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A compendium of NP optimization problemsP. Crescenzi1 and V. Kann21 Dipartimento di Scienze dell'Informazione, Universit�a degli Studi di Roma \La Sapienza", Via Salaria113, 00198 Rome, Italy. E-mail: piluc@dsi.uniroma1.it2 Department of Numerical Analysis and Computing Science, Royal Institute of Technology, S-100 44Stockholm, Sweden. E-mail: viggo@nada.kth.seSeptember 27, 1994Summary. Due to the fact that no NP-complete problem can be solved in polynomial time(unless P=NP), many approximability results (both positive and negative) of NP-hard opti-mization problems have appeared in the technical literature. In this compendium, we collecttogether a large number of these results.In the following we refer to standard complexity classes (see [Johnson, 1990]). We recall thata function t(n) is `quasi-polynomial' if a constant c exists such that t(n) � nlogc n and we denoteby QP, QNP, and QR the analogues of the usual complexity classes in the quasi-polynomialtime domain.1. NPO Problems: De�nitions and PreliminariesThe basic ingredients of an optimization problem are the set of instances or input objects, theset of feasible solutions or output objects associated to any instance, and the measure de�nedfor any feasible solution. On the analogy of the theory of NP-completeness, we are interestedin studying a class of optimization problems whose feasible solutions are short and easy-to-recognize. To this aim, suitable constraints have to be introduced. We thus give the followingde�nition.De�nition 1. An NP optimization problem A is a fourtuple (I; sol;m; goal) such that1. I is the set of the instances of A and it is recognizable in polynomial time.2. Given an instance x of I, sol(x) denotes the set of feasible solutions of x. These solutionsare short, that is, a polynomial p exists such that, for any y 2 sol(x), jyj � p(jxj). Moreover,it is decidable in polynomial time whether, for any x and for any y such that jyj � p(jxj),y 2 sol(x).3. Given an instance x and a feasible solution y of x, m(x; y) denotes the positive integermeasure of y. The function m is computable in polynomial time and is also called theobjective function.4. goal 2 fmax;ming.



A compendium of NP optimization problems 2The class NPO is the set of all NP optimization problems.The goal of an NPO problem with respect to an instance x is to �nd an optimum solution,that is, a feasible solution y such thatm(x; y) = goalfm(x; y0) : y0 2 sol(x)g:In the following sol� will denote the multi-valued function mapping an instance x to the setof optimum solutions, while opt will denote the function mapping an instance x to the measureof an optimum solution.An NPO problem is said to be polynomially bounded if a polynomial q exists such that, forany instance x and for any solution y of x, m(x; y) � q(jxj). The class NPO PB is the set ofpolynomially bounded NPO problems.2. Approximate Algorithms and Approximation ClassesIt is well-known that if an NPO problem can be solved in polynomial time, then its correspond-ing decision problem can also be solved in polynomial time. As a consequence, if P 6= NP, thenany NPO problem whose corresponding decision problem is NP-complete is not solvable inpolynomial time. In these cases we sacri�ce optimality and start looking for approximate solu-tions computable in polynomial time.De�nition 2. Let A be an NPO problem. Given an instance x and a feasible solution y of x,we de�ne the performance ratio of y with respect to x asR(x; y) = max�m(x; y)opt(x) ; opt(x)m(x; y)� :The performance ratio is always a number greater than or equal to 1 and is as close to 1 asy is close to the optimum solution.De�nition 3. Let A be an NPO problem and let T be an algorithm that, for any instance xof A, returns a feasible solution T (x) of x. Given an arbitrary function r : N ! (1;1), we saythat T is an r(n)-approximate algorithm for A if, for any instance x, the performance ratio ofthe feasible solution T (x) with respect to x veri�es the following inequality:R(x; T (x))� r(jxj):If an NPO problem admits an r(n)-approximate polynomial-time algorithm we say that itis approximable within r(n).De�nition 4. An NPO problem A belongs to the class Apx if it is approximable within ", forsome constant " > 1.De�nition 5. Let A be an NPO problem. An algorithm T is said to be an approximationscheme for A if, for any instance x of A and for any rational " > 1, T (x; ") returns a feasiblesolution of x whose performance ratio is at most ".De�nition 6. An NPO problem A belongs to the class PTAS if it admits a polynomial-timeapproximation scheme, that is, an approximation scheme whose time complexity is bounded byq(jxj) where q is a polynomial.



A compendium of NP optimization problems 3Observe that the time complexity of an approximation scheme in the above de�nition maybe of the type 21=("�1)p(jxj) or jxj1=("�1) where p is a polynomial. Thus, computations with "values very close to 1 may turn out to be practically unfeasible. This leads us to the followingde�nition.De�nition 7. An NPO problem A belongs to the class FPTAS if it admits a fully polynomial-time approximation scheme, that is, an approximation scheme whose time complexity is boundedby q(jxj; 1=("� 1)) where q is a polynomial.Clearly, the following inclusions hold:FPTAS � PTAS � Apx � NPO:It is also easy to see that these inclusions are strict if and only if P 6= NP.3. Completeness in Approximation ClassesIn this section we de�ne a natural approximation preserving reducibility and introduce thenotion of completeness both in NPO and in Apx.De�nition 8. Let A and B be two NPO problems. A is said to be PTAS-reducible to B, insymbols A �PTAS B, if three functions f , g, and c exist such that:1. For any x 2 IA and for any rational " 2 (1;1), f(x; ") 2 IB is computable in timepolynomial with respect to jxj.2. For any x 2 IA, for any y 2 solB(f(x; ")), and for any rational " 2 (1;1), g(x; y; ") 2solA(x) is computable in time polynomial with respect to both jxj and jyj.3. c : (1;1)! (1;1) is computable and invertible.4. For any x 2 IA, for any y 2 solB(f(x; ")), and for any rational " 2 (1;1),RB(f(x; "); y)� c(") implies RA(x; g(x; y; "))� ":Remark 1. In [Papadimitriou and Yannakakis, 1991] a di�erent kind of reducibility betweenoptimization problems is de�ned which is a restriction of the PTAS-reducibility and is calledL-reducibility.It is easy to see that the previous de�nition satis�es the following fact.Proposition 1. If A �PTAS B and B 2 Apx (respectively, B 2 PTAS), then A 2 Apx(respectively, A 2 PTAS).De�nition 9. A problem A 2 NPO is NPO-complete if, for any B 2 NPO, B �PTAS A.Analogously, we can de�ne the notion of completeness in the class NPO PB.De�nition 10. A problem A 2 NPO is Apx-hard if, for any B 2 Apx, B �PTAS A. AnApx-hard problem is Apx-complete if it belongs to Apx.



A compendium of NP optimization problems 44. A list of NPO problemsThe list contains almost 150 entries. A typical entry consists of eight parts: the �rst 4 partsare mandatory while the last 4 parts are optional.1. The problem name that also speci�es the goal of the problem.2. The de�nition of the instances of the problem.3. The de�nition of the feasible solutions of the problem.4. The de�nition of the measure of a feasible solution.5. A `good news' part that contains the best approximation result for the problem.6. A `bad news' part that contains the worst approximation negative result for the problem.7. A section of additional comments.8. A reference to the `closest' problem appearing in the list published in [Garey and Johnson,1979].The list is organized according to subject matter as done in [Garey and Johnson, 1979]. Inparticular the entries are divided into the following twelve categories:GT Graph theory: 40 entries.ND Network design: 41 entries.SP Sets and partitions: 10 entries.SR Storage and retrieval: 5 entries.SS Sequencing and scheduling: 12 entries.MP Mathematical programming: 15 entries.AN Algebra and number theory: 1 entry.GP Games and puzzles: no entry.LO Logic: 13 entries.AL Automata and language theory: 5 entries.PO Program optimization: 1 entry.MS Miscellaneous: 9 entry.We have ignored problems with too obscure de�nitions and problems for which the mem-bership in NP was not guaranteed. Certainly, we missed many other results. Indeed, this isthe �rst compilation of the list and we ask everybody to help us in correcting, improving, andenlarging it!



A compendium of NP optimization problems 5Graph TheoryCovering and PartitioningGT1. Minimum Vertex CoverInstance: Graph G = hV;Ei.Solution: A vertex cover for G, i.e., a subset V 0 � V such that, for each edge (u; v) 2 E, atleast one of u and v belongs to V 0.Measure: Cardinality of the vertex cover, i.e., jV 0j.Good News: Approximable within 2� log log jV j2 log jV j [Bar-Yehuda and Even, 1985].Bad News: Apx-complete [Papadimitriou and Yannakakis, 1991].Comment: Transformation from bounded Maximum 3-Satisfiability. Admits a PTAS forplanar graphs [Baker, 1994]. Variation in which each vertex has a nonnegative weight andthe objective is to maximize the total weight of the vertex cover is approximable within2 � log log jV j=2 log jV j on general graphs and within 3=2 for planar graphs [Bar-Yehudaand Even, 1985].Variation in which the degree of G is bounded by a constant B is Apx-complete [Papadim-itriou and Yannakakis, 1991]. For B = 3 it is approximable within 5=4, for B � 10 it isapproximable within 2B2=(B2 +B � 1) [Monien and Speckenmeyer, 1983]. The generaliza-tion to k-hypergraphs, for k � 2, is approximable within k [Kolaitis and Thakur, 1993].If the vertex cover is required to be the nodes of a tree in the graph and the objective isto minimize the number of edges in the tree, the problem is approximable within 2 [Arkin,Halld�orsson, and Hassin, 1993]. If the graph is edge-weighted, the vertex cover is required tobe a cycle, and the objective is to minimize the weight of the edges in the cycle, the problemis approximable within 3:5 [Arkin, Halld�orsson, and Hassin, 1993]. The constrained varia-tion in which the input is extended with a positive integer k and a subset S of V , and theproblem is to �nd the vertex cover of size k that contains the largest number of verticesfrom S, is not approximable within jV j" for some " > 0 [Zuckerman, 1993].Garey and Johnson: GT1GT2. Minimum Dominating SetInstance: Graph G = hV;Ei.Solution: A dominating set for G, i.e., a subset V 0 � V such that for all u 2 V � V 0 there isa v 2 V 0 for which (u; v) 2 E.Measure: Cardinality of the dominating set, i.e., jV 0j.Good News: Approximable within O(log jV j) by reduction to Minimum Set Cover [Kann,1992b].Bad News: Not approximable within c log jV j for any c < 1=4 unless NP � QP [Lund andYannakakis, 1993a]. Not approximable within c log jV j for any c < 1=8, unless NP �Dtime�jV jlog log jV j� [Bellare, Goldwasser, Lund, and Russell, 1993].Comment: Equivalent to Minimum Set Cover under L-reduction. If it is NP-hard to ap-proximate within !(logn), then it is complete for the class of log-approximable problems[Khanna, Motwani, Sudan, and Vazirani, 1994]. Admits a PTAS for planar graphs [Baker,



A compendium of NP optimization problems 61994]. Variation in which the degree of G is bounded by a constant B is Apx-complete[Papadimitriou and Yannakakis, 1991] and is approximable within PB+1i=1 1i by reduction toMinimum Set Cover.Garey and Johnson: GT2GT3. Minimum Edge Dominating SetInstance: Graph G = hV;Ei.Solution: An edge dominating set for G, i.e., a subset E 0 � E such that for all e1 2 E � E 0there is an e2 2 E 0 such that e1 and e2 are adjacent.Measure: Cardinality of the edge dominating set, i.e., jE 0j.Good News: Admits a PTAS for planar graphs [Baker, 1994].Garey and Johnson: GT2GT4. Minimum Independent Dominating SetInstance: Graph G = hV;Ei.Solution: An independent dominating set for G, i.e., a subset V 0 � V such that for allu 2 V � V 0 there is a v 2 V 0 for which (u; v) 2 E, and such that no two vertices in V 0 arejoined by an edge in E.Measure: Cardinality of the independent dominating set, i.e., jV 0j.Bad News: NPO PB-complete [Kann, 1993]. Not approximable within jV j1�" for any " > 0[Halld�orsson, 1993b].Comment: The problem is also called Minimum Maximal Indepencence Number. Transforma-tion from Shortest Path with Forbidden Pairs. Variation in which the degree of G isbounded by a constant B is Apx-complete [Kann, 1992b].Garey and Johnson: GT2GT5. Minimum Graph ColoringInstance: Graph G = hV;Ei.Solution: A coloring of G, i.e., a partition of V into disjoint sets V1; V2; : : : ; Vk such that eachVi is an independent set for G.Measure: Cardinality of the coloring, i.e., the number of disjoint independent sets Vi.Good News: Approximable within O jV j(log log jV j)2(log jV j)3 ! [Halld�orsson, 1993a].Bad News: Not approximable within jV j1=14�" for any " > 0 [Bellare and Sudan, 1994].Comment: The problem is also called Minimum Cromatic Number. Not approximable withinjV j1=10�" for any " > 0, unless QNP�co-QR [Bellare and Sudan, 1994].If the graph is 3-colorable the problem is approximable within O(jV j0:4) [Blum, 1989], butit is not approximable within 5=3 [Khanna, Linial and Safra, 1993].Minimum FractionalChromatic Number, the linear programming relaxation in which the independent setsV1; V2; : : : ; Vk do not need to be disjoint, and in the solution every independent set Vi isassigned a nonnegative value �i such that for each vertex v 2 V the sum of the valuesassigned to the independent sets containing v is at most 1, and the measure is the sum



A compendium of NP optimization problems 7P�i, is not approximable within jV jc for some constant c [Lund and Yannakakis, 1993a].The corresponding maximization problem, where the number of \not needed colors", i.e.jV j � k, is to be maximized, is approximable within 2 [Demange, Grisoni, and Paschos,1994]. The constrained variation in which the input is extended with a positive integer k, avertex v0 2 V and a subset S of V , and the problem is to �nd the k-coloring that colors thelargest number of vertices from S in the same way as v0, is not approximable within jV j"for some " > 0 [Zuckerman, 1993].Garey and Johnson: GT4GT6. Minimum Edge ColoringInstance: Graph G = hV;Ei.Solution: A coloring of E, i.e., a partition of E into disjoint sets E1; E2; : : : ; Ek such that,for 1 � i � k, no two edges in Ei share a common endpoint in G.Measure: Cardinality of the coloring, i.e., the number of disjoint sets Ei.Good News: Approximable within 4=3, and even approximable with an absolute error guaranteeof 1 [Nishizeki and Chiba, 1988].Bad News: Not approximable within 4=3� " for any " > 0 [Nishizeki and Chiba, 1988].Comment: The problem is also called Minimum Cromatic Index.Garey and Johnson: OPEN5GT7. Minimum Feedback Vertex SetInstance: Directed graph G = hV;Ai.Solution: A feedback vertex set, i.e., a subset V 0 � V such that V 0 contains at least onevertex from every directed cycle in G.Measure: Cardinality of the feedback vertex set, i.e., jV 0j.Good News: Approximable within 4� 2=n [Bar-Yehuda, Geiger, Naor, and Roth, 1994].Bad News: Apx-complete [Kann, 1992b].Comment: Transformations from Minimum Vertex Cover and Minimum Feedback ArcSet [Ausiello, D'Atri, and Protasi, 1980]. The variation in which a weight is assigned to eachvertex it is approximable within minf2�2; 4 logng where � denotes the maximum degree inG. This variation is approximable within 10 for planar graphs and within 4�2=n for graphsin which a prescribed subset of the vertices is not allowed to participate in any feedbackvertex set [Bar-Yehuda, Geiger, Naor, and Roth, 1994]. The constrained variation in whichthe input is extended with a positive integer k and a subset S of V , and the problem is to�nd the feedback vertex set of size k that contains the largest number of vertices from S, isnot approximable within jV j" for some " > 0 [Zuckerman, 1993].Garey and Johnson: GT7GT8. Minimum Feedback Arc SetInstance: Directed graph G = hV;Ai.Solution: A feedback arc set, i.e., a subset A0 � A such that A0 contains at least one arcfrom every directed cycle in G.



