Zle figie) <
c(e) where ¢;(e) = 1 if e belongs to the unique path from s; and ¢;, 0 otherwise.

MEASURE: The sum of the flows, i.e., Zle fi.

Good News: Approximable within 2 [Garg, Vazirani, and Yannakakis, 1993b].

Bad News: Apx-complete [Garg, Vazirani, and Yannakakis, 1993b].

Comment: Transformation from MAXIMUM 3-DIMENSIONAL MATCHING. It remains APX-
complete even if the edge capacities are 1 and 2.

ND33. MaxiMmuM PrIorITY FLow

INsTANCE: Directed graph G' = (V, F), sources s1,...,s; € V, sinks #1,...,t; € V, a capacity
function ¢ : £ — R, a bound function b : V — R, and, for any vertex v», a partial order on
the set of edges leaving v.

SoLuTION: A priority flow f, i.e., a function f: F' — R such that (a) for any edge e, f(e) <
c(e), (b) for any vertex v € V — {s1,...,5k,t1,...,1x}, the flow is conserved at v, (c) for
any vertex v, the flow leaving v is at most b(v), and (d) for any vertex v and for any pair
of edges ey, ez leaving v, if f(e1) < ¢(e1) and e is less than eq, then f(ez) = 0.

MEASURE: The amount of flow entering sink ¢1, i.e., 3 ¢, 1 )ep f(@, 1)

Bad News: Not approximable within 2¢(°8° ") for any ¢ unless NP C DTIM E(ndlogl/E ") [Bellare,
1993].

Comment: Does not admit a PTAS.

Miscellaneous

ND34. MINIMUM k-CENTER

INsTANCE: Complete graph G = (V, E) and distances d(v;,v;) € N satisfying the triangle
inequality.

SOLUTION: A k-center set, i.e., a subset C' C V with |C] = k.

MEASURE: The maximum distance from a vertex to its nearest center, i.e., maxmin d(v, c).

veV ceC
Good News: Approximable within 2 [Hochbaum and Shmoys, 1986].
Bad News: Not approximable within 2 — ¢ for any ¢ > 0 [Hochbaum and Shmoys, 1986].
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Comment: Variation in which the number of vertices each center can serve is bounded by a
constant [, is approximable within 10 [Bar-Ilan and Peleg, 1991]. The converse problem,
where the maximum distance from each vertex to its center is given and the number of
centers is to be minimized, is approximable within log L + 1 [Bar-Tlan and Peleg, 1991]. The
rectilinear k-center problem, where the vertices lie in the plane and the rectilinear metric
is used, is approximable within 2, but is not approximable within 2 — ¢ for any ¢ > 0 [Ko,
Lee, and Chang, 1990].

Garey and Johnson: Similar to ND50

ND35. MINIMUM k-SUPPLIER

INsTANCE: Complete graph G' = (Vo U Vs, E) and distances d(v;, v;) € N satisfying the trian-
gle inequality.

SOLUTION: A k-supplier set, i.e., a subset S C Vg with |5| = k.

MEASURE: The maximum distance from a customer vertex to its nearest supplier, i.e.,

max min d(v, s).
vEVe sES

Good News: Approximable within 3 [Hochbaum and Shmoys, 1986].
Bad News: Not approximable within 3 — ¢ for any ¢ > 0 [Hochbaum and Shmoys, 1986].

ND36. MINIMUM k-MEDIAN

INsTANCE: Graph G = (V, F) and length function [ : £ — N.
SOLUTION: A k-median set, i.e., a subset V' C V with |V'| = k.
MEASURE: The sum of the distances from each vertex to its nearest median, i.e.,

> d(v)

veV

where d(v) is the length of the shortest path from v to the closest vertex in V.

Bad News: Not in Apx [Lin and Vitter, 1992].

Comment: The problem is in APX if a small violation of the cardinality of the median set is
allowed.

Garey and Johnson: ND31

ND37. MAXIMUM k-FAaciLiTy DISPERSION

INsTANCE: Complete graph G = (V, E) and distances d(v;,v;) € N satisfying the triangle
inequality.
SOLUTION: A set of k facilities, i.e., a subset ' C V with |F| = k.
MEASURE: The minimum distance between two facilities, i.e., fmfhelF d( f1, f2).
1,J2

Good News: Approximable within 2 [Ravi, Rosenkrantz, and Tayi, 1991].

Bad News: Not approximable within 2 — ¢ for any ¢ > 0 [Ravi, Rosenkrantz, and Tayi, 1991].

Comment: Variation in which the measure is the average distance between any pair of facilities
is approximable within 4 [Ravi, Rosenkrantz, and Tayi, 1991].
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ND38. MINIMUM k-SWITCHING NETWORK

INsTANCE: Complete graph G = (V, E) and distances d(v;,v;) € N satisfying the triangle
inequality.

SOLUTION: A partition F' = {Ay, Ay,..., Ar, By, By, ..., B} of V.

MEASURE: Maximum distance between vertices in different sets with the same index, i.e.,

max max d(vy,vg).
i€[1..k] v1EA; (01, 02)
vp EBy

Good News: Approximable within 3 [Hochbaum and Shmoys, 1986].
Bad News: Not approximable within 2 — ¢ for any ¢ > 0 [Hochbaum and Shmoys, 1986].

ND39. MiniMuM BEND NUMBER

INsTANCE: Directed planar graph G = (V, F).

SOLUTION: A planar orthogonal drawing of G, i.e., a drawing mapping vertices of G into points
in the plane and edges of (¢ into chains of horizontal and vertical segments such that no two
edges cross.

MEASURE: Number of bends in the drawing.1

Vit—e

Bad News: Not approximable within 1 + opia) for any ¢ > 0 [Garg and Tamassia, 1994].

ND40. MINIMUM LENGTH TRIANGULATION

InsTaANCE: Collection C' = {(a;,b;) : 1 <@ < n} of pairs of integers giving the coordinates of n
points in the plane.

SOLUTION: A triangulation of the set of points represented by C, i.e., a collection F of non-
intersecting line segments each joining two points in €' that divides the interior of the convex
hull into triangular regions.

MEASURE: The discrete-Fuclidean length of the triangulation, i.e.,

> V0@ — a2+ (b= b2 .

((aivbi)v(ajvbj))eE

Good News: Approximable within O(logn) [Clarkson, 1991].

Comment: Note that the problem is not known to be NP-complete. The Steiner variation in
which the point set of ¥ must be a superset of (' is approximable within ‘a number in the
hundreds’ [Eppstein, 1992].

Garey and Johnson: OPENI12

ND41. MINIMUM SEPARATING SUBDIVISION

INsTANCE: A family of disjoint polygons Py, ..., Pk.
SOLUTION: A separating subdivision, i.e., a family of k polygons Ry,..., Rp with pairwise
disjoint boundaries such that, for each ¢, P; C R;.

MEASURE: The size of the subdivision, i.e., the total number of edges of the polygons
Ry, ..., Ryg.
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Good News: Approximable within 7 [Mitchell and Suri, 1992].

Comment: The problem of separating a family of three-dimensional convex polyhedra is ap-
proximable within O(logn) while the problem of separating two d-dimensional convex poly-
hedra is approximable within O(dlogn) where n denotes the number of facets in the input
family.

Sets and Partitions

Covering, Hitting, and Splitting

SP1. MaAXIMUM 3-DIMENSIONAL MATCHING

INSTANCE: Set T'C X X Y x Z, where X, Y, and Z are disjoint.

SorLuTIoN: A matching for T, i.e., a subset M C T such that no elements in M agree in any
coordinate.

MEASURE: Cardinality of the matching, i.e., |M].

Good News: Approximable within 2 [Halldérsson, 1994].

Bad News: Aprx-complete [Kann, 1991].

Comment: Transformation from MAXIMUM 3-SATISFIABILITY. Admits a PTAS for ‘planar’
instances [Nishizeki and Chiba, 1988]. Variation in which the number of occurrences of any
element in X, Y or Z is bounded by a constant B is ApPX-complete [Kann, 1991]. The
generalized Maximum k-Dimensional Matching problem is approximable within (k4 1)/2
[Halldérsson, 1994]. The constrained variation in which the input is extended with a subset
S of T, and the problem is to find the 3-dimensional matching that contains the largest
number of elements from S, is not approximable within |T'|° for some ¢ > 0 [Zuckerman,
1993].

Garey and Johnson: SP1

SP2. MAXIMUM SET PACKING

InsTaANCE: Collection ' of finite sets.
SOLUTION: A set packing, i.e., a collection of disjoint sets ¢/ C (.
MEeasURE: Cardinality of the set packing, i.e., |C”].

