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A simple production planning problem

Example: A store has requested a manufacturer to produce
pants and sports jackets. The manufacturer has 750 m? of
cotton textile and 1,000m? of polyester. Every pair of pants (1
unit) needs 1 m? of cotton and 2 m? of polyester. Every jacket
needs 1.5 m? of cotton and 1 m? of polyester. The price of the
pants is fixed at $50 and the jacket, $40. What is the number of
pants and jackets that the manufacturer must give to the stores
so that these items obtain a maximum sale?

50x1 + 40xo — max

Xy +1.5x0 <750 (cotton)
2x1 + x2 < 1000 ( polyester)
X1, X2 > 0.
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Mix problem

Example: A drug company produces a drug from two
ingredients. Each ingredient contains the same three antibiotics
in different proportions. One gram of ingredient 1 contributes 3
units, and ingredient 2 contributes 1 unit of antibiotic 1; the drug
requires 6 units. At least 4 units of antibiotic 2 are required, and
the ingredients each contribute 1 unit per gram. At least 12
units of antibiotic 3 are required; a gram of ingredient 1
contributes 2 units, and a gram of ingredient 2 contributes 6
units. The cost for a gram of ingredient 1 is $80 and the cost for
a gram of ingredient 2 is $50. The company wants to determine
the number of grams of each ingredient that must go into the
drug in order to meet the antibiotic requirements at minimum
cost.
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Mix problem

80xy + 50x» —— min (cost, $)

3y + X > 6 (antibiotic 1)

X1 + X >4 (antibiotic 2)

2x1 + 6x2 >12 (antibiotic 3)
X1, X2 >0
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Building integer programming models

In mathematical programming models, integer variables are
used for different purposes:

to model quantities that are integer in their nature, for
instance: the number of cars (aircrafts) produced, the
number of employees, elc.,

to model logical conditions:

if a new product is developed, then a new plant must be
constructed,

to model nonlinear dependences: for instance fixed costs
for building a warehouse,

to express certain states of continuous variables in linear
programming models.
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Binary variables - 0-1 variables

Suppose, we want to model activities:
e to build a plant,
e to undertake an advertising campaign,
e to develop a new product.

In each above case, we have to make YES-NO, GO-NO-GO
decision. We introduce a binary variable x;:

~_J 1 ifthe j-th decision is made,
7710 otherwise

Suppose that at most one of the above three activities can be
performed:
X1+ Xo + X3 < 3.
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Integer variables

However, in some situation, variables may take different integer
values:

0 no warehouse is built
~ =< 1 awarehouse of type A is built
2 awarehouse of type B is built
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Indicator variables

To express certain states of continuous variables Indicator
variables are used.
Let § be binary variable that helps to distinguish between two
states of continuous variable x - the state, when x = 0 and
state, when x > 0.
We introduce the following constraint that enforces: 6 = 1,
when x > 0

x—Ms <0, (1)

where M is an upper bound on values of x
Constraints (1) models the following implication:

Xx>0=4=1. (2)
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Indicator variables
The opposite implication
x=0=§=0 (3)

or its equivalent form:
0=1=x>0 (4)

can not be expressed by a constraint. A slightly modified form
implication can be applied

d=1=x>m, (5)

where m is the minimal threshold value such that: if x < mthen
value of x can be regarded as a zero. Thus, (5) can be
expressed:

X—md > 0. (6)
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Indicator variables

A problem with fixed costs: Let x be the amount of product
produced. C; is unit cost of producing the product, C, are fixed
costs of production. The total cost (TC) is equal to

0 if x = 0.
TC(X):{ Cix+Cp ifx>0.

The TC is not linear function.
To linearize TC, we introduce indicator variable ¢ such that
x > 0= ¢ =1, in consequence the constraint x — Mj < 0, and
we get
TC(X) = Cyx + C56.

In this case, we do need introduce the implication
x =0 = ¢ =0, since it holds in an optimal solution (the
minimization of objective function TC(x)). .
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Indicator variables

A mix problem: Let x4 i xg be the variables that represent the
percentage of components A and B in a mixture, respectively.
Additionally, apart from other constraints in the problem that can be
expressed in linear form, there is the following constraint:

“If the mixture contains component A then component B must be
contained in the mixture’.