A compendium of NP optimization problems 8Measure: Cardinality of the feedback arc set, i.e., jA0j.Bad News: Apx-hard [Kann, 1992b].Comment: Transformation from Minimum Vertex Cover [Ausiello, D'Atri, and Protasi,1980]. The constrained variation in which the input is extended with a positive integerk and a subset S of A, and the problem is to �nd the feedback edge set of size k thatcontains the largest number of edges from S, is not approximable within jEj" for some" > 0 [Zuckerman, 1993]. The complementary problem of �nding the maximum set of edgesA0 such that G0 = hV;A0i is acyclic is approximable within 2=(1 + 
(1=p�)) where � isthe maximum degree [Berger and Shor, 1990] and it is Apx-complete [Papadimitriou andYannakakis, 1991].Garey and Johnson: GT8GT9. Maximum Triangle PackingInstance: Graph G = hV;Ei.Solution: A triangle packing for G, i.e., a collection V1; V2; : : : ; Vk of disjoint subsets of V ,each containing exactly 3 vertices, such that for each Vi = fui; vi; wig, 1 � i � k, all threeof the edges hui; vii, hui; wii, and hvi; wii belong to E.Measure: Cardinality of the triangle packing, i.e., the number of disjoint subsets Vi.Good News: Approximable within 2 [Halld�orsson, 1994].Bad News: Apx-complete [Kann, 1991].Comment: Transformation from bounded Maximum 3-Dimensional Matching. Admits aPTAS for planar graphs [Baker, 1994]. Variation in which the degree of G is bounded by aconstant B is Apx-completeGarey and Johnson: GT11GT10. Maximum H-MatchingInstance: Graph G = hVG; EGi and a �xed graph H = hVH ; EHi with at least three verticesin some connected component.Solution: A H-matching for G, i.e., a collection G1; G2; : : : ; Gk of disjoint subgraphs of G,each isomorphic to H .Measure: Cardinality of the H-matching, i.e., the number of disjoint subgraphs Gi.Good News: Approximable within (jVH j+ 1)=2 [Halld�orsson, 1994].Bad News: Apx-hard [Kann, 1994].Comment: Transformation from boundedMaximum 3-Satisfiability. Variation in which thedegree of G is bounded by a constant B is Apx-complete [Kann, 1994]. Admits a PTASfor planar graphs [Baker, 1994], but does not admit an FPTAS unless P = NP [Berman,Johnson, Leighton, Shor and Snyder, 1990]. Induced Maximum H-Matching, i.e., wherethe subgraphs Gi are induced subgraphs of G, has the same good and bad news as theordinary problem, even when the degree of G is bounded.Garey and Johnson: GT12GT11. Minimum Clique PartitionInstance: Graph G = hV;Ei.



A compendium of NP optimization problems 9Solution: A clique partition for G, i.e., a partition of V into disjoint subsets V1; V2; : : : ; Vksuch that, for 1 � i � k, the subgraph induced by Vi is a complete graph.Measure: Cardinality of the clique partition, i.e., the number of disjoint subsets Vi.Good News: Approximable within O jV j(log log jV j)2(log jV j)3 ! [Halld�orsson, 1993a].Bad News: Not approximable within jV j" for some " > 0 [Lund and Yannakakis, 1993a].Comment: Equivalent to Minimum Graph Coloring [Paz and Moran, 1981]. The corre-sponding maximization problem, where jV j�k, is to be maximized, is approximable within2 [Demange, Grisoni, and Paschos, 1994].Garey and Johnson: GT15GT12. Minimum k-Capacitated Tree PartitionInstance: Graph G = hV;Ei, and a weight function w : E ! N .Solution: A k-capacitated tree partition of G, i.e., a collection of vertex-disjoint subsetsE1; : : : ; Em of E such that, for each i, the subgraph induced by Ei is a tree of at least kvertices.Measure: The weight of the partition, i.e., Pe2Si Ei w(e).Good News: Approximable within 2� 1=jV j [Goemans and Williamson, 1992].Comment: The variation in which the trees must contain exactly k vertices and the triangleinequality is satis�ed is approximable within 4(1 � 1=k)(1 � 1=jV j). Similar results holdfor the corresponding cycle and path partitioning problems with the triangle inequality[Goemans and Williamson, 1992].GT13. Minimum Clique CoverInstance: Graph G = hV;Ei.Solution: A clique cover for G, i.e., a collection V1; V2; : : : ; Vk of subsets of V , such that eachVi induces a complete subgraph of G and such that for each edge hu; vi 2 E there is someVi that contains both u and v.Measure: Cardinality of the clique cover, i.e., the number of subsets Vi.Good News: Approximable within O(log jV j) � f(jV j) if Maximum Clique is approximablewithin f(jV j) [Simon, 1990].Bad News: Not approximable within jV j" for some " > 0, unless P = NP [Lund and Yan-nakakis, 1993a].Comment: Equivalent toMinimum Clique Partition under ratio-preserving reduction [Kou,Stockmeyer, and Wong, 1978] and [Simon, 1990]. The corresponding maximization problem,where jEj�k is to be maximized, is approximable within 2 [Demange, Grisoni, and Paschos,1994]. The constrained variation in which the input is extended with a positive integer k,a vertex v0 2 V and a subset S of V , and the problem is to �nd the clique cover of sizek that contains the largest number of vertices from S, is not approximable within jV j" forsome " > 0 [Zuckerman, 1993].Garey and Johnson: GT17



A compendium of NP optimization problems 10GT14. Minimum Complete Bipartite Subgraph CoverInstance: Graph G = hV;Ei.Solution: A complete bipartite subgraph cover forG, i.e., a collection V1; V2; : : : ; Vk of subsetsof V , such that each Vi induces a complete bipartite subgraph of G and such that for eachedge hu; vi 2 E there is some Vi that contains both u and v.Measure: Cardinality of the complete bipartite subgraph cover, i.e., the number of subsetsVi.Good News: Approximable within O(log jV j) � f(jV j) if Maximum Clique is approximablewithin f(jV j) [Simon, 1990].Bad News: Not approximable within jV j" for some " > 0, unless P = NP [Lund and Yan-nakakis, 1993a].Comment: Equivalent to Minimum Clique Partition under ratio-preserving reduction [Si-mon, 1990].Garey and Johnson: GT18GT15. Minimum Vertex Disjoint Cycle CoverInstance: Graph G = hV;Ei.Solution: A family F of vertex disjoint cycles covering V .Measure: Number of cycles in F .Bad News: Not in Apx [Sahni and Gonzalez, 1976].Comment: Variation in which the graph G is directed is not in Apx.GT16. Minimum Edge Disjoint Cycle CoverInstance: Graph G = hV;Ei.Solution: A family F of edge disjoint cycles covering V .Measure: Number of cycles in F .Bad News: Not in Apx [Sahni and Gonzalez, 1976].Comment: Variation in which the graph G is directed is not in Apx.GT17. Minimum Cut CoverInstance: Graph G = hV;Ei.Solution: A collection V1; : : : ; Vm of cuts, i.e., a collection of subsets Vi � V such that, foreach edge (u; v) 2 E, a subset Vi exists such that either u 2 Vi and v 62 Vi or u 62 Vi andv 2 Vi.Measure: Cardinality of the collection, i.e., m.Good News: Approximable within 1+(log jV j�3 log log jV j)=opt(G) [Motwani and Naor, 1993].Bad News: There is no polynomial-time algorithm with relative error less than 1.5. [Motwaniand Naor, 1993].Comment: The negative result is obtained by relating the problem with the coloring problem.Solvable in polynomial time for planar graphs. Observe that any graph has a cut cover ofcardinality dlog jV je.Subgraphs and Supergraphs



A compendium of NP optimization problems 11GT18. Maximum CliqueInstance: Graph G = hV;Ei.Solution: A clique in G, i.e. a subset V 0 � V such that every two vertices in V 0 are joinedby an edge in E.Measure: Cardinality of the clique, i.e., jV 0j.Good News: Approximable within O �jV j=(log jV j)2� [Boppana and Halld�orsson, 1992].Bad News: Not approximable within jV j1=6�" for any " > 0 [Bellare and Sudan, 1994].Comment: The same problem as Maximum Independent Set on the complementary graph.Not approximable within jV j1=4�" for any " > 0, unless QNP�co-QR [Bellare and Sudan,1994].Garey and Johnson: GT19GT19. Maximum Independent SetInstance: Graph G = hV;Ei.Solution: An independent set of vertices, i.e. a subset V 0 � V such that no two vertices inV 0 are joined by an edge in E.Measure: Cardinality of the independent set, i.e., jV 0j.Good News: See Maximum Clique.Bad News: See Maximum Clique.Comment: The same problem as Maximum Clique on the complementary graph. Admits aPTAS for planar graphs [Baker, 1994]. Variation in which the degree of G is bounded bya constant B is Apx-complete [Papadimitriou and Yannakakis, 1991] and is approximablewithin (B+3)=5�" if B is even and within (B+3:25)=5�" if B is odd where " is any �xednumber greater than 0 [Berman and F�urer, 1994]. For large values of B it is approximablewithin O(B= log logB) [Halld�orsson and Radhakrishnan, 1994].Garey and Johnson: GT20GT20. Maximum Independent SequenceInstance: Graph G = hV;Ei.Solution: An independent sequence for G, i.e., a sequence v1; : : : ; vm of independent verticesof G such that, for all i < m, a vertex �vi 2 V exists which is connected to vi+1 but is notconnected to any vj for j � i.Measure: Length of the sequence, i.e., m.Bad News: Not approximable within jV j" for some " > 0. [Blundo, De Santis, and Vaccaro,1994].Comment: Transformation from Maximum Clique.GT21. Maximum Induced Subgraph with Property �Instance: Graph G = hV;Ei. The property � must be hereditary, i.e., every subgraph of G0satis�es � whenever G0 satis�es �, and non-trivial, i.e., it is satis�ed for in�nitely manygraphs and false for in�nitely many graphs.



A compendium of NP optimization problems 12Solution: A subset V 0 � V such that the subgraph induced by V 0 has the property �.Measure: Cardinality of the induced subgraph, i.e., jV 0j.Bad News: Not approximable within jV j" for some " > 0 unless P=NP, if � is false for someclique or independent set (for example planar, outerplanar, bipartite, complete bipartite,acyclic, degree-constrained, chordal, interval). Not approximable within 2log0:5�" jV j for any" > 0 unless NP�QP, if � is a non-trivial hereditary graph property (for example compara-bility, permutation, perfect, circular-arc, circle, line graph) [Lund and Yannakakis, 1993b].Comment: The same problem on directed graphs is not approximable within 2log0:5�" jV j for any" > 0 unless NP�QP, if � is a non-trivial hereditary digraph property (for example acyclic,transitive, symmetric, antisymmetric, tournament, degree-constrained, line digraph) [Lundand Yannakakis, 1993b]. Admits aPTAS for planar graphs if � is hereditary and determinedby the connected components, i.e., G0 satis�es � whenever every connected component ofG0 satis�es � [Nishizeki and Chiba, 1988].Garey and Johnson: GT21GT22. Minimum Vertex Deletion to Obtain Subgraph with Property �Instance: Directed or undirected graph G = hV;Ei.Solution: A subset V 0 � V such that the subgraph induced by V � V 0 has the property �.Measure: Cardinality of the set of deleted vertices, i.e., jV 0j.Good News: Approximable within some constant for any hereditary property � with a �nitenumber of minimal forbidden subgraphs (for example transitive digraph, symmetric, anti-symmetric, tournament, line graph, and interval) [Lund and Yannakakis, 1993b]. Approx-imable within some constant for any property � that can be expressed as a universal �rstorder sentence over subsets of edges of the graph [Kolaitis and Thakur, 1991].Bad News: Apx-hard for any non-trivial hereditary property � [Lund and Yannakakis, 1993b].Comment: It is approximable within O(log jV j) if the subgraph has to be bipartite [Garg,Vazirani, and Yannakakis, 1994].GT23. Minimum Edge Deletion to Obtain Subgraph with Property �Instance: Directed or undirected graph G = hV;Ei.Solution: A subset E 0 � E such that the subgraph G = hV;E� E 0i has the property �.Measure: Cardinality of the set of deleted edges, i.e., jE 0j.Good News: Approximable within some constant for any property � that can be expressed asa universal �rst order sentence over subsets of edges of the graph [Kolaitis and Thakur,1991].GT24. Maximum Induced Connected Subgraph with Property �Instance: Graph G = hV;Ei.Solution: A subset V 0 � V such that the subgraph induced by V 0 is connected and has theproperty �.Measure: Cardinality of the induced connected subgraph, i.e., jV 0j.