Bad News: Not approximable within |C'|¢ for some ¢ > 0 [Arora, Lund, Motwani, Sudan, and
Szegedy, 1992].

Comment: Equivalent to MaxiMuM CLIQUE under PTAS-reduction [Ausiello, D’Atri, and
Protasi, 1980]. The problem MaXiMuM k-SET PACKING, the variation in which the cardi-
nality of all sets in C' are bounded from above by a constant k > 3, is Apx-complete [Kann,
1991], and is approximable within (k + 1)/2 [Halld6rsson, 1994]. It is still ApX-complete
when the number of occurrences in €' of any element is bounded by a constant B > 3.

Garey and Johnson: SP3

SP3. MAXIMUM SET SPLITTING

INsTANCE: Collection C' of subsets of a finite set 5.
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SOLUTION: A partition of S into two disjoint subsets 57 and .55.
MEASURE: Cardinality of the subsets in C' that are not entirely contained in either 57 or 55.

Bad News: Apx-hard [Petrank, 1993].
Comment: Transformation from MAXIMUM NOT-ALL-EQUAL 3-SATISFIABILITY.
Garey and Johnson: SP4

SP4. MiNniMmuM SET COVER

InsTaANCE: Collection ' of subsets of a finite set 5.

SOLUTION: A set cover for 5, i.e., a subset C" C C such that every element in S belongs to at
least one member of C”.

MEASURE: Cardinality of the set cover, i.e., |C].

Good News: Approximable within 1+ In|S]| [Johnson, 1974].
Bad News: Not approximable within clog, |S| for any ¢ < 1/4, unless NPCQP [Lund and
Yannakakis, 1993a].

Comment: Not approximable within ¢log, | 9] for any ¢ < 1/8, unless NPC DTIME (|S|loglog|s|)

[Bellare, Goldwasser, Lund, and Russell, 1993]. Equivalent to MINIMUM DOMINATING SET
under L-reduction and equivalent to MiNIMUM HITTING SET [Ausiello, D’Atri, and Protasi,
1980]. The above nonapproximability results are still true for an exact cover, i.e., if the sets
in the set cover are restricted to be disjoint. The problem MINIMUM k-SET COVER, the
variation in which the cardinality of all sets in C' are bounded from above by a constant
k is ApX-complete and is approximable within Zle% [Johnson, 1974]. It is still ApX-
complete when the number of occurrences in C' of any element is bounded by a constant.
It is approximable within 2 if the set system (.5, is tree representable [Garg, Vazirani,
and Yannakakis, 1993b]. The constrained variation in which the input is extended with a
positive integer k and a subset T of (', and the problem is to find the set cover of size k that
contains the largest number of subsets from 7', is not approximable within |C'|* for some
€ > 0 [Zuckerman, 1993].
Garey and Johnson: SP5

SP5. MiNniMmuM ExacT COVER

InsTaANCE: Collection ' of subsets of a finite set 5.

SoLUTION: A set cover for 9, i.e., a subset ' C C such that every element in S belongs to at
least one member of C".

MEASURE: Sum of cardinalities of the subsets in the set cover, i.e., Z |e].

ceC’!
Good News: Approximable within 1+ In|S]| [Johnson, 1974].

Bad News: Not approximable within clog, |S]| for any ¢ < 1/4 unless NPCQP [Lund and
Yannakakis, 1993a].

Comment: Not approximable within ¢log, | 9] for any ¢ < 1/8, unless NPC DTIME (|S|loglog|s|)
[Bellare, Goldwasser, Lund, and Russell, 1993]. The only difference between MINIMUM SET
CoVER and MINIMUM EXAcT COVER is the definition of the objective function. Transfor-
mation from MiNIMUM SET COVER [Lund and Yannakakis, 1993a].
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SP6. MINIMUM TEST COLLECTION

InsTaNCE: Collection C' of subsets of a finite set 5.

SoLuTIiON: A subcollection C' C ' such that for each pair of distinct elements x;,z9 € 9
there is some set ¢ € C' that contains exactly one of 21 and z,.

MEasURE: Cardinality of the subcollection, i.e., |C].

Good News: Approximable within 1+ 21In|S].
Comment: Transformation to MINIMUM SET CoVER [Kann, 1992b]. Observe that every solu-

tion has cardinality at least [log|S]].
Garey and Johnson: SP6

SP7. MiNniMmuM HITTING SET

InsTaANCE: Collection ' of subsets of a finite set 5.

SoLuTION: A hitting set for C, i.e., a subset S/ C 5 such that S” contains at least one element
from each subset in C'.

MEAsURE: Cardinality of the hitting set, i.e., |C].

Good News: Approximable within 1 4 In|S].

Bad News: Not approximable within clog, |S]| for any ¢ < 1/4 unless NPCQP [Lund and
Yannakakis, 1993a].

Comment: Not approximable within ¢log, | 9] for any ¢ < 1/8, unless NPC DTIME (|S|loglog|s|)
[Bellare, Goldwasser, Lund, and Russell, 1993]. The constrained variation in which the input
is extended with a subset T of 5, and the problem is to find the hitting set that contains
the largest number of elements from T, is not approximable within |S|¢ for some ¢ > 0
[Zuckerman, 1993].

Garey and Johnson: SP8

Weighted Set Problems

SP8. MAXIMUM CONSTRAINED PARTITION

INsTANCE: Finite set A and a size s(a) € Z%1 for each a € A, element ay € A, and a subset
S CA.

SOLUTION: A partition of A, i.e., a subset A’ C A such that )", .4 s(a) =2 ,c4_ 4 s(a).

MEASURE: Number of elements from 5 on the same side of the partition as ag.

Bad News: Not approximable within |A|® for some ¢ > 0 [Zuckerman, 1993].
Garey and Johnson: Similar to SP12

SP9. MINIMUM 3-DIMENSIONAL ASSIGNMENT

INsTANCE: Three sets X, Y, and W and a cost function ¢: X XY x W — N.

SOLUTION: An assignment A, i.e.,asubset A C X XY xW such that every element of XUY UW
belongs to exactly one triple in A.

MeasUrE: The cost of the assignment, i.e., 35, wyea c(z,y,w).
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Bad News: Not in Apx [Crama and Spieksma, 1992].

Comment: The negative result holds even if ¢ is either defined as ¢(z,y, w) = d(z,y)+d(z,w)+
d(y,w) or defined as ¢(z,y,w) = min{d(z,y) + d(z,w),d(z,y)+ d(y,w),d(z,w)+ d(y,w)}
where d is any distance function. In these cases, however, the problem is approximable
within 4/3 if d satisfies the triangle inequality. Similar results hold for the k-dimensional
problem [Bandelt, Crama, and Spieksma, 1991].

Garey and Johnson: Weighted version of SP2

SP10. MAXIMUM CAPACITY REPRESENTATIVES

INsTaNCE: Disjoint sets S1,...,9, and, for any ¢ # j, ¢ € S;, and y € 5 — j, a nonnegative
capacity ¢(z,y).

SOLUTION: A system of representatives T, i.e., a set T such that, for any 7, |T'0 ;| = 1.

MEASURE: The capacity of the system of representatives, i.e., 37, crec(z,y).

Bad News: Not approximable within 2008 ") for any ¢ unless NP C DTim E(ndlogl/E ") [Bellare,
1993].
Comment: Does not admit a PTAS.

Storage and Retrieval

Data Storage

SR1. MiNIMUM BIN PACKING

INSTANCE: Finite set U of items, a size s(u) € ZT for each u € U, and a positive integer bin
capacity B.

SOLUTION: A partition of U into disjoint sets Uy, Us, ..., U,, such that the sum of the a par-
tition of U such that the sum of the items in each U; is B or less.

MEASURE: The number of used bins, i.e., the number of disjoint sets, m.

Good News: Approximable within 11/9 [Johnson, Demers, Ullman, Garey, and Graham, 1974].

Bad News: Not approximable within 3/2.

Comment: Admits an FPTAS®, that is, is approximable within 1 + ¢ in time polynomial in
1/e, where ¢ = O(log?(opt)/opt) [Karmarkar and Karp, 1982]. Not APX-complete, but it is
NP-complete to decide whether two bins are enough. A survey of approximation algorithms
for MinIMuM BIN PAcCKING is found in [Coffman, Garey, and Johnson, 1984]. If a partial
order on U is defined and we require the bin packing to obey this order, then the problem
is approximable within 2 [Wee and Magazine, 1982], and is not in FPTAS* [Queyranne,
1985].