We introduce indicator variable ¢ such that: x4 > 0= =1, i.e. the
constraint Xa— 0 <0. (7)

Here M = 1, since x4 < 1. Furthermore, we need to introduce the
constraint
0=1=x5>0,

which can be modeled Xg — 0.015 > 0, 8)

where mis the threshold value (here m = 0.01). If the value of xg is
below m then it is assumed that component B is not present in the

mixture. [
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Constraint feasibility “<”

Checking if a given constraint is satisfied. Consider the

constraint:
Z aiXj < b.
J

The implication
§=1=> ax<b
J
can be represented by the constraint:

> axj+ Ms < M+ b,
j

where M is an upper bound on Zj ajx; — b.
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Constraint feasibility “<”
The opposite implication

dax<b=5=1,
J

which can be expressed in the form

§=0=> ax>b (9)
i

is modeled as follows: inequality

Zajxj>b
)

we rewrite it (as in (5))

Z aiXj > b+e.
]' e
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Constraint feasibility “<”

Thus, implication (9) (0 =0 = Z/ ajx; > b) is written

§=0=-> axj+b+e<0. (10)
j
Now, the condition (10) is represented by the constraint
Z ajxj — —€)0>b+e,

where mis an lower bound on values of ; a;x; — b. € is a small
positive value. Exceeding it makes the constraint unsatisfied.
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Constraint feasibility “>”

Checking if a given constraint with ‘>" is satisfied. Consider the

constraint:
D axzb
J

We associate a indicator variable ¢ with the above constraint (¢
indicates if the constraint is satisfied or not satisfied). Hence

Za,-x,-eré > m4+b

Zajxj (M+¢)d < b—e,

where mi M are, respectively, lower and upper bounds on
2. 8Xj = b.
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Constraint feasibility “=
Checking if a given constraint with ‘=" is satisfied. Consider the

constraint:
> ax=b

/
We associate a indicator variable § with the above constraint
(6 indicates if the constraint is satisfied or not satisfied).

> ax+Ms < M+b,

J

> ax+mo

]
Zajxj m—e) > b+e,

Y

m+ b,

Za,x, M+¢e)d < b-—g,

§+06 —5<1.
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Constraint feasibility

Example: We are given the inequality
2X1 +3x <1,

where xq, Xz are integer numbers not greater than 1. In order to
indicate that the constraint is satisfied, we need to introduce the
conditions:

0=1=2x1 +3x <1,
2X1 +3x% <1=0=1.

Setting M =4, m= —1ie= 0.1, we get the following
constraints represented the conditions

2X1 + 3xo + 46

<
2X1 +3x2 +1.16 >
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Logical constraints

Let X; be the proposition
Component i is in the mixture,
where i € {A, B, C}, then
Xy = (XgV X¢)
means the proposition

If component A is in the mixture, then B or C or both are in the
mixture

We write the above proposition as
(Xa = Xg) V (Xa = Xc)
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Logical constraints

Recalling the known facts:

~~ P

P=Q
P=QAR
P=QVR
PANQ=R
PvQ=R
~(PVv Q)
~(PAQ)

P,

~ PV Q,
(P=Q)A(P=R),
(P=Q)V(P=R),
(P=R)VvV(Q=R),
(P=R) A (Q= R),
~ PA~ Q,

~ PV~ Q.
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Logical constraints

Let X; means the proposition “6; = 1”, whered; is indicator
variable. Then, we have the following equivalent conditions:

X1V Xo
X1 A Xo

~ Xi
X1 = Xo
X1 e Xo

01 +02>1,

01 =1,00 =1,

1 =0(or1 -4y =1),
01 — 02 <0,

61 — 0> =0.
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Logical constraints

Example: If products A or B (both) are produced, then at least
one product from products C, D or E will have to be produced.
Let X; means the proposition:

Product / is produced, i € {A,B,C, D, E}
The following condition is included to a model:
(XaV Xg) = (Xc vV Xp V Xg).
Let 6; be the indicator variable such that:
0; = 1 < the i-th product is produced
and

6 = 1 if the proposition X4 v Xz is true. _
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Logical constraints

Proposition X4 V Xg is represented by the following inequality
oa+dg>1,

and proposition X vV Xp Vv Xg by the following inequality
60 + 6D + 6E 2 1 )

We write the condition:
at+og>1=6=1,

which is enforced by the constraint
oa+dg—26 <0.

And the condition
60=1 :>5C+5D+5EZ 1,

which is enforced by the constraint

6 —0p—0g+6<0. =
© - Wroctaw University of Technology



Logical constraints

Implication (X4 vV Xg) = (X¢ V Xp Vv Xg) can be replaced
(XA = (XC VvV Xp Vv XE) N (XB = (XC VvV Xp V XE)

and can be expressed by the following system of inequalities:

—So—0p—0g+d5 < O
Sa—6 < O
Sg—06 < O.