A compendium of NP optimization problems 13Bad News: Not approximable within jV j1�" for any " > 0 if � is a non-trivial hereditary graphproperty that is satis�ed by all paths and is false for some complete bipartite graph (forexample path, tree, planar, outerplanar, bipartite, chordal, interval) [Lund and Yannakakis,1993b].Comment: NPO PB-complete when � is either path or chordal [Berman and Schnitger, 1992].Garey and Johnson: GT22 and GT23GT25. Minimum Vertex Deletion to Obtain Connected Subgraph withProperty �Instance: Directed or undirected graph G = hV;Ei.Solution: A subset V 0 � V such that the subgraph induced by V � V 0 is connected and hasthe property �.Measure: Cardinality of the set of deleted vertices, i.e., jV 0j.Bad News: Not approximable within jV j1�" for any " > 0 if � is any non-trivial hereditaryproperty determined by the blocks (for example planar, outerplanar, bipartite, chordal,cactus, acyclic graph, acyclic digraph, without cycles of speci�ed length, symmetric digraph,antisymmetric digraph) [Yannakakis, 1979].GT26. Minimum Edge-Deletion BipartizationInstance: Graph G = hV;Ei and a weight function w : E ! N .Solution: An edge-deletion bipartization, i.e., a subset E 0 � E such that G = hV;E �E 0i isbipartite.Measure: The weight of the bipartization, i.e., Pe2E0 w(E).Good News: Approximable within log n [Garg, Vazirani, and Yannakakis, 1993b].Bad News: Apx-hard [Garg, Vazirani, and Yannakakis, 1993b].GT27. Maximum k-Colorable SubgraphInstance: Graph G = hV;Ei.Solution: A subset E 0 � E such that the subgraph G0 = hV;E 0i is k-colorable, i.e., there isa coloring for G0 of cardinality at most k.Measure: Cardinality of the subgraph, i.e., jE 0j.Good News: Approximable within kk�1 [Vitanyi, 1981].Bad News: Apx-complete for k � 2 [Papadimitriou and Yannakakis, 1991].Comment: Equivalent to Maximum Cut for k = 2.GT28. Maximum Edge SubgraphInstance: Graph G = hV;Ei and positive integer k.Solution: A subset V 0 � V such that jV 0j = k.Measure: Cardinality of the edges in the subgraph induced by V 0.Good News: Approximable within O(jV j0:3885) [Kortsarz and Peleg, 1993].



A compendium of NP optimization problems 14GT29. Minimum Edge 2-SpannerInstance: Connected graph G = hV;Ei.Solution: A 2-spanner of G, i.e., a spanning subgraph G0 of G such that, for any pair ofvertices u and v, the shortest path between u and v in G0 is at most twice the shortest pathbetween u and v in G.Measure: The number of edges in G0.Good News: Approximable within O(logn) [Kortsarz and Peleg, 1992].Comment: The variation in which the goal is to minimize the maximum degree in G0 is approx-imable within O(plogn�1=4) where � is the maximum degree in G [Kortsarz and Peleg,1994].GT30. Maximum k-Colorable Induced SubgraphInstance: Graph G = hV;Ei.Solution: A subset V 0 � V such that the induced subgraph G0 = hV 0; E 0i is k-colorable, i.e.,there is a coloring for G0 of cardinality at most k.Measure: Cardinality of the vertex set of the induced subgraph, i.e., jV 0j.Bad News: As hard to approximate as Maximum Independent Set for k � 1 [Panconesiand Ranjan, 1993].Comment: Transformation from Maximum Independent Set. Equivalent to Maximum In-dependent Set for k = 1. Admits a PTAS if G is restricted to be planar [Nishizeki andChiba, 1988].GT31. Minimum Equivalent DigraphInstance: Directed graph G = hV;Ei.Solution: A subset E 0 � E such that, for every ordered pair of vertices u; v 2 V , the graphG0 = hV;E 0i contains a directed path from u to v if and only if G does.Measure: Cardinality of E 0, i.e., jE 0j.Good News: Approximable within about 1.61 [Khuller, Raghavachari, and Young, 1994b].Garey and Johnson: GT33GT32. Minimum Interval Graph CompletionInstance: Graph G = hV;Ei.Solution: An interval graph G0 = hV;E 0i that contains G as a subgraph, i.e., E � E 0. Aninterval graph is a graph whose vertices can be mapped to distinct intervals in the realline such that two vertices in the graph have an edge between them if and only if theircorresponding intervals overlap.Measure: The cardinality of the interval graph, i.e., jE 0jGood News: Approximable within O �log2 jV j� [Ravi, Agrawal, and Klein, 1991].Garey and Johnson: GT35



A compendium of NP optimization problems 15GT33. Minimum Chordal Graph CompletionInstance: Graph G = hV;Ei.Solution: A chordal graph completion, i.e., a superset E 0 containing E such that G0 = hV;E 0iis chordal, that is, for every simple cycle of more than 3 vertices in G0, there is some edgein E 0 that is not involved in the cycle but that joins two vertices in the cycle.Measure: The size of the completion, i.e., jE 0 �Ej.Good News: Approximable within O(jEj1=4 log3:5 jV j) [Klein, Agrawal, Ravi, and Rao, 1990].Comment: Approximable within O(log4 jV j) for graphs with bounded degree [Klein, Agrawal,Ravi, and Rao, 1990].Garey and Johnson: OPEN4GT34. Maximum Constrained Hamiltonian CircuitInstance: Graph G = hV;Ei and subset S � E of the edges.Solution: A Hamiltonian circuit C in G, i.e., a circuit that visits every vertex in V once.Measure: Cardinality of the edges in S that are used in the circuit C, i.e., jS \ Cj.Bad News: Not approximable within jEj" for some " > 0 [Zuckerman, 1993].Comment: Variation in which the graph is directed has the same bad news [Zuckerman, 1993].Garey and Johnson: Similar to GT37 and GT38Vertex OrderingIso- and Other MorphismsGT35. Maximum Common SubgraphInstance: Graphs G1 = hV1; E1i and G2 = hV2; E2i.Solution: A common subgraph, i.e. subsets E10 � E1 and E20 � E2 such that the twosubgraphs G01 = hV1; E10i and G02 = hV2; E20i are isomorphic.Measure: Cardinality of the common subgraph, i.e., jE 0j.Good News: Not harder to approximate than Maximum Clique [Kann, 1992a].Comment: Transformation to Maximum Clique. Variation in which the degree of the graphsG1 and G2 is bounded by the constant B is not harder to approximate than the boundeddegree induced common subgraph problem [Kann, 1992a] and is approximable within B+1.Garey and Johnson: GT49GT36. Maximum Common Induced SubgraphInstance: Graphs G1 = hV1; E1i and G2 = hV2; E2i.Solution: A common induced subgraph, i.e. subsets V10 � V1 and V20 � V2 such that jV10j =jV20j, and the subgraph of G1 induced by V10 and the subgraph of G2 induced by V20 areisomorphic.Measure: Cardinality of the common induced subgraph, i.e., jV10j.Bad News: Not approximable within jV j" for some " > 0 [Kann, 1992a].



A compendium of NP optimization problems 16Comment: Transformations to and from Maximum Clique. Variation in which the degreeof the graphs G1 and G2 is bounded by the constant B is Apx-hard and is approximablewithin B+1. If the induced subgraph is restricted to be connected the problem is NPO PB-complete and not approximable within (jV1j+ jV2j)1�" for any " > 0 [Kann, 1992a].GT37. Maximum Common Embedded Sub-treeInstance: Trees T1 and T2 with labels on the nodes.Solution: A common embedded sub-tree, i.e. a labeled tree T 0 that can be embedded intoboth T1 and T2. An embedding from T 0 to T is an injective function from the nodes of T 0to the nodes of T that preserves labels and ancestorship. Note that since fathership doesnot need to be preserved, T 0 does not need to be an ordinary subtree.Measure: Cardinality of the common embedded sub-tree, i.e., jT 0j.Bad News: Apx-hard [Zhang and Jiang, 1994].Comment: Transformation from Maximum k-Set Packing. Variation in which the problemis to minimize the edit distance between the two trees is also Apx-hard.MiscellaneousGT38. Longest Path with Forbidden PairsInstance: Graph G = hV;Ei and a collection C = fha1; b1i ; : : : ; ham; bmig of pairs of verticesfrom V .Solution: A simple path in G that contains at most one vertex from each pair in C.Measure: Length of the path, i.e., the number of edges in the path.Bad News: NPO PB-complete [Berman and Schnitger, 1992].Comment: Transformation from Longest Computation.Garey and Johnson: GT54GT39. Shortest Path with Forbidden PairsInstance: Graph G = hV;Ei, a collection C = f(a1; b1); : : : ; (am; bm)g of pairs of vertices fromV , an initial vertex s 2 V , and a �nal vertex f 2 V .Solution: A simple path from s to f in G that contains at most one vertex from each pairin C.Measure: Length of the path, i.e., the number of edges in the path.Bad News: NPO PB-complete [Kann, 1993].Comment: Transformation from Shortest Computation.GT40. Minimum Point-To-Point ConnectionInstance: Graph G = hV;Ei, a weight function w : E ! N , a set S = fs1; : : : ; spg of sources,and a set D = fd1; : : : ; dpg of destinations.



A compendium of NP optimization problems 17Solution: A point-to-point connection, i.e., a subset E 0 � E such that each source-destinationpair is connected in E 0.Measure: The weight of the connection, i.e., Pe2E0 w(e).Good News: Approximable within 2� 1=p [Goemans and Williamson, 1992].Network DesignSpanning TreesND1.Minimum k-Spanning TreeInstance: Graph G = hV;Ei, an integer k � n, and a weight function w : E ! N .Solution: A k-spanning tree, i.e., a subtree T of G of at least k nodes.Measure: The weight of the tree, i.e., Pe2T w(e).Good News: Approximable within 3pk [Ravi, Sundaram, Marathe, Rosenkrantz, and Ravi,1994].Comment: The restriction to points in the Euclidean plane is approximable within O(log k)[Garg and Hochbaum, 1994]. The analogous diameter and communication-cost k-spanningtree problems are not in Apx [Ravi, Sundaram, Marathe, Rosenkrantz, and Ravi, 1994].ND2.Minimum Degree Spanning TreeInstance: Graph G = hV;Ei.Solution: A spanning tree for G.Measure: The maximum degree of the spanning graph.Good News: Approximable with an absolute error guarantee of 1 [F�urer and Raghavachari,1992].Garey and Johnson: ND1ND3.Minimum Weighted 3-Degree Spanning TreeInstance: Graph G = hV;Ei and a weight function w : E ! N .Solution: A spanning tree T for G in which no vertex has degree larger than 3.Measure: The weight of the spanning tree, i.e., P(u;v)2T w(u; v).Good News: Approximable within 3/2 [Khuller, Raghavachari, and Young, 1994a]Comment: The 4-degree spanning tree problem is approximable within 5/4. The 5-degree prob-lem is polynomial-time solvable.ND4.Minimum Steiner TreeInstance: Complete graph G = hV;Ei, edge weights s : E ! N and a subset S � V ofrequired vertices.Solution: A Steiner tree, i.e., a subtree of G that includes all the vertices in S.Measure: The sum of the weights of the edges in the subtree.Good News: Approximable within 16=9 [Berman and Ramaiyer, 1992].



A compendium of NP optimization problems 18Bad News: Apx-complete [Bern and Plassmann, 1989].Comment: Variation in which the weights are only 1 or 2 is still Apx-complete, but ap-proximable within 4=3 [Bern and Plassmann, 1989]. When all weights lie in an interval[�; �(1+ 1=k)] the problem is approximable within 1+ 1=ek+O(1=k2) [Halld�orsson, Ueno,Nakao, and Kajitani, 1992]. A prize-collecting variation in which a penalty is associated toeach vertex and the goal is to minimize the cost of the tree and the vertices in S not in thetree is approximable within 2� 1=(jV j� 1) [Goemans and Williamson, 1992]. The variationin which an integer k � jSj is given in input and at least k vertices of S must be includedin the subtree is approximable within 6pk [Ravi, Sundaram, Marathe, Rosenkrantz, andRavi, 1994]. Variation in which there are groups of required vertices and each group must betouched by the Steiner tree is approximable within g � 1, where g is the number of groups[Ihler, 1991]. The constrained variation in which the input is extended with a positive inte-ger k and a subset T of E, and the problem is to �nd the Steiner tree of weight at most kthat contains the largest number of edges from T , is not approximable within jEj" for some" > 0 [Zuckerman, 1993]. If the solution is allowed to be a forest with at most q trees, for agiven constant q, the problem is approximable within 2(1� 1=(jSj � q + 1)) [Ravi, 1994].Garey and Johnson: ND12ND5.Minimum Geometric Steiner TreeInstance: Set P � Z � Z of points in the plane.Solution: A �nite set of Steiner points, i.e., Q � Z � Z.Measure: The total weight of the minimum spanning tree for the vertex set P [Q, where theweight of an edge h(x1; y1); (x2; y2)i is the discretized Euclidean length�q(x1 � x2)2 + (y1 � y2)2� :Good News: Approximable within 2p3 � " for some " > 0 [Du, Zhang, and Feng, 1991].Comment: If the rectilinear metric j h(x1; y1); (x2; y2)i j = jx1�x2j+jy1�y2j is used the problemadmits a PTAS [Berman and Ramaiyer, 1992]. Variation of the rectilinear metric problemin which there are groups of required vertices and each group must be touched by the Steinertree is Apx-hard, even if the groups are de�ned by non-overlapping intervals on one of twoparallel lines [Ihler, 1991].Garey and Johnson: ND13ND6.Minimum Generalized Steiner NetworkInstance: Graph G = hV;Ei, a weigh function w : E ! N , a capacity function c : E ! N ,and a requirement function r : V � V ! N .Solution: A Steiner network over G that satis�es all the requirements and obeys all thecapacities, i.e., a function f : E ! N such that, for each edge e, f(e) � c(e) and, for anypair of nodes i and j, the number of edge-disjoint paths between i and j is at least r(i; j)where, for each edge e, f(e) copies of e are available.Measure: The cost of the network, i.e., Pe2E w(e)f(e).Good News: Approximable within 2 �H(R) where R is the maximum requirement and, for anyn, H(n) =Pni=1 1i [Goemans, Goldberg, Plotkin, Shmoys, Tardos, and Williamson, 1994].