Garey and Johnson: SR1

SR2. MiNIMUM HEIGHT THREE DIMENSIONAL PACKING

INSTANCE: Set of boxes B = {(z;,y;,2)} with positive integer sizes (width z;, depth y; and
height z;), a large box with positive integer sizes width w, depth d and infinite height.

SOLUTION: A packing P of the boxes B in the large box. The boxes must be packed orthogo-
nally and oriented.
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MEASURE: Height of the packing P.

Good News: Approximable within 3.25 [Li and Cheng, 1990].

Comment: The two-dimensional variation in which a set of rectangles of dimensions bounded
below by a constant, is to be packed into a strip of width 1 admits a PTAS [Fernandez de la
Vega and Zissimopoulos, 1991]. There are lots of variants of packing problems. A survey of

approximation results of packing problems can be found in [Coffman, Garey, and Johnson,
1984].

Compression and Representation

SR3. SHORTEST COMMON SUPERSEQUENCE

INsTANCE: Finite alphabet Y. finite set R of strings from X*.

SOLUTION: A string w € X%* such that each string € R is a subsequence of w, i.e. one can
get = by taking away letters from w.

MEASURE: Length of the supersequence, i.e., |w]|.

Bad News: Not in Apx [Jiang and Li, 1994].

Comment: Transformation from MINIMUM FEEDBACK VERTEX SET and self-improvability.
Not approximable within log® |R| for a given § > 0 unless NP C DTIME (npdylogn) [Jiang
and Li, 1994]. ApX-complete if the size of the alphabet X is fixed [Jiang and Li, 1994] and
[Bonizzoni, Duella, and Mauri, 1994].

Garey and Johnson: SR8

SR4. SHORTEST COMMON SUPERSTRING

INsTANCE: Finite alphabet Y. finite set R of strings from X*.

SOLUTION: A string w € ¥* such that each string @ € R is a substring of w, i.e. w = wozwy
where wq, wq € X%,

MEASURE: Length of the superstring, i.e., |w].

Good News: Approximable within 2.89 [Teng and Yai, 1993].

Bad News: Apx-complete [Blum, Jiang, Li, Tromp, and Yannakakis, 1991].

Comment: Transformation from METRIC TRAVELING SALESPERSON PROBLEM with distances
one and two. Variation in which there are negative strings in the input and a solution cannot
contain any negative string as a substring, is approximable within O(logopt) [Li, 1990]. If
the number of negative strings is constant, or if no negative strings contain positive strings

as substrings, the problem is approximable within some constant [Jiang and Li, 1993].
Garey and Johnson: SR9

SR5. LoNGEST COMMON SUBSEQUENCE

INsTANCE: Finite alphabet Y. finite set R of strings from X*.

SOLUTION: A string w € X* such that w is a subsequence of each € R, i.e. one can get w by
taking away letters from each z.

MEASURE: Length of the subsequence, i.e., |w|.
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Bad News: Not approximable within |%|'/6= for any ¢ > 0 [Bellare and Sudan, 1994].

Comment: Transformation from MAXIMUM INDEPENDENT SET with an alphabet ¥ of the
same size as the set of vertices in the MAXIMUM INDEPENDENT SET problem [Berman and
Schnitger, 1992]. Not approximable within |%|'/4~= for any ¢ > 0, unless QNPCco-QR
[Bellare and Sudan, 1994]. ApX-complete if the size of the alphabet ¥ is fixed [Jiang and
Li, 1994] and [Bonizzoni, Duella, and Mauri, 1994].

Garey and Johnson: SR10

Sequencing and Scheduling

Sequencing on One Processor

SS1. MAXIMUM CONSTRAINED SEQUENCING TO MINIMIZE TARDY Task WEIGHT

INSTANCE: Set T of tasks, for each task ¢t € T a length I(¢) € Z1, a weight w(t) € ZT, and a
deadline d(t) € Z*, a subset S C T, and a positive integer K.

SOLUTION: A one-processor schedule o for 7" such that the sum of w(¢), taken over all ¢t € T'
for which o(t)+ {(t) > d(t) does not exceed K.

MEASURE: Cardinality of jobs in 5 completed by the deadline.

Bad News: Not approximable within |T'|* for some ¢ > 0 [Zuckerman, 1993].
Garey and Johnson: Similar to SS3

SS2. MINIMUM STORAGE-TIME SEQUENCING

INsTANCE: Set T' of tasks, a directed acyclic graph ¢ = (T, E') defining preceding constraints
for the tasks, for each task a length I(¢) € Z*, and for each edge in the graph a weight
w(ty,?2) measuring the storage required to save the intermediate results generated by task
t1 until it is consumed by task 5.

SOLUTION: A one-processor schedule for 7" that obeys the preceding constraints, i.e., a permu-
tation 7 : [1..|T']] — [1..|T]] such that, for each edge (t;,¢;) € E, 77(i) < 77 (j).

MEASURE: The total storage-time product, i.e.,

max(7,7)
Z w(tﬂ(2)7t71'(j)) Z l(tﬂ(k))
(tatiy () €E k=min(i,j)

Good News: Approximable within O (log |T|log > l(t)) [Ravi, Agrawal, and Klein, 1991].
tel

Multiprocessor Scheduling

SS3. MINIMUM MULTIPROCESSOR SCHEDULING

INsTANCE: Set T of tasks, number m of processors, length {(¢,¢) € Z7 for each task ¢t € T and
processor ¢ € [1..m].
SOLUTION: An m-processor schedule for T, i.e., a function f:7T — [1l..m].
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MEeASURE: The finish time for the schedule, i.e., max Z (7).
1€[1..m]

teT:

f(o)=¢

Good News: Approximable within 2 [Lenstra, Shmoys, and Tardos, 1990].

Bad News: Not approximable within within 3/2—¢ for any ¢ > 0 [Lenstra, Shmoys, and Tardos,
1990].

Comment: Admits an FPTAS for the variation in which the number of processors m is constant
[Horowitz and Sahni, 1976]. Admits a PTAS for the uniform variation, in which [(¢,7) is
independent of the processor ¢ [Hochbaum and Shmoys, 1987]. A variation in which, for
each task ¢ and processor 7, a cost ¢(¢,7) is given in input and the goal is to minimize a
weighted sum of the finish time and the cost is approximable within 2 [Shmoys and Tardos,
1993].

Garey and Johnson: 558

SS4. MINIMUM PRECEDENCE CONSTRAINED SCHEDULING

INsTANCE: Set T' of tasks, each having length [(#) = 1, number m of processors, and a partial
order < on T.

SOLUTION: An m-processor schedule for T that obeys the precedence constraints, i.e., a func-
tion f : T — N such that, for all w < 0, |f~}(u)] < m and such that ¢ < ¢’ implies
f) > f(1).

MEeASURE: The finish time for the schedule, i.e., max f(t).
te

Good News: Approximable within 2 — 2/|T| [Lam and Sethi, 1977].

Comment: A variation with an enlarged class of allowable constraints is approximable within
3 —4/(|T| + 1) while a variation in which the partial order < is substituted with a weak
partial order < is approximable within 2 — 2/(|T| 4+ 1) [Berger and Cowen, 1991].

Garey and Johnson: 559

SS5. MINIMUM RESOURCE CONSTRAINED SCHEDULING

INSTANCE: Set T' of tasks each having length [(¢), number m of processors, number r of re-
sources, resource bounds b;, 1 < ¢ < r, and resource requirement r;(t), 0 < r;(¢) < b, for
each task t and resource 1.

SOLUTION: An m processor schedule for T that obeys the resource constraints, i.e., a function
[T — Z such that for all w < 0,if S(u) is the set of tasks ¢ for which f(¢) < u < f(¢)+1(2),

then [S(u)| < m and for each resource ¢

Z Ti(t) < b;.

teS(u)

MEASURE: The makespan of the schedule, i.e., max.er(f(t) +{(1)).

Good News: Approximable within 2 [Garey and Graham, 1975].

Comment: Note that the restriction in which there is only one resource, i.e., the available
processors, is identical to minimizing the makespan of the schedule of parallel tasks on m
processors. In this case, minimizing the average response time, i.e., |:1F—| Soeer(f(1) +1(1)) is
approximable within 32 [Turek, Schwiegelshohn, Wolf, and Yu, 1994]. The further variation
in which each task can be executed by any number of processors and the length of a task
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is a function of the number of processors allotted to it is also approximable [Ludwig and
Tiwari, 1994].
Garey and Johnson: SS10

SS6. MINIMUM PREEMPTIVE SCHEDULING WITH SET-UP TIMES

INsTANCE: Set T of tasks, number m of processors, length {(t) € Z1 and set-up time s(¢) € Z*
foreacht € T.