Both ways of modeling are correct.
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The product of binary variables
If there is the product of two binary variables ¢10- in @ model,
then we can linearize it in the following way:
e we replace 162 with binary variable ds,

¢ we enforce the logical condition
03 =1 <:>(51 :1)/\((52:1)
by adding the following constraints:

-0 +d63 < 0
—do+d63 < 0
01 +o2—03 < 1.

Constraint §16o = 0 represents the condition:
61 =0V =0.

The product of more than two binary variables can be
successively reduced to the product of two binary variables.
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The product of binary variables

If there is the product of continuous variable x and binary
variable ¢, xJ, then we can linearize it in the following way:

e we replace xd with continuous variable y,
¢ we enforce the logical conditions

6=0 = y=0,
=1 = y=x

by including the constraints:

y — Ms
X_y+M6§M7

IAIA
o

where M is upper bound on the values of x (and of y).
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Modeling bounded set of values

Suppose x; takes the values from the following set:
{a‘],,am}

In order to model this situation, we introduce binary variables J;,
j=1,...,mand the constraints:

m
Zajéj = X,
j=1
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Modeling bounded set of values
Example:(Building warehouse) Suppose that we wish to make
decision about the size of a warehouse. Obviously, the sizes
depend on costs:

size | cost
10 | 100
20 | 180
40 | 320
60 | 450
80 | 600

Using binary variables §;, we model the size and the cost of
building:
COST = 10041 + 18002 + 32003 + 45064 + 60045
SIZE = 1061 + 2002 + 4063 + 6004 + 8005.

We include the constraint:
61 + 52 + 53 + 54 + 55 = 1 - Wroctaw University of Technology



A piecewise linear objective function

A piecewise linear function can be modeled by binary
variables.

A function is given by ordered pairs (a;, f(a;)). We wish to
compute the value of f(x).

We introduce binary variables §;, in order to indicate
interval a; < x < a;¢ that x belongs

To compute the value of the function, we take linear
combination S°K . \f(a).

The above method can be applied if at most two adjacent
Ai i Ajrq are positive. They correspond to interval bounds
aj, djy1-
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Minimizing a piecewise linear objective function

A model for minimizing a piecewise linear objective function:

k
minZA,-f(a,-)

=1
Z;(:1 >\’ = 1’
A <y,
)\,‘S(Si_1 +(5,', j:27.”k717
Ak < 01,

k=1 ¢

2=t 0 =1,

Ai > 0.

Wroctaw University of Technology



Alternative Constraints

Assume that at least one, but not necessary the all of the
conditions:
Ri,Ro, ..., Rn.

must be satisfied. One can express this as follows:
RiV RoV---V Ry,
where R; is a condition.

“The i-th constraint is satisfied”.
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Alternative Constraints
We introduce N indicator variables §; associated with the
fulfillment of the conditions R;, i =1,..., N:
0;=1= R,.

If R jest an inequality of the form }_; a;x; < b, then we include
th ndition:
& condi S ax + Mo < M+ b. (11)

J

If R jest an inequality of the form ; a;x; > b, then we include

h ition:

the condition Zaj)q+m52 m+b. (12)
J

For inequalities (11) and (12), we append the constraint:

01 +d0o+---+oy>1.
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Alternative Constraints

Assume that we want to express the condition:
“at least k conditions Ry, Ro, ..., Ry must be satisfied”.
The above condition can be modeled by

04 +---+ oy > K.

The condition:
“at most k conditions Ry, Ro, ..., Ry must be satisfied”.
can be modeled by

R,'=>5,':1,
o1 +---+on < k.
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Modeling nonconvex regions (sets)

The application of alternative constraints
Consider the following nonconvex region (ABCDEFGO).

T2 )
D

The above region can be treaded as union of convex regions
ABJO’ ODH i KFGO' WrodawUniversiLyo(Technolugy



Modeling nonconvex regions

Region ABJO is determined by the following constraints

Region KFGO is determined by the following constraints

X2

VANVAN

X

7
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Modeling nonconvex regions
We introduce indicator variables: 41, d2, 03

=1 = (<3)A(g+x <4),
f2=1 = (X +X<0)A(Bx—x2<8),
B3=1 = (<1)A(4<5).

The above implications are modeled by the constraints:

X2+ < 4

X1+ Xxo+56 < 9,

X1+ X2 +40 < 4,
3 — X0+ 76 < 15,

Xo +303 < 4,

x; < 5.

We need to include also the condition (constraint) that (13) and (14)
or (15) and (16) or (17) and (18) are satisfied

01+ 02+ 93 > 1. _
Wroctaw University of Technology



Restricting the number of variables

Suppose, we wish to restrict the number of variables (integer
and continuous) that take positive values in a feasible solution.
For instance, we wish to restrict the number of components in a
mixture or we wish to restrict an assortment of products
produced.