A compendium of NP optimization problems 19Comment: When all the requirements are equal, it is approximable within 2 [Khuller andVishkin, 1994]. The variation in which there are no capacity constraints on the edges isapproximable within 2 � H(jV j) [Aggarwal and Garg, 1994].ND7.Minimum Routing Tree CongestionInstance: Graph G = hV;Ei and a weight function w : E ! N .Solution: A routing tree T for G, i.e., a tree T in which each internal vertex has degree 3and the leaves correspond to vertices of G.Measure: The congestion of the routing tree, i.e., the maximum, for any edge e, ofX(u;v)2E;u2S;v 62Sw(u; v)where S is one of the two connected components obtained by deleting e from T .Good News: Approximable within log n [Khuller, Raghavachari, and Young, 1993].Comment: The algorithm extends to the case when the routing tree is allowed to have verticesof higher degree. If T is required to be a spanning tree and G is complete, the problem issolvable in polynomial time.ND8.Minimum Biconnected Spanning SubgraphInstance: Graph G = hV;Ei.Solution: A biconnected spanning subgraph G0 = hV;E 0i for G (connectivity refers to bothedge and vertex connectivity).Measure: The cardinality of the spanning subgraph, i.e., jE 0j.Good News: Approximable within 5/4 for edge connectivity and within 3/2 for vertex connec-tivity [Garg, Santosh, and Singla, 1993].Comment: Variation in which each edge has a nonnegative weight and the objective is tominimize the total weight of the spanning subgraph is approximable within 2. [Khuller andVishkin, 1994].Cuts and ConnectivityND9.Maximum CutInstance: Graph G = hV;Ei.Solution: A partition of V into disjoint sets V1 and V2.Measure: The cardinality of the cut, i.e., the number of edges with one end point in V1 andone endpoint in V2.Good News: Approximable within 1:14 [Goemans and Williamson, 1994].Bad News: Apx-complete [Papadimitriou and Yannakakis, 1991].Comment: Transformation fromMaximum Not-All-Equal 3-Satisfiability. Variation inwhich the degree of G is bounded by a constant B is still Apx-complete [Papadimitriouand Yannakakis, 1991]. The weighted problem, where every edge is assigned a nonnegativeweight and the objective is to maximize the total weight of the edges in the cut is alsoapproximable within 1:14 [Goemans and Williamson, 1994].Garey and Johnson: ND16



A compendium of NP optimization problems 20ND10. Maximum Directed CutInstance: Directed graph G = hV;Ai.Solution: A partition of V into disjoint sets V1 and V2.Measure: The cardinality of the cut, i.e., the number of arcs with one end point in V1 andone endpoint in V2.Good News: Approximable within 1:26 [Goemans and Williamson, 1994].Bad News: Apx-complete [Papadimitriou and Yannakakis, 1991].Comment: The weighted problem, where every arc is assigned a nonnegative weight and theobjective is to maximize the total weight of the arcs in the cut is also approximable within1:26 [Goemans and Williamson, 1994].ND11. Maximum k-CutInstance: Graph G = hV;Ei, a weight function w : E ! N , and an integer k 2 [2::jV j].Solution: A partition of V into k disjoint sets F = fC1; C2; : : : ; Ckg.Measure: The sum of the weight of the edges between the disjoint sets, i.e.,k�1Xi=1 kXj=i+1 Xv12Civ22Cj w(fv1; v2g):Good News: Approximable within k [Sahni and Gonzalez, 1976].Bad News: Apx-complete.Comment: The constrained variation in which the input is extended with a positive integer W ,a vertex v0 2 V and a subset S of V , and the problem is to �nd the 2-cut of weight at leastW with the largest number of vertices from S on the same side as v0, is not approximablewithin jV j" for some " > 0 [Zuckerman, 1993].ND12. Minimum Network Inhibition on Planar GraphsInstance: Planar graph G = hV;Ei, capacity function c : E ! N , destruction cost functiond : E ! N , and budget B.Solution: An attack strategy to the network, i.e., a function � : E ! [0; 1] such thatPe2E �(e)d(e) � B.Measure: The capability left in the damaged network, i.e., the minimum cut in G with ca-pacity c0 de�ned as c0(e) = �(e)c(e).Good News: Admits an FPTAS [Phillips, 1993].ND13. Minimum k-CutInstance: Graph G = hV;Ei, a weight function w : E ! N , and an integer k 2 [2::jV j].Solution: A partition of V into k disjoint sets F = fC1; C2; : : : ; Ckg.



A compendium of NP optimization problems 21Measure: The sum of the weight of the edges between the disjoint sets, i.e.,k�1Xi=1 kXj=i+1 Xv12Civ22Cj w(fv1; v2g):Good News: Approximable within 2� 2k [Saran and Vazirani, 1991].Comment: Solvable in polynomial time O(jV jk2) for �xed k [Goldschmidt and Hochbaum,1988]. If the sets in the partition are restricted to be of equal size, the problem is approx-imable within jV j � (k � 1)=k [Saran and Vazirani, 1991].ND14. Minimum Vertex k-CutInstance: Graph G = hV;Ei, a set S = fs1; t1; : : : ; sk; tkg of special vertices, and a weightfunction w : V � S ! N , and an integer k.Solution: A vertex k-cut, i.e., a subset C � V � S of vertices such that their deletion fromG disconnects each si from ti for 1 � i � k.Measure: The sum of the weight of the vertices in the cut, i.e., Xv2C w(v).Good News: Approximable within O(log jV j) [Garg, Vazirani, and Yannakakis, 1994].ND15. Minimum Multiway CutInstance: A graph G = hV;Ei, a set S � V of terminals, and a weight function w : E ! N .Solution: A multiway cut, i.e., a set E 0 � E such that the removal of E 0 from E disconnectseach terminal from all the others.Measure: The weight of the cut, i.e., Pe2E0 w(e).Good News: Approximable within 2 � 2jSj [Dahlhaus, Johnson, Papadimitriou, Seymour, andYannakakis, 1992].Bad News: Apx-complete [Dahlhaus, Johnson, Papadimitriou, Seymour, and Yannakakis, 1992].Comment: It remains Apx-complete even if jSj � 3 is �xed. For jSj = 4 and jSj = 8 it isapproximable within 4=3 and 12=7, respectively. In the case of directed graphs the problemis approximable within O(log jSj) and Apx-hard [Garg, Vazirani, and Yannakakis, 1994].The vertex deletion variation is approximable within 2� 2=jSj and is Apx-complete [Garg,Vazirani, and Yannakakis, 1994]. If S is formed by pairs of vertices si and ti and we require todisconnect only these pairs, the problem is approximable within O(log jSj) both in the caseof edge deletion [Garg, Vazirani, and Yannakakis, 1993b] and in the case of vertex deletion[Garg, Vazirani, and Yannakakis, 1994]. It is Apx-complete and approximable within 2 fortrees of height one and unit edge weight.ND16. Minimum Ratio-CutInstance: Graph G = hV;Ei.Solution: A partition of V into disjoint sets V1 and V2.



A compendium of NP optimization problems 22Measure: The cardinality of the cut divided by the product of the cardinalities of the disjointsets, i.e., c=(jV1j � jV2j) where c is the number of edges with one end point in V1 and oneendpoint in V2.Good News: Approximable within O(log jV j) [Leighton and Rao, 1988].ND17. Minimum Quotient CutInstance: Graph G = hV;Ei, a vertex-weight function c : V ! N , and an edge-cost functionw : E ! N .Solution: A cut C, i.e., a subsets C � V .Measure: The quotient of the cut, i.e., c(C)minfw(C); w(C)gwhere c(C) denotes the sum of the costs of the edges (u; v) such that either u 2 C and v 62 Cor u 62 C and v 2 C and, for any subset V 0 � V , w(V 0) denotes the sum of the weights ofthe vertices in V 0.Good News: Approximable within O(log jV j) [Leighton and Rao, 1988].Comment: Admits a PTAS for planar graphs [Park and Phillips, 1993].ND18. Minimum Biconnectivity AugmentationInstance: Graph G = hV;Ei and a symmetric weight function w : V � V ! N .Solution: A connectivity augmenting set E 0 for G, i.e., a set E 0 of unordered pairs of verticesfrom V such that G0 = hV;E [E 0i is biconnected.Measure: The weight of the augmenting set, i.e., P(u;v)2E0 w(u; v).Good News: Approximable within 2 [Khuller and Thurimella, 1993].Comment: If the weight function satis�es the triangle inequality, the problem is approximablewithin 3/2 [Frederickson and J�aj�a, 1981].Routing ProblemsND19. Traveling Salesperson ProblemInstance: Set C of m cities, distances d(ci; cj) 2 N for each pair of cities ci; cj 2 C.Solution: A tour of C, i.e., a permutation � : [1::m]! [1::m].Measure: The length of the tour, i.e., d �fc�(m); c�(1)g�+ m�1Xi=1 d �fc�(i); c�(i+1)g�.Bad News: NPO-complete [Orponen and Mannila, 1987].Garey and Johnson: ND22



A compendium of NP optimization problems 23ND20. Metric Traveling Salesperson ProblemInstance: Set C of m cities, distances d(ci; cj) 2 N satisfying the triangle inequality.Solution: A tour of C, i.e., a permutation � : [1::m]! [1::m].Measure: The length of the tour.Good News: Approximable within 3=2 [Christo�des, 1976].Bad News: Apx-complete [Papadimitriou and Yannakakis, 1993].Comment: Variation in which the distances are only 1 or 2 is still Apx-complete, but approx-imable within 7=6 [Papadimitriou and Yannakakis, 1993]. A prize-collecting variation inwhich a penalty is associated to each vertex and the goal is to minimize the cost of thetour and the vertices not in the tour is approximable within 2� 1=(jV j � 1) [Goemans andWilliamson, 1992].Garey and Johnson: ND23ND21. Metric Traveling k-Salesperson ProblemInstance: Set C ofm cities, an initial city s 2 C, distances d(ci; cj) 2 N satisfying the triangleinequality.Solution: A collection of k subtours, each containing the initial city s, such that each city isin at least one subtour.Measure: The maximum length of the k subtours.Good News: Approximable within 1 � 1=k plus the performance ratio of the Metric Trav-eling Salesperson Problem, i.e., within 52 � 1k [Frederickson, Hecht, and Kim, 1978].ND22. Metric Bottleneck Wandering Salesperson ProblemInstance: Set C of m cities, an initial city s 2 C, a �nal city f 2 C, distances d(ci; cj) 2 Nsatisfying the triangle inequality.Solution: A simple path from the initial city s to the �nal city f passing through all citiesin C, i.e., a permutation � : [1::m]! [1::m] such that v�(1) = s and v�(m) = f .Measure: The length of the largest distance in the path, i.e.,maxi2[1::m�1]d �fc�(i); c�(i+1)g� :Good News: Approximable within 2 [Hochbaum and Shmoys, 1986].Bad News: Not approximable within 2� " for any " > 0 [Hochbaum and Shmoys, 1986].Comment: The same positive and negative results hold even if X is a set of point in d-dimensional space with the L1 or L1 metric. If the L2 metric is used then the upperbound is 1.969 [Feder and Greene, 1988]. Similar results hold for the variation in which it isrequired to minimize the distance between any point in a cluster and a cluster center whichcan be any point in the space [Feder and Greene, 1988].Garey and Johnson: ND24ND23. Minimum Chinese Postman for Mixed GraphsInstance: Mixed graph G = hV;A;Ei, length l(e) 2 N for each e 2 A [E.



A compendium of NP optimization problems 24Solution: A cycle in G (possibly containing repeated vertices) that includes each directedand undirected edge at least once, traversing directed edges only in the speci�ed direction.Measure: The total length of the cycle.Good News: Approximable within 5=3 [Frederickson, 1979].Comment: Approximable within 3=2 for planar graphs [Frederickson, 1979].Garey and Johnson: ND25ND24. Minimum k-Chinese Postman ProblemInstance: Multigraph G = hV;Ei, initial vertex s 2 V , length l(e) 2 N for each e 2 E.Solution: A collection of k cycles, each containing the initial vertex s, that collectively tra-verse every edge in the graph at least once.Measure: The maximum length of the k cycles.Good News: Approximable within 2� 1=k [Frederickson, Hecht, and Kim, 1978].ND25. Minimum Stacker Crane ProblemInstance: Mixed graph G = hV;A;Ei, length l(e) 2 N for each e 2 A[E such that for everyarc there is a parallel edge of no greater length.Solution: A cycle in G (possibly containing repeated vertices) that includes each directededge in A at least once, traversing such edges only in the speci�ed direction.Measure: The total length of the cycle.Good News: Approximable within 9=5 [Frederickson, Hecht, and Kim, 1978].Garey and Johnson: ND26ND26. Minimum k-Stacker Crane ProblemInstance: Mixed graph G = hV;A;Ei, initial vertex s 2 V , length l(e) 2 N for each e 2 A[E,Solution: A collection of k cycles, each containing the initial vertex s, that collectively tra-verse each directed edge in A at least once.Measure: The maximum length of the k cycles.Good News: Approximable within 14=5� 1=k [Frederickson, Hecht, and Kim, 1978].ND27. Minimum General RoutingInstance: Graph G = hV;Ei, length l(e) 2 N for each e 2 E, subset E 0 � E, subset V 0 � V .Solution: A cycle in G that visits each vertex in V 0 exactly once and traverses each edge inE 0.Measure: The total length of the cycle.Good News: Approximable within 3=2 [Jansen, 1992].Comment: The special case where V 0 = V is called the rural postman problem.Garey and Johnson: Generalization of ND27



A compendium of NP optimization problems 25ND28. Longest PathInstance: Graph G = hV;Ei.Solution: Simple path in G, i.e., a sequence of distinct vertices v1; v2; : : : ; vm such that, forany 1 � i � m� 1, (vi; vi+1) 2 E.Measure: Length of the path, i.e., the number of edges in the path.Bad News: Not in Apx [Karger, Motwani, and Ramkumar, 1993].Comment: Transformation from Min TSP(1,2): Apx-hard and self-improvable. Not approx-imable within 2log1�" jV j for any " > 0 unless NP�QP [Karger, Motwani, and Ramkumar,1993]. Approximable within O(jV j= log jV j) for 1-tough graphs, i.e., graphs such that, for anysubset V 0 � V , the induced graph G = hV � V 0; Ei has at most jV 0j connected components(observe that Hamiltonian graphs are 1-tough). If a polynomial-time algorithm exists withrelative error jV j=(jV j � jV j") then P = NP. Similar results hold for a chromatic version ofthe problem [Bellare, 1993].Garey and Johnson: ND29ND29. Shortest Weight-Constrained PathInstance: Graph G = hV;Ei, length function l : E ! N , weight function w : E ! N ,speci�ed vertices s; t 2 V , and integer W .Solution: A simple path in G with total weight at most W , i.e., a sequence of distinctvertices s = v1; v2; : : : ; vm = t such that, for any 1 � i � m � 1, (vi; vi+1) 2 E andPm1i=1 w(vi; vi+1) � W .Measure: The length of the path, i.e., Pm1i=1 l(vi; vi+1).Good News: Admits an FPTAS [Phillips, 1993].ND30. Minimum Rectilinear Global RoutingInstance: m� n-array of gates, collection C of nets, i.e., 3-sets of gates.Solution: Wires following rectilinear paths connecting the gates in each net.Measure: The largest number of wires in the same channel between two gates in the array.Good News: Admits a PTAS1 if opt 2 !(ln(mn)) [Raghavan and Thompson, 1991].Comment: Approximable within 1 + (e� 1)p2 ln(mn)=opt if opt > 2 ln(mn). In Apx if opt 2
(ln(mn)). The approximation algorithm will work also for nets with more than three gates,but the running time is exponential in the number of terminals.Flow ProblemsND31. Maximum k-Multicommodity FlowInstance: Graph G = hV;Ei, edge capacities u : E ! Z+, a set of k commodities C =fhs1; t1; d1i ; : : : ; hsk; tk; dkig where si 2 V speci�es the source, ti 2 V the sink, and di 2 Z+the demand for each commodity.Solution: The 
ow of each commodity through each edge in E.