SOLUTION: An m-processor preemptive schedule for T, i.e., a partition of each task ¢ into any
number of subtasks ¢1, ..., such that S-¥_, I(t;) = {() and a schedule o that, for all t € T,
assigns to each subtask ¢; of ¢ a positive integer o(¢;) such that o(#;41) > o(t;) + (t;) + s(t)
and, for all u > 0, the number of subtasks for which o(¢;) < u < o(#;) + I(t;) + s(t) is no
more than m.

MEASURE: The overall completion time, i.e., the maximum over all subtasks of o(#;) + {(¢;) +
s(t).

Good News: Approximable within 3/2—1/(4m—4) for m < 4 and within 5/3—1/m for m = 37,
Jj > 2 [Monma and Potts, 1993].

Comment: If all set-up times are equal, then the problem is approximable within 3/2 — 1/2m
for m > 2 and admits an FPTAS for m = 2 [Woginger and Yu, 1992].

Garey and Johnson: SS512

SS7. MINIMUM MULTIPROCESSOR SCHEDULING WITH SPEED FACTORS

INsTANCE: Set T of tasks, number m of processors, for each task ¢ € T a length () € ZT,
and for each processor ¢ € [1..m] a speed factor s(¢) € @ such that s(1) = 1 and s(i) > 1
for every 1.

SOLUTION: An m-processor schedule for T, i.e., a function f:7T — [1l..m].

MEASURE: The finish time for the schedule, i.e., 'em[lax] Z 1(t)/s(7).

teT:
f(t)=2

Good News: Admits a PTAS [Hochbaum and Shmoys, 1988].

Bad News: Does not admit an FPTAS [Hochbaum and Shmoys, 1988].

Comment: Admits an FPTAS for the variation in which the number of processors m is constant
[Horowitz and Sahni, 1976].

Garey and Johnson: SS13

SS8. MINIMUM 3-DEDICATED PROCESSOR SCHEDULING

INsTANCE: Set T of tasks, set P of 3 processors, and, for each task ¢ € T, a length () € ZT
and a required subset of processors r(t) C P.

SoLuTION: A schedule for T, i.e., a starting time function s : T — Z* such that, for any two
tasks t; and ty with (1) Nr(t2) # 0, either s(t1) + 1(t1) < s(t2) or s(t2) + I(t2) < s(ty).

MEASURE: The makespan of the schedule, i.e., mazer(s(t) + r(t)).

Good News: Approximable within 5/4 [Dell’Olmo, Speranza, and Tuza, 1993].
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SS9. MINIMUM JOB SHOP SCHEDULING

INsTANCE: Number m of processors, set J of jobs, each j € J consisting of a sequence of n;
operations o; ; with 1 < < n;, for each such operation a processor p; ; and a length /; ;.
SoLuTION: A job shop schedule for J, i.e., a collection of one-processor schedules f, : {o; ; :

pi; = p} — N such that f,(0; ;) > fy(0y ;) implies f,(0;;) > fp(oi )+ 1y ;7 and such that
foloigrj) = foloij) + i j.
MEeASURE: The completion time of the schedule, i.e., I?ea}( Jo(on, i)+,

Good News: Approximable within O(log?(mN)) where N = max;eyn; [Shmoys, Stein, and
Wein, 1991].

Bad News: NP-complete in the strong sense. Hence, does not admit an FPTAS [Garey, John-
son, and Sethi, 1976].

Comment: Transformation from 3-PARTITION. If each job must be processed on each machine
at most once, then the factor N can be deleted. The same results hold for the variation in
which the operations must be processed in an order consistent to a particular partial order
and for the variation in which there are different types of machines, for each type, there
are a specified number of identical processors, and each operation may be processed on any
processor of the appropriate type.

Garey and Johnson: SS18

Miscellaneous

SS10. MINIMUM FILE TRANSFER SCHEDULING

INsTANCE: A file transfer graph, i.e., a graph G = (V, F), a port constraint function p: V. — N
and a file length function L: F — N.

SOLUTION: A file transfer schedule, i.e., a function s : £ — N such that, for each vertex v and
for each t € N,

{uw:(u,v) € EAs(e) <t<s(e)+ Lie)} < p(v).

MEASURE: The makespan of the schedule, i.e., max.cg(s(e) + L(e)).

Good News: Approximable within 2.5 [Coffman, Garey, Johnson, and Lapaugh, 1985].

Comment: Several special cases with better guarantees are also obtainable [Coffman, Garey,
Johnson, and Lapaugh, 1985].

SS11. MINIMUM SCHEDULE LENGTH

INsTANCE: A network N = (V, E,b,c) where G = (V, F) is a graph, b: V — N is the vertex-
capacity function, and ¢ : £ — N is the edge-capacity function, and a set T of tokens
t = (u,v,p) where u,v € V and p is either a path from u to v or the empty set.

SOLUTION: A schedule 5, i.e., a sequence fg, ..., f; of configuration functions f; : T — V such
that

1. For any token ¢t = (u,v,p), fo(t) = u and fi(t) = v.

2. For any 0 < ¢ < [ — 1 and for any token ¢, if f;(t) = v and fi1(¢) =
(w,0) € F, (b) [t : f(t) = w}] < bw), () [ : fin(t) = w}] <
{t": fi') = v A fia (V) = wi| < (w).

w then (a)
(w), and (d)
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MEASURE: The length of the schedule, i.e., [.

Bad News: Not in Apx [Clementi, and Di lanni, 1994].
Comment: It remains non-approximable even for layered graphs.

SS12. MINIMUM VEHICLE SCHEDULING ON TREE

INsTANCE: Rooted tree T' = (V, E, vp), a forward travel time f : £ — N, a backward travel
time b: I/ — N, a release time r : V. — N, and an handling time h: V — N.

SOLUTION: A vehicle routing schedule that starts from wg, visits all nodes of T, returns to vg,
and, for any node v;, starts processing v; not before the release time r(v;), i.e., a permutation

mof 1,...,|V] and a waiting function w such that, for any i,
i—1
d(v0, vr(1)) + D_[0(vr() + B0z () + A(0r(gys r(41)] > 7(0r(i))
7=1

where d(u,v) denotes the length of the unique path from u to v.
MEAsURE: The total completion time, i.e.,

n—1

d(?]o, vﬂ'(l)) + Z[w(vﬂ'(])) + h(vﬂ'(j)) + d(vr(j)v v?r(j-l-l))] + w(vﬂ'(n)) + h(vr(n)) + d(vr(n)v UO)‘

=1
Good News: Approximable within 2 [Karuno, Nagamochi, and Ibaraki, 1993].

Mathematical Programming

MP1. MINIMUM 0 — 1 PROGRAMMING

INSTANCE: Integer m x n-matrix 4 € Z™™", integer m-vector b € Z™, nonnegative integer
n-vector ¢ € N”.
SOLUTION: A binary n-vector « € {0,1}" such that Az > b.
n

MEAsURE: The scalar product of ¢ and z, i.e., chz

=1

Bad News: NPO-complete [Orponen and Mannila, 1987].

Comment: Transformation from MINIMUM WEIGHTED SATISFIABILITY. Variation in which
¢; = 1 for all i is NPO PB-complete and not approximable within n'=° for any ¢ > 0
[Kann, 1993]. Variation in which there are at most two non-zero entries on each row of the
matrix is approximable within 2 [Hochbaum, Megiddo, Naor, and Tamir, 1993].

Garey and Johnson: MP1

MP2. MaXIMUM BOUNDED 0 — 1 PROGRAMMING

INsSTANCE: Integer m X n-matrix A € Z™7", integer m-vector b € Z™, nonnegative binary
n-vector ¢ € {0,1}".
SOLUTION: A binary n-vector € {0,1}" such that Az <b.
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MEAsURE: The scalar product of ¢ and z, i.e., chz
=1
Bad News: NPO PB-complete [Berman and Schnitger, 1992].
Comment: Transformation from LONGEST PATH WITH FORBIDDEN PAIrs. Not approximable
within n%5~¢ for any ¢ > 0 [Crescenzi, Kann, and Trevisan, 1994].
Garey and Johnson: MP1

MP3. MAXIMUM QUADRATIC PROGRAMMING

INsTANCE: Positive integer n, set of linear constraints, given as an m X n-matrix A and an
m-vector b, specifying a region S C R" by S = {z € [0,1]" : Az < b}.