In order to restrict the number of variables xq, X, . .., X, to k, we
introduce indicator variables ¢§; associated with x;

Xi>0=46=11i=1,...,n
The above implication is modeled by
Xi — M;j6; <0 i:1,...,n,

M; is an upper bound on values of x;. We also include the
constraint:

01 + 02+ -+ dn < k. M



Resource limits having discrete values

Suppose that a linear programming model has the constraint,
which limits a resource: Z/ ajx; < bo.
and the resource limit can be increased successively only by

certain discrete values by, bo, ..., b, at certain costs
cosT—{ 0 fori=0
c; otherwise

where ¢y < ¢ < --- < ¢p. This situation can be modeled by
introducing binary variables §; that represent the resource
increase
Za,-x,- < bodo + b11 + - - - + bndn.
i
We have to add to an objective function the expression:

Codp + C101 + - - - + Cnbn. _
Wroctaw University of Technology



max — max objective functions

Consider the following objective function:

max (m,ax (2}: a,,x,))

where a set of feasible solution is determined by linear
constraints.
We model this objective function by alternative constraints

max z

subject to
dax-z=0V) ayx—z=0V--

) )
5
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The set cover problem

The set cover problem is: given a set of elements
E ={eq,en,...,en} and a set of m subsets of E,
S§=1{51,S,...,Sn} with costs ¢q, cp, ..., Cm.
Find a least cost collection C of sets from S such that C, covers
all elements in E. Thatis, Jgcc Si = E.
Example:

E=1{1,2,38,4,5},

and

S =1{{1,2},{1,8,5},{2,4,5},{3},{1},{4,5}}.

Assume thatc;=1,i=1,..., m. A collection C (feasible
solution, cover) that covers E is

C={{1,2},{1,8,5},{2,4,5}}.
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The set cover problem - a model

Binary variables §;, i =1,...,6:

5 — 1 if the /-th subset S belongs to a cover
"7 1 0 otherwise.

The following constraints ensure that each element / € E must
be covered:

01 + 02 + O3 + 04 + 05 + dg — MIN

01 + 0o 05 > 1element 1
51 + &3 > 1element 2
oo + 04 > 1
o) + 0 > 1
0o + 03 + o0 > 1element6
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The set packing problem

The set packing problem is: given a set of elements

E ={ey,en,...,en} and a set of m subsets of E,
S§=1{81,S,...,Sn} with weights wy, wo, ..., wp.

Find collection C of mutually disjoint sets from S whose weight
is maximal.

Example:
E=1{1,2,3,4,5,6},
and
S=1{{1,2,5},{1,3},{2,4},{3,6},{2,3,6}}.
Assume that w; =1,/ =1,..., m. A collection C (feasible
solution) is

C = {{1,2,5},{3,6}}.
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The set packing problem
Binary variables ¢;, i =1,...,5:

5 — 1 if the /-the subset Sbelongs to C
"7 1 0 otherwise.

The following constraints ensure that each element i/ belongs to
at most one subset of E

01 + 0o + b3 + 64 + 05 — max

0 + 62 < 1element 1
04 + 03 + 05 < 1element2

02 4+ 04 4+ 95 < 1

93 < 1

04 < 1
+ 04 + 65 < 1element6
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Generalized assignment problem

The generalized assignment problem consists in assigning |/|
“objects” to |J| “boxes”. We wish to assign each object to
exactly one box; if assigned to box j, object i consumes a;; units
of a given “resource” in that box. The total amount of resource
available in the jth box is d;. This generic problem arises in a
variety of problem contexts.

Example Machine scheduling: the objects are jobs, the boxes
are machines; ajis the processing time of job / on machine j
and d; is the total amount of time available on machine ;.
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Generalized assignment problem - a model

min > ") " cjx;

il jed
> xp=1 foriel
jed
> apx; < d forjedJ
icl
xj €1{0,1} ieljed

xj = 1 if object i is assigned to box j; x; = 0 otherwise.
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Facility location problem

> cixi+ > Fiyj < min

iel jed jeJ

> ox=1 fori €/
jed

> dixy < Ky, forj e J
i€l

0<x; <1 ieljed
y;€{0,1} jed

| - the set of customers
J - the set of potential facility (warehouse) locations used to supply to the

customers
y; - the binary variable indicates whether or not we choose to locate a facility

at location j

xj - the fraction of the demand of customer i that we satisfy from facility j
d; - the demand of customer i

cj - the cost (transportation cost) of satisfying all of the jth customer’s
demand from facility j

F; - the fixed cost of opening (leasing) a facility of size K; at Ioﬂ%ﬁw