A compendium of NP optimization problems 26Measure: The proportion of the demand of the 
ow of the commodity that has the smallestproportion, i.e., min1�i�k the 
ow of the commodity (si; ti; di) from s to tdi :Good News: Admits an FPTAS [Klein, Agrawal, Ravi, and Rao, 1990].Comment: Approximable within 1 + " in time O �(jEjjV j log3 jV jk2 log k)="2� for each " > 0[Leighton, Makedon, Plotkin, Stein, Tardos, and Tragoudas, 1991].ND32. Maximum Integral k-Multicommodity Flow on TreesInstance: A tree T = hV;Ei, a capacity function c : E ! N and k pairs of vertices (si; ti).Solution: A 
ow fi for each pair (si; ti) with fi 2 N such that, for each e 2 E,Pki=1 fiqi(e) �c(e) where qi(e) = 1 if e belongs to the unique path from si and ti, 0 otherwise.Measure: The sum of the 
ows, i.e., Pki=1 fi.Good News: Approximable within 2 [Garg, Vazirani, and Yannakakis, 1993b].Bad News: Apx-complete [Garg, Vazirani, and Yannakakis, 1993b].Comment: Transformation from Maximum 3-Dimensional Matching. It remains Apx-complete even if the edge capacities are 1 and 2.ND33. Maximum Priority FlowInstance: Directed graph G = hV;Ei, sources s1; : : : ; sk 2 V , sinks t1; : : : ; tk 2 V , a capacityfunction c : E ! R, a bound function b : V ! R, and, for any vertex v, a partial order onthe set of edges leaving v.Solution: A priority 
ow f , i.e., a function f : E ! R such that (a) for any edge e, f(e) �c(e), (b) for any vertex v 2 V � fs1; : : : ; sk; t1; : : : ; tkg, the 
ow is conserved at v, (c) forany vertex v, the 
ow leaving v is at most b(v), and (d) for any vertex v and for any pairof edges e1; e2 leaving v, if f(e1) < c(e1) and e1 is less than e2, then f(e2) = 0.Measure: The amount of 
ow entering sink t1, i.e., P(x;t1)2E f(x; t1).Bad News: Not approximable within 2�(log" n) for any " unless NP � Dtime(nd log1=" n) [Bellare,1993].Comment: Does not admit a PTAS.MiscellaneousND34. Minimum k-CenterInstance: Complete graph G = hV;Ei and distances d(vi; vj) 2 N satisfying the triangleinequality.Solution: A k-center set, i.e., a subset C � V with jCj = k.Measure: The maximum distance from a vertex to its nearest center, i.e., maxv2V minc2C d(v; c).Good News: Approximable within 2 [Hochbaum and Shmoys, 1986].Bad News: Not approximable within 2� " for any " > 0 [Hochbaum and Shmoys, 1986].



A compendium of NP optimization problems 27Comment: Variation in which the number of vertices each center can serve is bounded by aconstant L, is approximable within 10 [Bar-Ilan and Peleg, 1991]. The converse problem,where the maximum distance from each vertex to its center is given and the number ofcenters is to be minimized, is approximable within logL+1 [Bar-Ilan and Peleg, 1991]. Therectilinear k-center problem, where the vertices lie in the plane and the rectilinear metricis used, is approximable within 2, but is not approximable within 2� " for any " > 0 [Ko,Lee, and Chang, 1990].Garey and Johnson: Similar to ND50ND35. Minimum k-SupplierInstance: Complete graph G = hVC [ VS; Ei and distances d(vi; vj) 2 N satisfying the trian-gle inequality.Solution: A k-supplier set, i.e., a subset S � VS with jSj = k.Measure: The maximum distance from a customer vertex to its nearest supplier, i.e.,maxv2VC mins2S d(v; s).Good News: Approximable within 3 [Hochbaum and Shmoys, 1986].Bad News: Not approximable within 3� " for any " > 0 [Hochbaum and Shmoys, 1986].ND36. Minimum k-MedianInstance: Graph G = hV;Ei and length function l : E ! N .Solution: A k-median set, i.e., a subset V 0 � V with jV 0j = k.Measure: The sum of the distances from each vertex to its nearest median, i.e.,Xv2V d(v)where d(v) is the length of the shortest path from v to the closest vertex in V 0.Bad News: Not in Apx [Lin and Vitter, 1992].Comment: The problem is in Apx if a small violation of the cardinality of the median set isallowed.Garey and Johnson: ND51ND37. Maximum k-Facility DispersionInstance: Complete graph G = hV;Ei and distances d(vi; vj) 2 N satisfying the triangleinequality.Solution: A set of k facilities, i.e., a subset F � V with jF j = k.Measure: The minimum distance between two facilities, i.e., minf1;f22F d(f1; f2).Good News: Approximable within 2 [Ravi, Rosenkrantz, and Tayi, 1991].Bad News: Not approximable within 2� " for any " > 0 [Ravi, Rosenkrantz, and Tayi, 1991].Comment: Variation in which the measure is the average distance between any pair of facilitiesis approximable within 4 [Ravi, Rosenkrantz, and Tayi, 1991].



A compendium of NP optimization problems 28ND38. Minimum k-Switching NetworkInstance: Complete graph G = hV;Ei and distances d(vi; vj) 2 N satisfying the triangleinequality.Solution: A partition F = fA1; A2; : : : ; Ak; B1; B2; : : : ; Bkg of V .Measure: Maximum distance between vertices in di�erent sets with the same index, i.e.,maxi2[1::k] maxv12Aiv22Bi d(v1; v2):Good News: Approximable within 3 [Hochbaum and Shmoys, 1986].Bad News: Not approximable within 2� " for any " > 0 [Hochbaum and Shmoys, 1986].ND39. Minimum Bend NumberInstance: Directed planar graph G = hV;Ei.Solution: A planar orthogonal drawing of G, i.e., a drawing mapping vertices of G into pointsin the plane and edges of G into chains of horizontal and vertical segments such that no twoedges cross.Measure: Number of bends in the drawing.Bad News: Not approximable within 1 + jV j1�"opt(G) for any " > 0 [Garg and Tamassia, 1994].ND40. Minimum Length TriangulationInstance: Collection C = f(ai; bi) : 1 � i � ng of pairs of integers giving the coordinates of npoints in the plane.Solution: A triangulation of the set of points represented by C, i.e., a collection E of non-intersecting line segments each joining two points in C that divides the interior of the convexhull into triangular regions.Measure: The discrete-Euclidean length of the triangulation, i.e.,2666 X((ai;bi);(aj;bj))2Eq(ai � aj)2 + (bi � bj)23777 :Good News: Approximable within O(logn) [Clarkson, 1991].Comment: Note that the problem is not known to be NP-complete. The Steiner variation inwhich the point set of E must be a superset of C is approximable within `a number in thehundreds' [Eppstein, 1992].Garey and Johnson: OPEN12ND41. Minimum Separating SubdivisionInstance: A family of disjoint polygons P1; : : : ; Pk.Solution: A separating subdivision, i.e., a family of k polygons R1; : : : ; Rk with pairwisedisjoint boundaries such that, for each i, Pi � Ri.Measure: The size of the subdivision, i.e., the total number of edges of the polygonsR1; : : : ; Rk.



A compendium of NP optimization problems 29Good News: Approximable within 7 [Mitchell and Suri, 1992].Comment: The problem of separating a family of three-dimensional convex polyhedra is ap-proximable within O(logn) while the problem of separating two d-dimensional convex poly-hedra is approximable within O(d logn) where n denotes the number of facets in the inputfamily.Sets and PartitionsCovering, Hitting, and SplittingSP1.Maximum 3-Dimensional MatchingInstance: Set T � X � Y � Z, where X , Y , and Z are disjoint.Solution: A matching for T , i.e., a subset M � T such that no elements in M agree in anycoordinate.Measure: Cardinality of the matching, i.e., jM j.Good News: Approximable within 2 [Halld�orsson, 1994].Bad News: Apx-complete [Kann, 1991].Comment: Transformation from Maximum 3-Satisfiability. Admits a PTAS for `planar'instances [Nishizeki and Chiba, 1988]. Variation in which the number of occurrences of anyelement in X , Y or Z is bounded by a constant B is Apx-complete [Kann, 1991]. Thegeneralized Maximum k-Dimensional Matching problem is approximable within (k + 1)=2[Halld�orsson, 1994]. The constrained variation in which the input is extended with a subsetS of T , and the problem is to �nd the 3-dimensional matching that contains the largestnumber of elements from S, is not approximable within jT j" for some " > 0 [Zuckerman,1993].Garey and Johnson: SP1SP2.Maximum Set PackingInstance: Collection C of �nite sets.Solution: A set packing, i.e., a collection of disjoint sets C 0 � C.Measure: Cardinality of the set packing, i.e., jC 0j.Bad News: Not approximable within jCj" for some " > 0 [Arora, Lund, Motwani, Sudan, andSzegedy, 1992].Comment: Equivalent to Maximum Clique under PTAS-reduction [Ausiello, D'Atri, andProtasi, 1980]. The problem Maximum k-Set Packing, the variation in which the cardi-nality of all sets in C are bounded from above by a constant k � 3, is Apx-complete [Kann,1991], and is approximable within (k + 1)=2 [Halld�orsson, 1994]. It is still Apx-completewhen the number of occurrences in C of any element is bounded by a constant B � 3.Garey and Johnson: SP3SP3.Maximum Set SplittingInstance: Collection C of subsets of a �nite set S.



A compendium of NP optimization problems 30Solution: A partition of S into two disjoint subsets S1 and S2.Measure: Cardinality of the subsets in C that are not entirely contained in either S1 or S2.Bad News: Apx-hard [Petrank, 1993].Comment: Transformation from Maximum Not-All-Equal 3-Satisfiability.Garey and Johnson: SP4SP4.Minimum Set CoverInstance: Collection C of subsets of a �nite set S.Solution: A set cover for S, i.e., a subset C 0 � C such that every element in S belongs to atleast one member of C 0.Measure: Cardinality of the set cover, i.e., jC 0j.Good News: Approximable within 1 + ln jSj [Johnson, 1974].Bad News: Not approximable within c log2 jSj for any c < 1=4, unless NP�QP [Lund andYannakakis, 1993a].Comment: Not approximable within c log2 jSj for any c < 1=8, unlessNP� Dtime�jSjlog log jSj�[Bellare, Goldwasser, Lund, and Russell, 1993]. Equivalent to Minimum Dominating Setunder L-reduction and equivalent toMinimum Hitting Set [Ausiello, D'Atri, and Protasi,1980]. The above nonapproximability results are still true for an exact cover, i.e., if the setsin the set cover are restricted to be disjoint. The problem Minimum k-Set Cover, thevariation in which the cardinality of all sets in C are bounded from above by a constantk is Apx-complete and is approximable within Pki=1 1i [Johnson, 1974]. It is still Apx-complete when the number of occurrences in C of any element is bounded by a constant.It is approximable within 2 if the set system (S;C) is tree representable [Garg, Vazirani,and Yannakakis, 1993b]. The constrained variation in which the input is extended with apositive integer k and a subset T of C, and the problem is to �nd the set cover of size k thatcontains the largest number of subsets from T , is not approximable within jCj" for some" > 0 [Zuckerman, 1993].Garey and Johnson: SP5SP5.Minimum Exact CoverInstance: Collection C of subsets of a �nite set S.Solution: A set cover for S, i.e., a subset C 0 � C such that every element in S belongs to atleast one member of C 0.Measure: Sum of cardinalities of the subsets in the set cover, i.e., Xc2C0 jcj.Good News: Approximable within 1 + ln jSj [Johnson, 1974].Bad News: Not approximable within c log2 jSj for any c < 1=4 unless NP�QP [Lund andYannakakis, 1993a].Comment: Not approximable within c log2 jSj for any c < 1=8, unlessNP� Dtime�jSjlog log jSj�[Bellare, Goldwasser, Lund, and Russell, 1993]. The only di�erence between Minimum SetCover and Minimum Exact Cover is the de�nition of the objective function. Transfor-mation from Minimum Set Cover [Lund and Yannakakis, 1993a].



A compendium of NP optimization problems 31SP6.Minimum Test CollectionInstance: Collection C of subsets of a �nite set S.Solution: A subcollection C 0 � C such that for each pair of distinct elements x1; x2 2 Sthere is some set c 2 C 0 that contains exactly one of x1 and x2.Measure: Cardinality of the subcollection, i.e., jC 0j.Good News: Approximable within 1 + 2 ln jSj.Comment: Transformation to Minimum Set Cover [Kann, 1992b]. Observe that every solu-tion has cardinality at least dlog jSje.Garey and Johnson: SP6SP7.Minimum Hitting SetInstance: Collection C of subsets of a �nite set S.Solution: A hitting set for C, i.e., a subset S 0 � S such that S 0 contains at least one elementfrom each subset in C.Measure: Cardinality of the hitting set, i.e., jC 0j.Good News: Approximable within 1 + ln jSj.Bad News: Not approximable within c log2 jSj for any c < 1=4 unless NP�QP [Lund andYannakakis, 1993a].Comment: Not approximable within c log2 jSj for any c < 1=8, unlessNP� Dtime�jSjlog log jSj�[Bellare, Goldwasser, Lund, and Russell, 1993]. The constrained variation in which the inputis extended with a subset T of S, and the problem is to �nd the hitting set that containsthe largest number of elements from T , is not approximable within jSj" for some " > 0[Zuckerman, 1993].Garey and Johnson: SP8Weighted Set ProblemsSP8.Maximum Constrained PartitionInstance: Finite set A and a size s(a) 2 Z+ for each a 2 A, element a0 2 A, and a subsetS � A.Solution: A partition of A, i.e., a subset A0 � A such that Pa2A0 s(a) =Pa2A�A0 s(a).Measure: Number of elements from S on the same side of the partition as a0.Bad News: Not approximable within jAj" for some " > 0 [Zuckerman, 1993].Garey and Johnson: Similar to SP12SP9.Minimum 3-Dimensional AssignmentInstance: Three sets X , Y , and W and a cost function c : X � Y �W ! N .Solution: An assignmentA, i.e., a subset A � X�Y �W such that every element ofX[Y [Wbelongs to exactly one triple in A.Measure: The cost of the assignment, i.e., P(x;y;w)2A c(x; y; w).