SoLuTION: A multivariate polynomial f(z1,...,z,) of total degree at most 2.

MEASURE: The maximum value of f in the region specified by the linear constants, i.e.,
maxges f(z).

Bad News: Does not admit a p-approximation for any constant 0 < g < 1 [Bellare and Rog-
away, 1993].

Comment: A p-approximation algorithm finds a solution that differs from the optimal solu-
tion by at most the value p(max,egs f(2) — minges f(z)). Variation in which we look for a
polynomial f of any degree does not admit a p-approximation for gy = 1 — n=? for some
6 > 0 [Bellare and Rogaway, 1993]. Note that these problems are known to be solvable in
polynomial space but are not known to be in NP.

Garey and Johnson: MP2

MP4. MINIMUM GENERALIZED 0 — 1 ASSIGNMENT

INsTANCE: Integer m X n-matrix A € Z™™" integer m-vector b € Z™, and binary m X n-matrix
C e{0,1}mm.
SOLUTION: A binary m X n-matrix X € {0,1}™" such that there is exactly one 1 in each

column of X, and ZAMXZ'J < b; for all ¢ € [1..m].
J=1
MEASURE: 3> CiiXy .
=1 7=1
Bad News: Not in Apx [Sahni and Gonzalez, 1976].

MP5. MINIMUM QUADRATIC 0 — 1 ASSIGNMENT

INsTANCE: Nonnegative integer n x n-matrix ¢' € N™" nonnegative integer m X m-matrix
D e N,
SOLUTION: Binary n x m-matrix X € {0,1}"" such that there is at most one 1 in each row
of X and exactly one 1 in each column of X.
n m
MEASURE: Z Z Ci,jDk,lXi,kX',l-

i7‘]=1 k,i=1
1 E] E#l

Bad News: Not in Apx [Sahni and Gonzalez, 1976].
Comment: Not in APX even if D satisfies the triangle inequality [Queyranne, 1986].
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MP6. MINIMUM PLANAR RECORD PACKING

InsTANCE: Collection C' of n records, for each record ¢ € C a probability p(c¢) such that
0 <p(e)< 1.

SoruTioN: For each record ¢ € C' a placement z(c¢) in the plane, given as integer coordinates,
such that all records are placed on different points in the plane.

MEASURE: Z Z pler)p(ez)d(z(c1), 2(c2)), where d(z(cq1), z(c2)) is the discretized Euclidean

c1€C e eC

distance between the points z(¢1) and z(¢3).

Good News: Approximable with an absolute error guarantee of L4\/§ + 8y/7], that is, one can
in polynomial time find a solution with objective function value at most opt+ L4\/§—|— 8/
[Karp, McKellar, and Wong, 1975].

MP7. MINIMUM RELEVANT VARIABLES IN LINEAR SYSTEM

INsTANCE: Integer m X n-matrix A € Z™™", integer m-vector b € Z™.
SOLUTION: A rational n-vector z € Q" such that Az = b.
MEASURE: The number of non-zero elements in z.

Bad News: Not in Apx [Amaldi and Kann, 1994b].

Comment: Not approximable within 2log! " n for any € > 0 unless NPCQP [Amaldi and Kann,
1994b]. The above nonapproximability results are still true for the variation in which the
solutions are restricted by Az > b instead of Az = b. Variation in which the solution vector
is restricted to contain binary numbers is NPO PB-complete and is not approximable
within n%°~¢ for any ¢ > 0 [Amaldi and Kann, 1994b]. The corresponding maximization
problem, where the number of zero elements in the solution is to be maximized, and the
solution vector is restricted to contain binary numbers, is NPO PB-complete and is not
approximable within n!/37¢ for any ¢ > 0 [Crescenzi, Kann, and Trevisan, 1994].

Garey and Johnson: MP5

MP8. MAXIMUM SATISFYING LINEAR SUBSYSTEM

INSTANCE: System Az = b of linear equations, where A is an integer m X n-matrix, and b is
an integer m-vector.

SOLUTION: A rational n-vector z € Q™.

MEAsURE: The number of equations that are satisfied by x.

Bad News: Not approximable within m® for some ¢ > 0 [Amaldi and Kann, 1994a].

Comment: For any prime ¢ the problem over GF[q] is approximable within ¢, but is not ap-
proximable within ¢° for some ¢ > 0. If the system consists of relations (> or >) the problem
is ApX-complete and approximable within 2 [Amaldi and Kann, 1994a]. If the variables are
restricted to assume only binary values, the problem is harder to approximate than MaAXi-
MUM INDEPENDENT SET. Approximability results for more variants of the problem can be
found in [Amaldi and Kann, 1993].

MP9. MINIMUM UNSATISFYING LINEAR SUBSYSTEM

INSTANCE: System Az = b of linear equations, where A is an integer m X n-matrix, and b is
an integer m-vector.
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SOLUTION: A rational n-vector z € Q™.
MEASURE: The number of equations that are not satisfied by =z.

Bad News: Not in Apx [Arora, Babai, Stern, and Sweedyk, 1993].

Comment: Not approximable within 9log' "1 fop any ¢ > 0 unless NPCQP [Arora, Babai,
Stern, and Sweedyk, 1994]. If the system consists of relations (> or >) the problem is
even harder to approximate; there is a transformation from MINIMUM DOMINATING SET
to this problem. If the variables are restricted to assume only binary values the problem is
NPO PB-complete both for equations and relations, and is not approximable within n'~*

for any € > 0. Approximability results for even more variants of the problem can be found
in [Amaldi and Kann, 1994b].

MP10. MAXIMUM HYPERPLANE CONSISTENCY

INsTANCE: Finite sets P and N of integer n-vectors. P consists of positive examples and N of
negative examples.

SOLUTION: A hyperplane specified by a normal vector w € (™ and a bias wyg.

MEASURE: The number of examples that are consistent with respect to the hyperplane, i.e.,
{z € P:wx > wo}| + |{z € N :wz < wp}

Good News: Approximable within 2 [Amaldi and Kann, 1994a).

Bad News: Aprx-complete [Amaldi and Kann, 1994a].

Comment: Variation in which only one type of misclassification, either positive or negative, is
allowed is not approximable within n® for some ¢ > 0 [Amaldi and Kann, 1993]. The corre-
sponding minimization problem, where the number of misclassifications is to be minimized,
is not in AprX unless P = NP, and is not approximable within 2log'  m for any € > 0 unless
NPCQP [Arora, Babai, Stern, and Sweedyk, 1994] and [Amaldi and Kann, 1994b].

Garey and Johnson: Similar to MP6

MP11. MaXiMUM KNAPSACK

INsTANCE: Finite set U, for each u € U a size s(u) € Z* and a value v(u) € ZT, a positive
integer B € ZT.
SOLUTION: A subset U’ C U such that »_ s(u) < B.
wel’

MEasURE: Total weight of the chosen elements, i.e., Z v(u).

wel’
Good News: Admits an FPTAS [Ibarra and Kim, 1975].
Garey and Johnson: MP9

MP12. MAXIMUM INTEGER m-DIMENSIONAL KNAPSACK

INsTANCE: Nonnegative integer m X n-matrix, A € N™7, nonnegative integer m-vector b €
N™_ nonnegative integer n-vector ¢ € N".
SoLuTION: Nonnegative integer n-vector x € N™ such that Az <b.

n
MEAsURE: The scalar product of ¢ and z, i.e., chz
=1
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Good News: Admits a PTAS [Chandra, Hirschberg, and Wong, 1976].
Garey and Johnson: Similar to MP10

MP13. MAXIMUM INTEGER k-CHOICE KNAPSACK

INSTANCE: Nonnegative integer n x k-matrices A,C' € N™* nonnegative integer b € N.
SoruTioN: Nonnegative integer vector @ € N™, function f : [l.n] — [l..k] such that

i3
D (o < b.
=1
i3
MEASURE: Y _ ¢; ¢(5) -

=1

Good News: Admits an FPTAS [Chandra, Hirschberg, and Wong, 1976].
Garey and Johnson: Similar to MP11

MP14. NEAREST LATTICE VECTOR

INSTANCE: Lattice basis {by,..., b, } where b; € Z*, a point by € Q¥, and a positive integer p.
SOLUTION: A vector b in the lattice, where b # by.
MEASURE: The distance between by and b in the £, norm.

Bad News: Not in Apx [Arora, Babai, Stern, and Sweedyk, 1993].
Comment: Not approximable within 2log' ~*n for any ¢ > 0 unless NPCQP [Arora, Babai,
Stern, and Sweedyk, 1994]. The special case where by is the zero vector and p = oo is not

approximable within 2log” " n for any ¢ > 0 unless NPCQP [Arora, Babai, Stern, and
Sweedyk, 1993].

MP15. MINIMUM BLOCK-ANGULAR CONVEX PROGRAMMING

INSTANCE: K disjoint convex compact sets B called blocks, M nonnegative continuous convex
functions f* : B¥ — R.
SOLUTION: A positive number A such that

K
fo;(xk)gx\forlgmgM, and 2¥ € B¥ for 1 <k < K.
k=1

MEASURE: A

Good News: Admits an FPTAS [Grigoriadis and Khachiyan, 1994].
Algebra and Number Theory

Solvability of Equations
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AN1. MAXIMUM SATISFIABILITY OF QUADRATIC EQUATIONS OVER GF[¢]

INSTANCE: Prime number ¢, set P = {pi1(x),p2(2),...,pn(z)} of polynomials of degree at
most 2 over GF[q] in n variables. The polynomials may not contain any monomial z;2 for
any 1.

SoLuTION: A subset P’ C P of the polynomials such that there is a root common to all
polynomials in P’.

MEAsURE: Cardinality of the subset, i.e., | P'|.

Good News: Approximable within ¢?/(q — 1) [Hastad, Phillips, and Safra, 1993].

Bad News: Not approximable within ¢ — ¢ for any ¢ [Hastad, Phillips, and Safra, 1993].

Comment: Over the rationals or over the reals the problem is not approximable within n'~
for any ¢ > 0 [Hastad, Phillips, and Safra, 1993]. For linear polynomials the problem is not
approximable within ¢° for some ¢ > 0 [Amaldi and Kann, 1994a].

€

Logic

Propositional Logic

LO1. MAXIMUM SATISFIABILITY

INsTANCE: Set U of variables, collection €' of disjunctive clauses of literals, where a literal is
a variable or a negated variable in U.

SorLuTION: A subset €' C ' of the clauses such that there is a truth assignment for U that
satisfies every clause in C’.

MEASURE: Number of satisfied clauses, i.e., |C’|.

Good News: Approximable within 1.325 [Goemans and Williamson, 1994].

Bad News: Apx-complete [Papadimitriou and Yannakakis, 1991].

Comment: Variation in which each clause has a nonnegative weight and the objective is to
maximize the total weight of the satisfied clauses is approximable within 4/3 [Yannakakis,
1992]. Generalization in which each clause is a disjunction of conjunctions of literals and
each conjunction consists of at most k literals, where k is a positive constant, is still Apx-
complete [Papadimitriou and Yannakakis, 1991].

Garey and Johnson: LO1

LO2. MAXIMUM k-SATISFIABILITY

INsTANCE: Set U of variables, collection C' of disjunctive clauses of at most k literals, where a
literal is a variable or a negated variable in U. k is a constant, k& > 2.

SoLuTioN: A subset C' C (' of the clauses such that there is a truth assignment for U that
satisfies every clause in C’.

MEASURE: Number of satisfied clauses, i.e., |C’|.

Good News: Approximable within 1/(1 — 27%) if every clause consists of exactly k literals
[Johnson, 1974].
Bad News: Apx-complete [Papadimitriou and Yannakakis, 1991].
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Comment: MAXIMUM 3-SATISFIABILITY is not approximable within 113/112 [Bellare, Gold-
wasser, Lund, and Russell, 1993]. MAXIMUM 2-SATISFIABILITY is approximable within 1.14
[Goemans and Williamson, 1994]. Admits a PTAS for ‘planar’ instances [Nishizeki and
Chiba, 1988]. Variation in which the number of occurrences of any literal is bounded by the
constant B is still ApX-complete [Papadimitriou and Yannakakis, 1991].

Garey and Johnson: LO2 and LO5

LO3. MINIMUM k-SATISFIABILITY

INsTANCE: Set U of variables, collection C' of disjunctive clauses of at most k literals, where a
literal is a variable or a negated variable in U. k is a constant, k& > 2.

SoLuTioN: A subset C' C (' of the clauses such that there is a truth assignment for U that
satisfies every clause in C’.

MEASURE: Number of satisfied clauses, i.e., |C7].

Good News: Approximable within & [Kohli, Krishnamurti, and Mirchandani, 1994].
Garey and Johnson: LO2

LO4. MaxiMmuM NoOT-ALL-EQUAL 3-SATISFIABILITY

INsTANCE: Set U of variables, collection ' of disjunctive clauses of 3 literals, where a literal
is a variable or a negated variable in U.

SorLUTION: A truth assignment for U and a subset ¢ C C of the clauses such that each clause
in C” has at least one true literal and at least one false literal.

MEASURE: |C]

Good News: Approximable within a constant [Papadimitriou and Yannakakis, 1991].
Bad News: Apx-complete [Papadimitriou and Yannakakis, 1991].

Comment: Transformation from MAXIMUM 2-SATISFIABILITY.

Garey and Johnson: LO3

LO5. MINIMUM 3DNF SATISFIABILITY

INsTANCE: Set U of variables, collection €' of conjunctive clauses of at most three literals,
where a literal is a variable or a negated variable in U.

SorLuTION: A subset €' C ' of the clauses such that there is a truth assignment for U that
satisfies every clause in C’.

MEASURE: Number of satisfied clauses, i.e., |C7].

Bad News: Not in Apx [Kolaitis and Thakur, 1993].
Garey and Johnson: LOS8

LO6. MAXIMUM DISTINGUISHED ONES

INsTANCE: Disjoint sets X, Z of variables, collection €' of disjunctive clauses of at most 3
literals, where a literal is a variable or a negated variable in X U Z.
SoruTioN: Truth assignment for X and Z that satisfies every clause in C.
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MEASURE: The number of Z variables that are set to true in the assignment.

Bad News: NPO PB-complete [Kann, 1992b].

Comment: Transformation from MAXIMUM NUMBER OF SATISFIABLE FORMULAS [Panconesi
and Ranjan, 1993]. Not approximable within |Z]%-5=¢ for any ¢ > 0 [Crescenzi, Kann, and
Trevisan, 1994]. MaXiMUM ONES, the variation in which all variables are distinguished, i.e.
|X| = 0, is also NPO PB-complete [Kann, 1992b], and is not approximable within |Z|'/3~*
for any ¢ > 0 [Crescenzi, Kann, and Trevisan, 1994]. MAXIMUM WEIGHTED SATISFIABILITY,
the weighted version, in which every variable is assigned a nonnegative weight, is NPO-
complete.

LO7. MINIMUM DISTINGUISHED ONES

INsTANCE: Disjoint sets X, Z of variables, collection €' of disjunctive clauses of at most 3
literals, where a literal is a variable or a negated variable in X U Z.

SoruTioN: Truth assignment for X and Z that satisfies every clause in C.

MEASURE: The number of Z variables that are set to true in the assignment.

Bad News: NPO PB-complete [Kann, 1993].

Comment: Transformation from MINIMUM INDEPENDENT DOMINATING SET. Not approx-
imable within |Z|17= for any ¢ > 0 [Kann, 1993]. MiNntMuM ONES, the variation in which all
variables are distinguished, i.e. | X| = 0, is also NPO PB-complete, and is not approximable
within |Z|%%7¢ for any ¢ > 0 [Kann, 1993]. Minimum ONES for clauses of 2 literals is ap-
proximable within 2 [Gusfield and Pitt, 1992]. MiNIMUM WEIGHTED SATISFIABILITY, the

weighted version, in which every variable is assigned a nonnegative weight, is NP O-complete
[Orponen and Mannila, 1987].

LO8. MAXIMUM WEIGHTED SATISFIABILITY WITH BOUND

INsTANCE: Set U of variables, boolean expression F over U, a nonnegative bound B € N, for

each variable u € U a weight w(u) € N such that B < >~ w(u) <2B.
welU
SorLuTION: A truth assignment for U, i.e., a subset U’ C U such that the variables in U’ are

set to true and the variables in U/ — U’ are set to false.

MEASURE: Z w(w) if the truth assignment satisfies the boolean expression F' and B other-
vel!

wise.

Good News: Approximable within 2 [Crescenzi and Panconesi, 1991].

Bad News: Aprx-complete [Crescenzi and Panconesi, 1991].