A compendium of NP optimization problems 32Bad News: Not in Apx [Crama and Spieksma, 1992].Comment: The negative result holds even if c is either de�ned as c(x; y; w) = d(x; y)+d(x;w)+d(y; w) or de�ned as c(x; y; w) = minfd(x; y) + d(x; w); d(x; y)+ d(y; w); d(x;w)+ d(y; w)gwhere d is any distance function. In these cases, however, the problem is approximablewithin 4=3 if d satis�es the triangle inequality. Similar results hold for the k-dimensionalproblem [Bandelt, Crama, and Spieksma, 1991].Garey and Johnson: Weighted version of SP2SP10.Maximum Capacity RepresentativesInstance: Disjoint sets S1; : : : ; Sm and, for any i 6= j, x 2 Si, and y 2 S � j, a nonnegativecapacity c(x; y).Solution: A system of representatives T , i.e., a set T such that, for any i, jT \ Sij = 1.Measure: The capacity of the system of representatives, i.e., Px;y2T c(x; y).Bad News: Not approximable within 2�(log" n) for any " unless NP � Dtime(nd log1=" n) [Bellare,1993].Comment: Does not admit a PTAS.Storage and RetrievalData StorageSR1. Minimum Bin PackingInstance: Finite set U of items, a size s(u) 2 Z+ for each u 2 U , and a positive integer bincapacity B.Solution: A partition of U into disjoint sets U1; U2; : : : ; Um such that the sum of the a par-tition of U such that the sum of the items in each Ui is B or less.Measure: The number of used bins, i.e., the number of disjoint sets, m.Good News: Approximable within 11=9 [Johnson, Demers, Ullman, Garey, and Graham, 1974].Bad News: Not approximable within 3=2.Comment: Admits an FPTAS1, that is, is approximable within 1 + " in time polynomial in1=", where " = O(log2(opt)=opt) [Karmarkar and Karp, 1982]. Not Apx-complete, but it isNP-complete to decide whether two bins are enough. A survey of approximation algorithmsfor Minimum Bin Packing is found in [Co�man, Garey, and Johnson, 1984]. If a partialorder on U is de�ned and we require the bin packing to obey this order, then the problemis approximable within 2 [Wee and Magazine, 1982], and is not in FPTAS1 [Queyranne,1985].Garey and Johnson: SR1SR2. Minimum Height Three Dimensional PackingInstance: Set of boxes B = f(xi; yi; zi)g with positive integer sizes (width xi, depth yi andheight zi), a large box with positive integer sizes width w, depth d and in�nite height.Solution: A packing P of the boxes B in the large box. The boxes must be packed orthogo-nally and oriented.



A compendium of NP optimization problems 33Measure: Height of the packing P .Good News: Approximable within 3:25 [Li and Cheng, 1990].Comment: The two-dimensional variation in which a set of rectangles of dimensions boundedbelow by a constant, is to be packed into a strip of width 1 admits a PTAS [Fernandez de laVega and Zissimopoulos, 1991]. There are lots of variants of packing problems. A survey ofapproximation results of packing problems can be found in [Co�man, Garey, and Johnson,1984].Compression and RepresentationSR3. Shortest Common SupersequenceInstance: Finite alphabet �, �nite set R of strings from ��.Solution: A string w 2 �� such that each string x 2 R is a subsequence of w, i.e. one canget x by taking away letters from w.Measure: Length of the supersequence, i.e., jwj.Bad News: Not in Apx [Jiang and Li, 1994].Comment: Transformation from Minimum Feedback Vertex Set and self-improvability.Not approximable within log� jRj for a given � > 0 unless NP � Dtime�npolylogn� [Jiangand Li, 1994]. Apx-complete if the size of the alphabet � is �xed [Jiang and Li, 1994] and[Bonizzoni, Duella, and Mauri, 1994].Garey and Johnson: SR8SR4. Shortest Common SuperstringInstance: Finite alphabet �, �nite set R of strings from ��.Solution: A string w 2 �� such that each string x 2 R is a substring of w, i.e. w = w0xw1where w0; w1 2 ��.Measure: Length of the superstring, i.e., jwj.Good News: Approximable within 2:89 [Teng and Yai, 1993].Bad News: Apx-complete [Blum, Jiang, Li, Tromp, and Yannakakis, 1991].Comment: Transformation fromMetric Traveling Salesperson Problem with distancesone and two. Variation in which there are negative strings in the input and a solution cannotcontain any negative string as a substring, is approximable within O(log opt) [Li, 1990]. Ifthe number of negative strings is constant, or if no negative strings contain positive stringsas substrings, the problem is approximable within some constant [Jiang and Li, 1993].Garey and Johnson: SR9SR5. Longest Common SubsequenceInstance: Finite alphabet �, �nite set R of strings from ��.Solution: A string w 2 �� such that w is a subsequence of each x 2 R, i.e. one can get w bytaking away letters from each x.Measure: Length of the subsequence, i.e., jwj.



A compendium of NP optimization problems 34Bad News: Not approximable within j�j1=6�" for any " > 0 [Bellare and Sudan, 1994].Comment: Transformation from Maximum Independent Set with an alphabet � of thesame size as the set of vertices in the Maximum Independent Set problem [Berman andSchnitger, 1992]. Not approximable within j�j1=4�" for any " > 0, unless QNP�co-QR[Bellare and Sudan, 1994]. Apx-complete if the size of the alphabet � is �xed [Jiang andLi, 1994] and [Bonizzoni, Duella, and Mauri, 1994].Garey and Johnson: SR10Sequencing and SchedulingSequencing on One ProcessorSS1. Maximum Constrained Sequencing to Minimize Tardy Task WeightInstance: Set T of tasks, for each task t 2 T a length l(t) 2 Z+, a weight w(t) 2 Z+, and adeadline d(t) 2 Z+, a subset S � T , and a positive integer K.Solution: A one-processor schedule � for T such that the sum of w(t), taken over all t 2 Tfor which �(t) + l(t) > d(t) does not exceed K.Measure: Cardinality of jobs in S completed by the deadline.Bad News: Not approximable within jT j" for some " > 0 [Zuckerman, 1993].Garey and Johnson: Similar to SS3SS2. Minimum Storage-Time SequencingInstance: Set T of tasks, a directed acyclic graph G = hT;Ei de�ning preceding constraintsfor the tasks, for each task a length l(t) 2 Z+, and for each edge in the graph a weightw(t1; t2) measuring the storage required to save the intermediate results generated by taskt1 until it is consumed by task t2.Solution: A one-processor schedule for T that obeys the preceding constraints, i.e., a permu-tation � : [1::jT j]! [1::jT j] such that, for each edge hti; tji 2 E, ��1(i) < ��1(j).Measure: The total storage-time product, i.e.,Xht�(i);t�(j)i2Ew(t�(i); t�(j)) max(i;j)Xk=min(i;j) l(t�(k)):Good News: Approximable within O log jT j log Pt2T l(t)! [Ravi, Agrawal, and Klein, 1991].Multiprocessor SchedulingSS3. Minimum Multiprocessor SchedulingInstance: Set T of tasks, number m of processors, length l(t; i) 2 Z+ for each task t 2 T andprocessor i 2 [1::m].Solution: An m-processor schedule for T , i.e., a function f : T ! [1::m].



A compendium of NP optimization problems 35Measure: The �nish time for the schedule, i.e., maxi2[1::m] Xt2T :f(t)=i l(t; i).Good News: Approximable within 2 [Lenstra, Shmoys, and Tardos, 1990].Bad News: Not approximable within within 3=2�" for any " > 0 [Lenstra, Shmoys, and Tardos,1990].Comment: Admits an FPTAS for the variation in which the number of processorsm is constant[Horowitz and Sahni, 1976]. Admits a PTAS for the uniform variation, in which l(t; i) isindependent of the processor i [Hochbaum and Shmoys, 1987]. A variation in which, foreach task t and processor i, a cost c(t; i) is given in input and the goal is to minimize aweighted sum of the �nish time and the cost is approximable within 2 [Shmoys and Tardos,1993].Garey and Johnson: SS8SS4. Minimum Precedence Constrained SchedulingInstance: Set T of tasks, each having length l(t) = 1, number m of processors, and a partialorder < on T .Solution: An m-processor schedule for T that obeys the precedence constraints, i.e., a func-tion f : T ! N such that, for all u � 0, jf�1(u)j � m and such that t < t0 impliesf(t0) > f(t).Measure: The �nish time for the schedule, i.e., maxt2T f(t).Good News: Approximable within 2� 2=jT j [Lam and Sethi, 1977].Comment: A variation with an enlarged class of allowable constraints is approximable within3 � 4=(jT j+ 1) while a variation in which the partial order < is substituted with a weakpartial order � is approximable within 2� 2=(jT j+ 1) [Berger and Cowen, 1991].Garey and Johnson: SS9SS5. Minimum Resource Constrained SchedulingInstance: Set T of tasks each having length l(t), number m of processors, number r of re-sources, resource bounds bi, 1 � i � r, and resource requirement ri(t), 0 � ri(t) � bi, foreach task t and resource i.Solution: An m processor schedule for T that obeys the resource constraints, i.e., a functionf : T ! Z such that for all u � 0, if S(u) is the set of tasks t for which f(t) � u < f(t)+l(t),then jS(u)j � m and for each resource iXt2S(u) ri(t) � bi:Measure: The makespan of the schedule, i.e., maxt2T (f(t) + l(t)).Good News: Approximable within 2 [Garey and Graham, 1975].Comment: Note that the restriction in which there is only one resource, i.e., the availableprocessors, is identical to minimizing the makespan of the schedule of parallel tasks on mprocessors. In this case, minimizing the average response time, i.e., 1jT jPt2T (f(t) + l(t)) isapproximable within 32 [Turek, Schwiegelshohn, Wolf, and Yu, 1994]. The further variationin which each task can be executed by any number of processors and the length of a task



A compendium of NP optimization problems 36is a function of the number of processors allotted to it is also approximable [Ludwig andTiwari, 1994].Garey and Johnson: SS10SS6. Minimum Preemptive Scheduling with Set-Up TimesInstance: Set T of tasks, number m of processors, length l(t) 2 Z+ and set-up time s(t) 2 Z+for each t 2 T .Solution: An m-processor preemptive schedule for T , i.e., a partition of each task t into anynumber of subtasks t1; : : : ; tk such thatPki=1 l(ti) = l(t) and a schedule � that, for all t 2 T ,assigns to each subtask ti of t a positive integer �(ti) such that �(ti+1) � �(ti)+ l(ti)+ s(t)and, for all u > 0, the number of subtasks for which �(ti) � u < �(ti) + l(ti) + s(t) is nomore than m.Measure: The overall completion time, i.e., the maximum over all subtasks of �(ti) + l(ti) +s(t).Good News: Approximable within 3=2�1=(4m�4) form � 4 and within 5=3�1=m form = 3j,j � 2 [Monma and Potts, 1993].Comment: If all set-up times are equal, then the problem is approximable within 3=2� 1=2mfor m � 2 and admits an FPTAS for m = 2 [W�oginger and Yu, 1992].Garey and Johnson: SS12SS7. Minimum Multiprocessor Scheduling with Speed FactorsInstance: Set T of tasks, number m of processors, for each task t 2 T a length l(t) 2 Z+,and for each processor i 2 [1::m] a speed factor s(i) 2 Q such that s(1) = 1 and s(i) � 1for every i.Solution: An m-processor schedule for T , i.e., a function f : T ! [1::m].Measure: The �nish time for the schedule, i.e., maxi2[1::m] Xt2T :f(t)=i l(t)=s(i).Good News: Admits a PTAS [Hochbaum and Shmoys, 1988].Bad News: Does not admit an FPTAS [Hochbaum and Shmoys, 1988].Comment: Admits an FPTAS for the variation in which the number of processorsm is constant[Horowitz and Sahni, 1976].Garey and Johnson: SS13SS8. Minimum 3-Dedicated Processor SchedulingInstance: Set T of tasks, set P of 3 processors, and, for each task t 2 T , a length l(t) 2 Z+and a required subset of processors r(t) � P .Solution: A schedule for T , i.e., a starting time function s : T ! Z+ such that, for any twotasks t1 and t2 with r(t1) \ r(t2) 6= ;, either s(t1) + l(t1) < s(t2) or s(t2) + l(t2) < s(t1).Measure: The makespan of the schedule, i.e., maxt2T (s(t) + r(t)).Good News: Approximable within 5/4 [Dell'Olmo, Speranza, and Tuza, 1993].



A compendium of NP optimization problems 37SS9. Minimum Job Shop SchedulingInstance: Number m of processors, set J of jobs, each j 2 J consisting of a sequence of njoperations oi;j with 1 � i � nj , for each such operation a processor pi;j and a length li;j .Solution: A job shop schedule for J , i.e., a collection of one-processor schedules fp : foi;j :pi;j = pg ! N such that fp(oi;j) > fp(oi0;j0) implies fp(oi;j) � fp(oi0;j0) + li0;j0 and such thatfp(oi+1;j) � fp(oi;j) + li;j.Measure: The completion time of the schedule, i.e., maxj2J fp(onj;j) + lnj ;j .Good News: Approximable within O(log2(mN)) where N = maxj2J nj [Shmoys, Stein, andWein, 1991].Bad News: NP-complete in the strong sense. Hence, does not admit an FPTAS [Garey, John-son, and Sethi, 1976].Comment: Transformation from 3-Partition. If each job must be processed on each machineat most once, then the factor N can be deleted. The same results hold for the variation inwhich the operations must be processed in an order consistent to a particular partial orderand for the variation in which there are di�erent types of machines, for each type, thereare a speci�ed number of identical processors, and each operation may be processed on anyprocessor of the appropriate type.Garey and Johnson: SS18MiscellaneousSS10. Minimum File Transfer SchedulingInstance: A �le transfer graph, i.e., a graph G = hV;Ei, a port constraint function p : V ! Nand a �le length function L : E ! N .Solution: A �le transfer schedule, i.e., a function s : E ! N such that, for each vertex v andfor each t 2 N , jfu : (u; v) 2 E ^ s(e) � t � s(e) + L(e)gj � p(v):Measure: The makespan of the schedule, i.e., maxe2E(s(e) + L(e)).Good News: Approximable within 2.5 [Co�man, Garey, Johnson, and Lapaugh, 1985].Comment: Several special cases with better guarantees are also obtainable [Co�man, Garey,Johnson, and Lapaugh, 1985].SS11. Minimum Schedule LengthInstance: A network N = hV;E; b; ci where G = hV;Ei is a graph, b : V ! N is the vertex-capacity function, and c : E ! N is the edge-capacity function, and a set T of tokenst = hu; v; pi where u; v 2 V and p is either a path from u to v or the empty set.Solution: A schedule S, i.e., a sequence f0; : : : ; fl of con�guration functions fi : T ! V suchthat1. For any token t = hu; v; pi, f0(t) = u and fl(t) = v.2. For any 0 � i � l � 1 and for any token t, if fi(t) = v and fi+1(t) = w then (a)(u; v) 2 E, (b) jft0 : fi(t0) = wgj < b(w), (c) jft0 : fi+1(t0) = wgj � b(w), and (d)jft0 : fi(t0) = v ^ fi+1(t0) = wgj � c(w).