Comment: Variation in which >, ¢ w(u) < (14 1/(|U|—1)) B is PTAS-complete [Crescenzi
and Panconesi, 1991].

LO9. MAXIMUM NUMBER OF SATISFIABLE FORMULAS

INsTANCE: Set U of variables, collection €' of 3CNF formulas.
SoLuTioN: A subset €' C (' of the formulas such that there is a truth assignment for U that
satisfies every formula in C".
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MEASURE: Number of satisfied formulas, i.e., |C].

Bad News: NPO PB-complete [Kann, 1992b].
Comment: Transformation from LONGEST INDUCED PaTH. Not approximable within |C'|'~*
for any € > 0 [Crescenzi, Kann, and Trevisan, 1994].

LO10. MINIMUM NUMBER OF SATISFIABLE FORMULAS

INsTANCE: Set U of variables, collection €' of 3CNF formulas.

SorLuTION: A subset C' C ' of the formulas such that there is a truth assignment for U that
satisfies every formula in .

MEASURE: Number of satisfied formulas, i.e., |C’|.

Bad News: NPO PB-complete [Kann, 1993].
Comment: Transformation from MINIMUM DISTINGUISHED ONES. Not approximable within
|C'|'=# for any ¢ > 0 [Kann, 1993].

LO11. MINIMUM EQUIVALENCE DELETION

INsTANCE: Set U of variables, collection C' of equivalences, i.e., pairs of literals over U.

SorLuTION: A subset C' C ' of the formulas such that there is a truth assignment for U that
satisfies every equivalence in C’.

MEASURE: Number of equivalences that are not satisfied, i.e., |C| —|C’|.

Good News: Approximable within O(logn) [Garg, Vazirani, and Yannakakis, 1993b].
Bad News: Apx-hard [Garg, Vazirani, and Yannakakis, 1993b].

LO12. MAXIMUM k-CONSTRAINT SATISFACTION

INsTANCE: Set U of variables, collection ' of conjunctive clauses of at most k literals, where
a literal is a variable or a negated variable in U, and k is a constant, & > 2.

SoLuTioN: A subset C' C (' of the clauses such that there is a truth assignment for U that
satisfies every clause in C’.

MEASURE: Number of satisfied clauses, i.e., |C7].

Good News: Approximable within 2% [Berman and Schnitger, 1992].

Bad News: Aprx-complete [Berman and Schnitger, 1992].

Comment: Transformation from MAXIMUM 2-SATISFIABILITY. Not approximable within 20(%)
when k£ <log |C| [Berman and Schnitger, 1992].

Miscellaneous

LO13. MaxiMuM HorN CORE

INSTANCE: Set M of truth assignments on n variables.

SoLuTioN: A Horn core of M, i.e., a subset M’ C M such that M’ is equal to the set of truth
assignments satisfying a Horn boolean formula.

MEASURE: The cardinality of the core, i.e., |M’|.
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Bad News: Not in Apx [Kavvadias, Papadimitriou, and Sideri, 1993].
Automata and Language Theory
Automata Theory

AL1l. MINIMUM CONSISTENT FINITE AUTOMATON

InsTANCE: Two finite sets of binary strings P, V.

SoruTioN: S((P,N)) = {A = (Q,{0,1},6,q0, F') A deterministic finite automaton accepting
all strings in P and rejecting all strings in V.

MEASURE: Number of states in the automaton.

Bad News: Not approximable within 2 — ¢ for any ¢ > 0 [Simon, 1990].

Comment: Transformation from MINIMUM GRAPH COLORING. Not approximable within (| P|+
|N|)Y/14=< for any ¢ > 0 [Pitt and Warmuth, 1993].

Garey and Johnson: ALS

AL2. LONGEST COMPUTATION

InsTaANCE: Nondeterministic Turing machine M, binary input string z.
SoruTioN: Nondeterministic guess string ¢ produced by M on input z.
MEASURE: The length of the shortest of the strings ¢ and z, i.e., min(|c|, |z]).

Bad News: NPO PB-complete [Berman and Schnitger, 1992].

Comment: Not approximable within n° for some € > 0, where n is the size of the input [Berman
and Schnitger, 1992]. Variation in which the Turing machine is oblivious is also NPO PB-
complete.

AL3. SHORTEST COMPUTATION

InsTaANCE: Nondeterministic Turing machine M, binary input string z.
SoruTioN: Nondeterministic guess string ¢ produced by M on input z.
MEASURE: The length of the shortest of the strings ¢ and z, i.e., min(|c|, |z]).

Bad News: NPO PB-complete [Kann, 1993].

Comment: Not approximable within n® for some ¢ > 0, where n is the size of the input [Kann,
1993]. Variation in which the Turing machine is oblivious is also NPO PB-complete.

Formal Languages

AL4. MINIMUM LocALLY TESTABLE AUTOMATON ORDER

INSTANCE: A locally testable language L, i.e., a language L such that, for some positive integer
J, whether or not a string z is in the language depends on (a) the prefix and suffix of 2 of
length 7 — 1, and (b) the set of substrings of @ of length j.

SOLUTION: An order j, i.e., a positive integer j witnessing the local testability of L.

MEAsSURE: The value of the order, i.e., j.

Good News: Admits a PTAS [Kim and McNaughton, 1993].

Miscellaneous
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AL5. MINIMUM PERMUTATION (GROUP BASE

INSTANCE: Permutation group on n letters.

SOLUTION: A base for ¢, i.e., a sequence of points by, ..., by such that the only element in G
fixing all of the b; is the identity.

MEAsURE: The size of the base, i.e., k.

Good News: Approximable within loglog n [Blaha, 1992].

Program Optimization

Code Generation

PO1. MINIMUM REGISTER SUFFICIENCY

INsTANCE: Directed acyclic graph G' = (V, F).

SoruTioN: Computation for G that uses k register, i.e., an ordering vy, ..., v, of the vertices in
V and a sequence Sy, ..., 5, of subsets of V', each satisfying |9;] < k, such that Sg is empty,
S, contains all vertices with in-degree 0 in G, and, for 1 <i < n, v; € 53, S; — {v;} C S;_1,
and 9;_y contains all vertices u for which (v;,u) € A.

MEASURE: Number of registers, i.e., k.

Good News: Approximable within O(log? n) [Klein, Agrawal, Ravi, and Rao, 1990]].

Garey and Johnson: PO1

Miscellaneous

MS1. NEAREST CODEWORD

INsTANCE: Linear binary code ' of length n and a string z of length n.

SoLUTION: A codeword y of C.

MEAsSURE: The Hamming distance between z and y, i.e., d(z,y).

Bad News: Not in Apx [Arora, Babai, Stern, and Sweedyk, 1993].

Comment: Not approximable within 2log' ~*n for any ¢ > 0 unless NPCQP [Arora, Babai,
Stern, and Sweedyk, 1994]. The corresponding maximization problem, where the number
of bits that agree between x and y is to be maximized, does not admit a PTAS [Petrank,
1993].

MS2. ATTrRACTION RADIUS FOR BINARY HOPFIELD NET

INSTANCE: An m-node synchronous binary Hopfield network and a stable initial vector of states
u € {—1,1}". A binary Hopfield network is a complete graph where each edge has an integer
weight w(v;, v;) and each vertex has an integer threshold value ¢(v;). At each time step ¢ each
vertex v; has a state (¢, v;). (0, v;) is given by w and z(¢t+1, v;) = sgn ( iy w(vi, ;) — ti)
where sgn is the sign function. An initial vector of states is stable if z(¢,v;) eventually
converges for all ¢.

SOLUTION: An initial vector of states v that either converges to a different vector than u or is
not stable.
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MEASURE: The Hamming distance between w and ». If v is the vector nearest to « that does
not converge to the same vector as u, then this distance is the attraction radius.

Bad News: Not approximable within n!=% for any e [Floréen and Orponen, 1993].

Comment: Transformation from MINIMUM INDEPENDENT DOMINATING SET.

MS3. MINIMUM k-CLUSTERING

INsTANCE: Finite set X, a distance d(z,y) € N for each pair z,y € X. The distances must
satisfy the triangle inequality.

SOLUTION: A partition of X into disjoint subsets Cy,Cs, ..., Ck.

MEASURE: The largest distance between two elements in the same subset, i.e., llg[lla)é] d(z,y).

z,y€C,

Good News: Approximable within 2 [Hochbaum and Shmoys, 1986].

Bad News: Not approximable within 2 — ¢ for any ¢ > 0 [Hochbaum and Shmoys, 1986].