A compendium of NP optimization problems 38Measure: The length of the schedule, i.e., l.Bad News: Not in Apx [Clementi, and Di Ianni, 1994].Comment: It remains non-approximable even for layered graphs.SS12. Minimum Vehicle Scheduling on TreeInstance: Rooted tree T = hV;E; v0i, a forward travel time f : E ! N , a backward traveltime b : E ! N , a release time r : V ! N , and an handling time h : V ! N .Solution: A vehicle routing schedule that starts from v0, visits all nodes of T , returns to v0,and, for any node vi, starts processing vi not before the release time r(vi), i.e., a permutation� of 1; : : : ; jV j and a waiting function w such that, for any i,d(v0; v�(1)) + i�1Xj=1[w(v�(j)) + h(v�(j)) + d(v�(j); v�(j+1))] � r(v�(i))where d(u; v) denotes the length of the unique path from u to v.Measure: The total completion time, i.e.,d(v0; v�(1)) + n�1Xj=1[w(v�(j)) + h(v�(j)) + d(v�(j); v�(j+1))] + w(v�(n)) + h(v�(n)) + d(v�(n); v0):Good News: Approximable within 2 [Karuno, Nagamochi, and Ibaraki, 1993].Mathematical ProgrammingMP1.Minimum 0� 1 ProgrammingInstance: Integer m � n-matrix A 2 Zm�n, integer m-vector b 2 Zm, nonnegative integern-vector c 2 Nn.Solution: A binary n-vector x 2 f0; 1gn such that Ax � b.Measure: The scalar product of c and x, i.e., nXi=1 cixi.Bad News: NPO-complete [Orponen and Mannila, 1987].Comment: Transformation from Minimum Weighted Satisfiability. Variation in whichci = 1 for all i is NPO PB-complete and not approximable within n1�" for any " > 0[Kann, 1993]. Variation in which there are at most two non-zero entries on each row of thematrix is approximable within 2 [Hochbaum, Megiddo, Naor, and Tamir, 1993].Garey and Johnson: MP1MP2.Maximum Bounded 0� 1 ProgrammingInstance: Integer m � n-matrix A 2 Zm�n, integer m-vector b 2 Zm, nonnegative binaryn-vector c 2 f0; 1gn.Solution: A binary n-vector x 2 f0; 1gn such that Ax � b.



A compendium of NP optimization problems 39Measure: The scalar product of c and x, i.e., nXi=1 cixi.Bad News: NPO PB-complete [Berman and Schnitger, 1992].Comment: Transformation from Longest Path with Forbidden Pairs. Not approximablewithin n0:5�" for any " > 0 [Crescenzi, Kann, and Trevisan, 1994].Garey and Johnson: MP1MP3.Maximum Quadratic ProgrammingInstance: Positive integer n, set of linear constraints, given as an m � n-matrix A and anm-vector b, specifying a region S � Rn by S = fx 2 [0; 1]n : Ax � bg.Solution: A multivariate polynomial f(x1; : : : ; xn) of total degree at most 2.Measure: The maximum value of f in the region speci�ed by the linear constants, i.e.,maxx2S f(x).Bad News: Does not admit a �-approximation for any constant 0 < � < 1 [Bellare and Rog-away, 1993].Comment: A �-approximation algorithm �nds a solution that di�ers from the optimal solu-tion by at most the value � (maxx2S f(x)�minx2S f(x)). Variation in which we look for apolynomial f of any degree does not admit a �-approximation for � = 1 � n�� for some� > 0 [Bellare and Rogaway, 1993]. Note that these problems are known to be solvable inpolynomial space but are not known to be in NP.Garey and Johnson: MP2MP4.Minimum Generalized 0� 1 AssignmentInstance: Integer m�n-matrix A 2 Zm�n, integer m-vector b 2 Zm, and binary m�n-matrixC 2 f0; 1gm�n.Solution: A binary m � n-matrix X 2 f0; 1gm�n such that there is exactly one 1 in eachcolumn of X , and nXj=1Ai;jXi;j � bi for all i 2 [1::m].Measure: mXi=1 nXj=1Ci;jXi;j .Bad News: Not in Apx [Sahni and Gonzalez, 1976].MP5.Minimum Quadratic 0� 1 AssignmentInstance: Nonnegative integer n � n-matrix C 2 Nn�n, nonnegative integer m � m-matrixD 2 Nm�m.Solution: Binary n �m-matrix X 2 f0; 1gn�m such that there is at most one 1 in each rowof X and exactly one 1 in each column of X .Measure: nXi;j=1i6=j mXk;l=1k 6=l Ci;jDk;lXi;kXj;l.Bad News: Not in Apx [Sahni and Gonzalez, 1976].Comment: Not in Apx even if D satis�es the triangle inequality [Queyranne, 1986].



A compendium of NP optimization problems 40MP6.Minimum Planar Record PackingInstance: Collection C of n records, for each record c 2 C a probability p(c) such that0 � p(c) � 1.Solution: For each record c 2 C a placement z(c) in the plane, given as integer coordinates,such that all records are placed on di�erent points in the plane.Measure: Xc12C Xc22C p(c1)p(c2)d(z(c1); z(c2)), where d(z(c1); z(c2)) is the discretized Euclideandistance between the points z(c1) and z(c2).Good News: Approximable with an absolute error guarantee of b4p2 + 8p�c, that is, one canin polynomial time �nd a solution with objective function value at most opt+b4p2+8p�c[Karp, McKellar, and Wong, 1975].MP7.Minimum Relevant Variables in Linear SystemInstance: Integer m� n-matrix A 2 Zm�n, integer m-vector b 2 Zm.Solution: A rational n-vector x 2 Qn such that Ax = b.Measure: The number of non-zero elements in x.Bad News: Not in Apx [Amaldi and Kann, 1994b].Comment: Not approximable within 2log1�" n for any " > 0 unless NP�QP [Amaldi and Kann,1994b]. The above nonapproximability results are still true for the variation in which thesolutions are restricted by Ax � b instead of Ax = b. Variation in which the solution vectoris restricted to contain binary numbers is NPO PB-complete and is not approximablewithin n0:5�" for any " > 0 [Amaldi and Kann, 1994b]. The corresponding maximizationproblem, where the number of zero elements in the solution is to be maximized, and thesolution vector is restricted to contain binary numbers, is NPO PB-complete and is notapproximable within n1=3�" for any " > 0 [Crescenzi, Kann, and Trevisan, 1994].Garey and Johnson: MP5MP8.Maximum Satisfying Linear SubsystemInstance: System Ax = b of linear equations, where A is an integer m � n-matrix, and b isan integer m-vector.Solution: A rational n-vector x 2 Qn.Measure: The number of equations that are satis�ed by x.Bad News: Not approximable within m" for some " > 0 [Amaldi and Kann, 1994a].Comment: For any prime q the problem over GF[q] is approximable within q, but is not ap-proximable within q" for some " > 0. If the system consists of relations (> or �) the problemis Apx-complete and approximable within 2 [Amaldi and Kann, 1994a]. If the variables arerestricted to assume only binary values, the problem is harder to approximate than Maxi-mum Independent Set. Approximability results for more variants of the problem can befound in [Amaldi and Kann, 1993].MP9.Minimum Unsatisfying Linear SubsystemInstance: System Ax = b of linear equations, where A is an integer m � n-matrix, and b isan integer m-vector.



A compendium of NP optimization problems 41Solution: A rational n-vector x 2 Qn.Measure: The number of equations that are not satis�ed by x.Bad News: Not in Apx [Arora, Babai, Stern, and Sweedyk, 1993].Comment: Not approximable within 2log1�" n for any " > 0 unless NP�QP [Arora, Babai,Stern, and Sweedyk, 1994]. If the system consists of relations (> or �) the problem iseven harder to approximate; there is a transformation from Minimum Dominating Setto this problem. If the variables are restricted to assume only binary values the problem isNPO PB-complete both for equations and relations, and is not approximable within n1�"for any " > 0. Approximability results for even more variants of the problem can be foundin [Amaldi and Kann, 1994b].MP10.Maximum Hyperplane ConsistencyInstance: Finite sets P and N of integer n-vectors. P consists of positive examples and N ofnegative examples.Solution: A hyperplane speci�ed by a normal vector w 2 Qn and a bias w0.Measure: The number of examples that are consistent with respect to the hyperplane, i.e.,jfx 2 P : wx > w0gj+ jfx 2 N : wx < w0gj.Good News: Approximable within 2 [Amaldi and Kann, 1994a].Bad News: Apx-complete [Amaldi and Kann, 1994a].Comment: Variation in which only one type of misclassi�cation, either positive or negative, isallowed is not approximable within n" for some " > 0 [Amaldi and Kann, 1993]. The corre-sponding minimization problem, where the number of misclassi�cations is to be minimized,is not in Apx unless P = NP, and is not approximable within 2log1�" n for any " > 0 unlessNP�QP [Arora, Babai, Stern, and Sweedyk, 1994] and [Amaldi and Kann, 1994b].Garey and Johnson: Similar to MP6MP11.Maximum KnapsackInstance: Finite set U , for each u 2 U a size s(u) 2 Z+ and a value v(u) 2 Z+, a positiveinteger B 2 Z+.Solution: A subset U 0 � U such that Xu2U 0 s(u) � B.Measure: Total weight of the chosen elements, i.e., Xu2U 0 v(u).Good News: Admits an FPTAS [Ibarra and Kim, 1975].Garey and Johnson: MP9MP12.Maximum Integer m-Dimensional KnapsackInstance: Nonnegative integer m � n-matrix, A 2 Nm�n, nonnegative integer m-vector b 2Nm, nonnegative integer n-vector c 2 Nn.Solution: Nonnegative integer n-vector x 2 Nn such that Ax � b.Measure: The scalar product of c and x, i.e., nXi=1 cixi.



A compendium of NP optimization problems 42Good News: Admits a PTAS [Chandra, Hirschberg, and Wong, 1976].Garey and Johnson: Similar to MP10MP13.Maximum Integer k-Choice KnapsackInstance: Nonnegative integer n� k-matrices A;C 2 Nn�k, nonnegative integer b 2 N .Solution: Nonnegative integer vector x 2 Nn, function f : [1::n] ! [1::k] such thatnXi=1 ai;f(i)xi � b.Measure: nXi=1 ci;f(i)xi.Good News: Admits an FPTAS [Chandra, Hirschberg, and Wong, 1976].Garey and Johnson: Similar to MP11MP14. Nearest Lattice VectorInstance: Lattice basis fb1; : : : ; bmg where bi 2 Zk, a point b0 2 Qk, and a positive integer p.Solution: A vector b in the lattice, where b 6= b0.Measure: The distance between b0 and b in the `p norm.Bad News: Not in Apx [Arora, Babai, Stern, and Sweedyk, 1993].Comment: Not approximable within 2log1�" n for any " > 0 unless NP�QP [Arora, Babai,Stern, and Sweedyk, 1994]. The special case where b0 is the zero vector and p = 1 is notapproximable within 2log0:5�" n for any " > 0 unless NP�QP [Arora, Babai, Stern, andSweedyk, 1993].MP15.Minimum Block-angular Convex ProgrammingInstance: K disjoint convex compact sets Bk called blocks,M nonnegative continuous convexfunctions fkm : Bk ! R.Solution: A positive number � such thatKXk=1 fkm(xk) � � for 1 � m �M; and xk 2 Bk for 1 � k � K:Measure: �Good News: Admits an FPTAS [Grigoriadis and Khachiyan, 1994].Algebra and Number TheorySolvability of Equations



A compendium of NP optimization problems 43AN1.Maximum Satisfiability of Quadratic Equations over GF[q]Instance: Prime number q, set P = fp1(x); p2(x); : : : ; pm(x)g of polynomials of degree atmost 2 over GF[q] in n variables. The polynomials may not contain any monomial xi2 forany i.Solution: A subset P 0 � P of the polynomials such that there is a root common to allpolynomials in P 0.Measure: Cardinality of the subset, i.e., jP 0j.Good News: Approximable within q2=(q � 1) [H�astad, Phillips, and Safra, 1993].Bad News: Not approximable within q � " for any " [H�astad, Phillips, and Safra, 1993].Comment: Over the rationals or over the reals the problem is not approximable within n1�"for any " > 0 [H�astad, Phillips, and Safra, 1993]. For linear polynomials the problem is notapproximable within q" for some " > 0 [Amaldi and Kann, 1994a].LogicPropositional LogicLO1. Maximum SatisfiabilityInstance: Set U of variables, collection C of disjunctive clauses of literals, where a literal isa variable or a negated variable in U .Solution: A subset C 0 � C of the clauses such that there is a truth assignment for U thatsatis�es every clause in C 0.Measure: Number of satis�ed clauses, i.e., jC 0j.Good News: Approximable within 1:325 [Goemans and Williamson, 1994].Bad News: Apx-complete [Papadimitriou and Yannakakis, 1991].Comment: Variation in which each clause has a nonnegative weight and the objective is tomaximize the total weight of the satis�ed clauses is approximable within 4=3 [Yannakakis,1992]. Generalization in which each clause is a disjunction of conjunctions of literals andeach conjunction consists of at most k literals, where k is a positive constant, is still Apx-complete [Papadimitriou and Yannakakis, 1991].Garey and Johnson: LO1LO2. Maximum k-SatisfiabilityInstance: Set U of variables, collection C of disjunctive clauses of at most k literals, where aliteral is a variable or a negated variable in U . k is a constant, k � 2.Solution: A subset C 0 � C of the clauses such that there is a truth assignment for U thatsatis�es every clause in C 0.Measure: Number of satis�ed clauses, i.e., jC 0j.Good News: Approximable within 1=(1 � 2�k) if every clause consists of exactly k literals[Johnson, 1974].Bad News: Apx-complete [Papadimitriou and Yannakakis, 1991].



A compendium of NP optimization problems 44Comment: Maximum 3-Satisfiability is not approximable within 113=112 [Bellare, Gold-wasser, Lund, and Russell, 1993].Maximum 2-Satisfiability is approximable within 1:14[Goemans and Williamson, 1994]. Admits a PTAS for `planar' instances [Nishizeki andChiba, 1988]. Variation in which the number of occurrences of any literal is bounded by theconstant B is still Apx-complete [Papadimitriou and Yannakakis, 1991].Garey and Johnson: LO2 and LO5LO3. Minimum k-SatisfiabilityInstance: Set U of variables, collection C of disjunctive clauses of at most k literals, where aliteral is a variable or a negated variable in U . k is a constant, k � 2.Solution: A subset C 0 � C of the clauses such that there is a truth assignment for U thatsatis�es every clause in C 0.Measure: Number of satis�ed clauses, i.e., jC 0j.Good News: Approximable within k [Kohli, Krishnamurti, and Mirchandani, 1994].Garey and Johnson: LO2LO4. Maximum Not-All-Equal 3-SatisfiabilityInstance: Set U of variables, collection C of disjunctive clauses of 3 literals, where a literalis a variable or a negated variable in U .Solution: A truth assignment for U and a subset C 0 � C of the clauses such that each clausein C 0 has at least one true literal and at least one false literal.Measure: jC 0jGood News: Approximable within a constant [Papadimitriou and Yannakakis, 1991].Bad News: Apx-complete [Papadimitriou and Yannakakis, 1991].Comment: Transformation from Maximum 2-Satisfiability.Garey and Johnson: LO3LO5. Minimum 3DNF SatisfiabilityInstance: Set U of variables, collection C of conjunctive clauses of at most three literals,where a literal is a variable or a negated variable in U .Solution: A subset C 0 � C of the clauses such that there is a truth assignment for U thatsatis�es every clause in C 0.Measure: Number of satis�ed clauses, i.e., jC 0j.Bad News: Not in Apx [Kolaitis and Thakur, 1993].Garey and Johnson: LO8LO6. Maximum Distinguished OnesInstance: Disjoint sets X;Z of variables, collection C of disjunctive clauses of at most 3literals, where a literal is a variable or a negated variable in X [ Z.Solution: Truth assignment for X and Z that satis�es every clause in C.