Garey and Johnson: MS9

MS4. MINIMUM k-CLUSTERING SUM

INsTANCE: Finite set X, a distance d(z,y) € N for each pair 2,y € X.
SOLUTION: A partition of X into disjoint subsets Cy,Cs, ..., Ck.
MEASURE: The sum of all distances between elements in the same subset, i.e.,

k
Z Z d(vl,vg).

1=1 v1,v2€C;

Bad News: Not in Apx [Sahni and Gonzalez, 1976].

MS5. MAXIMUM CHANNEL ASSIGNMENT

INsTANCE: Net of hexagonal cells in which n cells C; are assigned a positive load r;, an inter-
ference radius r, and m channels F;.

SOLUTION: A channel assignment A, i.e., a multivalued function A assigning a set of cells to a
channel such that if C;,C; € A(F})) then the distance between C; and C is greater than 27.

MEASURE: The number of satisfied request, i.e., >, min{r;, |{F; : C; € F;}|}.

Good News: Approximable within 1/(1 — e~!) [Simon, 1989].

Comment: Admits a PTAS if the number of channels is fixed. Similar results hold in the case
in which each cell has a set of forbidden channels.

MS6. MiNIMUM k-LINK PATH IN A PoLYGON

INsTANCE: Polygon P with n integer-coordinates vertices and two points s and ¢ in P.

SOLUTION: A k-link path between s and ¢, i.e., a sequence py, ..., p; of points inside P with
h < k such that pg = s, pp = t, and, for all 7z with 0 < ¢ < h, the segment between p; and
Di41 is inside P.

MEASURE: The Fuclidean length of the path, i.e., ZZ}»L:_OI d(pi, pi+1) where d denotes the Eu-
clidean distance.

Good News: Admits an FPTAS [Mitchell, Piatko, and Arkin, 1992].
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MS7. MINIMUM S1ZE ULTRAMETRIC TREE

INSTANCE: n x n matrix M of positive integers.

SOLUTION: An ultrametric tree, i.e., an edge-weighted tree T'(V, E') with n leaves such that,
for any pair of leaves ¢ and 7, dg; > M[i, j] where dg; denotes the sum of the weights in the
path between 7 and j.

MEASURE: The size of the tree, i.e., 3" cp w(e) where w(e) denotes the weight of edge e.

Bad News: Not approximable within n¢ for a given ¢ > 0 [Farach, Kannan, and Warnow, 1993].

Comment: Transformation from graph coloring.

MSS8. MINIMUM PARTITION OF RECTANGLE WITH INTERIOR POINTS

INsTANCE: Rectangle R and finite set P of points located inside R.

SOLUTION: A set of line segments that partition R into rectangles such that every point in P
is on the boundary of some rectangle.

MEASURE: The total length of the introduced line segments.

Good News: Approximable within 3 [Gonzalez and Zheng, 1990].

Comment: Variation in which R is a rectilinear polygon is approximable within 4 [Gonzalez
and Zheng, 1990].

MS9. MINIMUM SORTING BY REVERSALS

INsTANCE: Permutation 7 of the numbers 1 to n.

SOLUTION: A sequence p1,ps2,...,p; of reversals of intervals such that 7 - py - pg---py is
the identity permutation. A reversal of an interval [7,j] is the permutation (1,2,...,7 —
L,7,—1,...,0+ 1,4,54+1,...,n).

MEASURE: The number of reversals, i.e., t.

Good News: Approximable within 7/4 [Bafna and Pevzner, 1993].

Comment: The problem is not known to be NP-complete. Variation in which the numbers
are signed and a reversal of an interval changes the signs of the numbers in the interval is
approximable within 3/2 [Bafna and Pevzner, 1993].
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Independent Sequence, 11

Independent Set, 11

Induced Connected Subgraph with Prop-
erty II, 12

Induced Subgraph with Property II, 11

Integer k-Choice Knapsack, 42

Integer m-Dimensional Knapsack, 41

Integral k-Multicommodity Flow on Trees,
26

k-Colorable Induced Subgraph, 14

k-Colorable Subgraph, 13

k-Constraint Satisfaction, 46

k-Cut, 20

k-Facility Dispersion, 27

k-Multicommodity Flow, 25

k-Satisfiability, 43

Knapsack, 41
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Not-All-Equal 3-Satisfiability, 44

Number of Satisfiable Formulas, 45

Priority Flow, 26

Quadratic Programming, 39

Satisfiability, 43

Satisfiability of Quadratic Equations over
GF[q], 43

Satisfying Linear Subsystem, 40

Set Packing, 29

Set Splitting, 29

Triangle Packing, 8

Weighted Satisfiability with Bound, 45

Metric Bottleneck Wandering Salesperson

Problem, 23

Metric Traveling k-Salesperson Problem, 23
Metric Traveling Salesperson Problem, 23
Minimum

0-1 Programming, 38

3-Dedicated Processor Scheduling, 36

3-Dimensional Assignment, 31

3DNF Satisfiability, 44

Bend Number, 28

Biconnected Spanning Subgraph, 19

Biconnectivity Augmentation, 22

Bin Packing, 32

Block-angular Convex Programming, 42

Chinese Postman for Mixed Graphs, 23

Chinese Postman Problem, 24

Chordal Graph Completion, 15

Clique Cover, 9

Clique Partition, 8

Complete Bipartite Subgraph Cover, 10

Consistent Finite Automaton, 47

Constrained Partition, 31

Cromatic Index, 7

Cromatic Number, 6

Cut Cover, 10

Degree Spanning Tree, 17

Distinguished Ones, 45

Dominating Set, 5

Edge 2-Spanner, 14

Edge Coloring, 7

Edge Deletion to Obtain Subgraph with
Property 1II, 12
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Edge Disjoint Cycle Cover, 10

Edge Dominating Set, 6

Edge-Deletion Bipartization, 13

Equivalence Deletion, 46

Equivalent Digraph, 14

Exact Cover, 30

Feedback Arc Set, 7

Feedback Vertex Set, 7

File Transfer Scheduling, 37

General Routing, 24

Generalized 0-1 Assignment, 39

Generalized Steiner Network, 18

Geometric Steiner Tree, 18

Graph Coloring, 6

Height Three Dimensional Packing, 32

Hitting Set, 31

Independent Dominating Set, 6

Interval Graph Completion, 14

Job Shop Scheduling, 37

k-Capacitated Tree Partition, 9

k-Center, 26

k-Clustering, 49

k-Clustering Sum, 49

k-Cut, 20

k-Link Path in a Polygon, 49

k-Median, 27

k-Satisfiability, 44

k-Spanning Tree, 17

k-Stacker Crane Problem, 24

k-Supplier, 27

k-Switching Network, 28

Length Triangulation, 28

Locally Testable Automaton Order, 47

Maximal Indepencence Number, 6

Multiprocessor Scheduling, 34

Multiprocessor Scheduling with Speed
Factors, 36

Multiway Cut, 21

Network Inhibition on Planar Graphs,
20

Number of Satisfiable Formulas, 46

Partition of Rectangle with Interior Points,
50

Permutation Group Base, 48

Planar Record Packing, 40

Point-To-Point Connection, 16

Precedence Constrained Scheduling, 35
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Preemptive Scheduling with Set-Up Times,

36

Quadratic 0-1 Assignment, 39

Quotient Cut, 22

Ratio-Cut, 21

Rectilinear Global Routing, 25

Register Sufficiency, 48

Relevant Variables in Linear System, 40

Resource Constrained Scheduling, 35

Routing Tree Congestion, 19

Schedule Length, 37

Separating Subdivision, 28

Set Cover, 30

Size Ultrametric Tree, 50

Sorting by Reversals, 50

Stacker Crane Problem, 24

Steiner Tree, 17

Storage-Time Sequencing, 34

Test Collection, 31

Unsatisfying Linear Subsystem, 40

Vehicle Scheduling on Tree, 38

Vertex Cover, 5

Vertex Deletion to Obtain Connected
Subgraph with Property II, 13

Vertex Deletion to Obtain Subgraph
with Property II, 12

Vertex Disjoint Cycle Cover, 10

Vertex k-Cut, 21

Weighted 3-Degree Spanning Tree, 17

Nearest Codeword, 48
Nearest Lattice Vector, 42

Rural Postman Problem, 24

Shortest
Common Supersequence, 33
Common Superstring, 33
Computation, 47
Path with Forbidden Pairs, 16
Weight-Constrained Path, 25

Traveling Salesperson Problem, 22