A compendium of NP optimization problems 45Measure: The number of Z variables that are set to true in the assignment.Bad News: NPO PB-complete [Kann, 1992b].Comment: Transformation from Maximum Number of Satisfiable Formulas [Panconesiand Ranjan, 1993]. Not approximable within jZj0:5�" for any " > 0 [Crescenzi, Kann, andTrevisan, 1994].Maximum Ones, the variation in which all variables are distinguished, i.e.jX j = ;, is also NPO PB-complete [Kann, 1992b], and is not approximable within jZj1=3�"for any " > 0 [Crescenzi, Kann, and Trevisan, 1994].MaximumWeighted Satisfiability,the weighted version, in which every variable is assigned a nonnegative weight, is NPO-complete.LO7. Minimum Distinguished OnesInstance: Disjoint sets X;Z of variables, collection C of disjunctive clauses of at most 3literals, where a literal is a variable or a negated variable in X [ Z.Solution: Truth assignment for X and Z that satis�es every clause in C.Measure: The number of Z variables that are set to true in the assignment.Bad News: NPO PB-complete [Kann, 1993].Comment: Transformation from Minimum Independent Dominating Set. Not approx-imable within jZj1�" for any " > 0 [Kann, 1993].Minimum Ones, the variation in which allvariables are distinguished, i.e. jX j = ;, is also NPO PB-complete, and is not approximablewithin jZj0:5�" for any " > 0 [Kann, 1993]. Minimum Ones for clauses of 2 literals is ap-proximable within 2 [Gus�eld and Pitt, 1992]. Minimum Weighted Satisfiability, theweighted version, in which every variable is assigned a nonnegative weight, is NPO-complete[Orponen and Mannila, 1987].LO8. Maximum Weighted Satisfiability with BoundInstance: Set U of variables, boolean expression F over U , a nonnegative bound B 2 N , foreach variable u 2 U a weight w(u) 2 N such that B � Pu2U w(u) � 2B.Solution: A truth assignment for U , i.e., a subset U 0 � U such that the variables in U 0 areset to true and the variables in U � U 0 are set to false.Measure: Xv2U 0w(v) if the truth assignment satis�es the boolean expression F and B other-wise.Good News: Approximable within 2 [Crescenzi and Panconesi, 1991].Bad News: Apx-complete [Crescenzi and Panconesi, 1991].Comment: Variation in which Pu2U w(u) � (1 + 1=(jU j � 1)) B is PTAS-complete [Crescenziand Panconesi, 1991].LO9. Maximum Number of Satisfiable FormulasInstance: Set U of variables, collection C of 3CNF formulas.Solution: A subset C 0 � C of the formulas such that there is a truth assignment for U thatsatis�es every formula in C 0.



A compendium of NP optimization problems 46Measure: Number of satis�ed formulas, i.e., jC 0j.Bad News: NPO PB-complete [Kann, 1992b].Comment: Transformation from Longest Induced Path. Not approximable within jCj1�"for any " > 0 [Crescenzi, Kann, and Trevisan, 1994].LO10. Minimum Number of Satisfiable FormulasInstance: Set U of variables, collection C of 3CNF formulas.Solution: A subset C 0 � C of the formulas such that there is a truth assignment for U thatsatis�es every formula in C 0.Measure: Number of satis�ed formulas, i.e., jC 0j.Bad News: NPO PB-complete [Kann, 1993].Comment: Transformation from Minimum Distinguished Ones. Not approximable withinjCj1�" for any " > 0 [Kann, 1993].LO11. Minimum Equivalence DeletionInstance: Set U of variables, collection C of equivalences, i.e., pairs of literals over U .Solution: A subset C 0 � C of the formulas such that there is a truth assignment for U thatsatis�es every equivalence in C 0.Measure: Number of equivalences that are not satis�ed, i.e., jCj � jC 0j.Good News: Approximable within O(logn) [Garg, Vazirani, and Yannakakis, 1993b].Bad News: Apx-hard [Garg, Vazirani, and Yannakakis, 1993b].LO12. Maximum k-Constraint SatisfactionInstance: Set U of variables, collection C of conjunctive clauses of at most k literals, wherea literal is a variable or a negated variable in U , and k is a constant, k � 2.Solution: A subset C 0 � C of the clauses such that there is a truth assignment for U thatsatis�es every clause in C 0.Measure: Number of satis�ed clauses, i.e., jC 0j.Good News: Approximable within 2k [Berman and Schnitger, 1992].Bad News: Apx-complete [Berman and Schnitger, 1992].Comment: Transformation from Maximum 2-Satisfiability. Not approximable within 2o(k)when k � log jCj [Berman and Schnitger, 1992].MiscellaneousLO13. Maximum Horn CoreInstance: Set M of truth assignments on n variables.Solution: A Horn core of M , i.e., a subset M 0 �M such that M 0 is equal to the set of truthassignments satisfying a Horn boolean formula.Measure: The cardinality of the core, i.e., jM 0j.



A compendium of NP optimization problems 47Bad News: Not in Apx [Kavvadias, Papadimitriou, and Sideri, 1993].Automata and Language TheoryAutomata TheoryAL1.Minimum Consistent Finite AutomatonInstance: Two �nite sets of binary strings P;N .Solution: S(hP;Ni) = fA = hQ; f0; 1g; �; q0; F i A deterministic �nite automaton acceptingall strings in P and rejecting all strings in N .Measure: Number of states in the automaton.Bad News: Not approximable within 2� " for any " > 0 [Simon, 1990].Comment: Transformation fromMinimum Graph Coloring. Not approximable within (jP j+jN j)1=14�" for any " > 0 [Pitt and Warmuth, 1993].Garey and Johnson: AL8AL2. Longest ComputationInstance: Nondeterministic Turing machine M , binary input string x.Solution: Nondeterministic guess string c produced by M on input x.Measure: The length of the shortest of the strings c and x, i.e., min(jcj; jxj).Bad News: NPO PB-complete [Berman and Schnitger, 1992].Comment: Not approximable within n" for some " > 0, where n is the size of the input [Bermanand Schnitger, 1992]. Variation in which the Turing machine is oblivious is also NPO PB-complete.AL3. Shortest ComputationInstance: Nondeterministic Turing machine M , binary input string x.Solution: Nondeterministic guess string c produced by M on input x.Measure: The length of the shortest of the strings c and x, i.e., min(jcj; jxj).Bad News: NPO PB-complete [Kann, 1993].Comment: Not approximable within n" for some " > 0, where n is the size of the input [Kann,1993]. Variation in which the Turing machine is oblivious is also NPO PB-complete.Formal LanguagesAL4.Minimum Locally Testable Automaton OrderInstance: A locally testable language L, i.e., a language L such that, for some positive integerj, whether or not a string x is in the language depends on (a) the pre�x and su�x of x oflength j � 1, and (b) the set of substrings of x of length j.Solution: An order j, i.e., a positive integer j witnessing the local testability of L.Measure: The value of the order, i.e., j.Good News: Admits a PTAS [Kim and McNaughton, 1993].Miscellaneous



A compendium of NP optimization problems 48AL5.Minimum Permutation Group BaseInstance: Permutation group on n letters.Solution: A base for G, i.e., a sequence of points b1; : : : ; bk such that the only element in G�xing all of the bi is the identity.Measure: The size of the base, i.e., k.Good News: Approximable within log logn [Blaha, 1992].Program OptimizationCode GenerationPO1.Minimum Register SufficiencyInstance: Directed acyclic graph G = hV;Ei.Solution: Computation for G that uses k register, i.e., an ordering v1; : : : ; vn of the vertices inV and a sequence S0; : : : ; Sn of subsets of V , each satisfying jSij � k, such that S0 is empty,Sn contains all vertices with in-degree 0 in G, and, for 1 � i � n, vi 2 Si, Si � fvig � Si�1,and Si�1 contains all vertices u for which (vi; u) 2 A.Measure: Number of registers, i.e., k.Good News: Approximable within O(log2 n) [Klein, Agrawal, Ravi, and Rao, 1990]].Garey and Johnson: PO1MiscellaneousMS1. Nearest CodewordInstance: Linear binary code C of length n and a string x of length n.Solution: A codeword y of C.Measure: The Hamming distance between x and y, i.e., d(x; y).Bad News: Not in Apx [Arora, Babai, Stern, and Sweedyk, 1993].Comment: Not approximable within 2log1�" n for any " > 0 unless NP�QP [Arora, Babai,Stern, and Sweedyk, 1994]. The corresponding maximization problem, where the numberof bits that agree between x and y is to be maximized, does not admit a PTAS [Petrank,1993].MS2. Attraction Radius for Binary Hopfield NetInstance: An n-node synchronous binary Hop�eld network and a stable initial vector of statesu 2 f�1; 1gn. A binary Hop�eld network is a complete graph where each edge has an integerweight w(vi; vj) and each vertex has an integer threshold value t(vi). At each time step t eachvertex vi has a state x(t; vi). x(0; vi) is given by u and x(t+1; vi) = sgn�Pnj=1 w(vi; vj)� ti�where sgn is the sign function. An initial vector of states is stable if x(t; vi) eventuallyconverges for all i.Solution: An initial vector of states v that either converges to a di�erent vector than u or isnot stable.



A compendium of NP optimization problems 49Measure: The Hamming distance between u and v. If v is the vector nearest to u that doesnot converge to the same vector as u, then this distance is the attraction radius.Bad News: Not approximable within n1�" for any " [Flor�een and Orponen, 1993].Comment: Transformation from Minimum Independent Dominating Set.MS3.Minimum k-ClusteringInstance: Finite set X , a distance d(x; y) 2 N for each pair x; y 2 X . The distances mustsatisfy the triangle inequality.Solution: A partition of X into disjoint subsets C1; C2; : : : ; Ck.Measure: The largest distance between two elements in the same subset, i.e., maxi2[1::k]x;y2Ci d(x; y).Good News: Approximable within 2 [Hochbaum and Shmoys, 1986].Bad News: Not approximable within 2� " for any " > 0 [Hochbaum and Shmoys, 1986].Garey and Johnson: MS9MS4.Minimum k-Clustering SumInstance: Finite set X , a distance d(x; y) 2 N for each pair x; y 2 X .Solution: A partition of X into disjoint subsets C1; C2; : : : ; Ck.Measure: The sum of all distances between elements in the same subset, i.e.,kXi=1 Xv1;v22Ci d(v1; v2):Bad News: Not in Apx [Sahni and Gonzalez, 1976].MS5.Maximum Channel AssignmentInstance: Net of hexagonal cells in which n cells Ci are assigned a positive load ri, an inter-ference radius r, and m channels Fi.Solution: A channel assignment A, i.e., a multivalued function A assigning a set of cells to achannel such that if Ci; Cj 2 A(Fk) then the distance between Ci and Cj is greater than 2r.Measure: The number of satis�ed request, i.e., Piminfri; jfFj : Ci 2 Fjgjg.Good News: Approximable within 1=(1� e�1) [Simon, 1989].Comment: Admits a PTAS if the number of channels is �xed. Similar results hold in the casein which each cell has a set of forbidden channels.MS6.Minimum k-Link Path in a PolygonInstance: Polygon P with n integer-coordinates vertices and two points s and t in P .Solution: A k-link path between s and t, i.e., a sequence p0; : : : ; ph of points inside P withh � k such that p0 = s, pk = t, and, for all i with 0 � i < h, the segment between pi andpi+1 is inside P .Measure: The Euclidean length of the path, i.e., Ph�1i=0 d(pi; pi+1) where d denotes the Eu-clidean distance.Good News: Admits an FPTAS [Mitchell, Piatko, and Arkin, 1992].



A compendium of NP optimization problems 50MS7.Minimum Size Ultrametric TreeInstance: n � n matrix M of positive integers.Solution: An ultrametric tree, i.e., an edge-weighted tree T (V;E) with n leaves such that,for any pair of leaves i and j, dTij �M [i; j] where dTij denotes the sum of the weights in thepath between i and j.Measure: The size of the tree, i.e., Pe2E w(e) where w(e) denotes the weight of edge e.Bad News: Not approximable within n" for a given " > 0 [Farach, Kannan, and Warnow, 1993].Comment: Transformation from graph coloring.MS8.Minimum Partition of Rectangle with Interior PointsInstance: Rectangle R and �nite set P of points located inside R.Solution: A set of line segments that partition R into rectangles such that every point in Pis on the boundary of some rectangle.Measure: The total length of the introduced line segments.Good News: Approximable within 3 [Gonzalez and Zheng, 1990].Comment: Variation in which R is a rectilinear polygon is approximable within 4 [Gonzalezand Zheng, 1990].MS9.Minimum Sorting by ReversalsInstance: Permutation � of the numbers 1 to n.Solution: A sequence �1; �2; : : : ; �t of reversals of intervals such that � � �1 � �2 � � ��t isthe identity permutation. A reversal of an interval [i; j] is the permutation (1; 2; : : : ; i �1; j;�1; : : : ; i+ 1; i; j + 1; : : : ; n).Measure: The number of reversals, i.e., t.Good News: Approximable within 7=4 [Bafna and Pevzner, 1993].Comment: The problem is not known to be NP-complete. Variation in which the numbersare signed and a reversal of an interval changes the signs of the numbers in the interval isapproximable within 3=2 [Bafna and Pevzner, 1993].ReferencesAggarwal, M., and Garg, N. (1994), \A scaling technique for better network design", Proc. 5th Ann.ACM-SIAM Symp. on Discrete Algorithms, ACM-SIAM, 233{239. (ND6)Amaldi, E., and Kann, V. (1993), \The complexity and approximability of �nding maximum feasi-ble subsystems of linear relations", Technical Report ORWP-11-93, Department of Mathematics,Swiss Federal Institute of Technology, Lausanne, and Technical Report TRITA-NA-9313, Depart-ment of Numerical Analysis and Computing Science, Royal Institute of Technology, Stockholm.(MP8, MP10)Amaldi, E., and Kann, V. (1994a), \On the approximability of �nding maximum feasible subsystemsof linear systems", Proc. 11th Ann. Symp. on Theoretical Aspects of Comput. Sci., Lecture Notesin Comput. Sci. 775, Springer-Verlag, 521{532. (MP8, MP10, AN1)Amaldi, E., and Kann, V. (1994b), \On the approximability of removing the smallest number of relationsfrom linear systems to achieve feasibility", Unpublished manuscript. (MP7, MP9, MP10)
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