
16
LAGRANGIAN RELAXATION AND
NETWORK OPTIMIZATION

Chapter OutlIne

16.1 Introduction

I never missed the opportunity to remove obstacles in the way
of unity.

-Mohandas Gandhi

16.2 Problem Relaxations and Branch and Bound
16.3 Lagrangian Relaxation Technique
16.4 Lagrangian Relaxation and Linear Programming
16.5 Applications of Lagrangian Relaxation
16.6 Summary

16.1 INTRODUCTION

As we have noted throughout our discussion in this book, the basic network flow
models that we have been studying-shortest paths, maximum flows, minimum cost
flows, minimum spanning trees, matchings, and generalized and convex flows-
arise in numerous applications. These core network models are also building blocks
for many other models and applications, in the sense that many models met in prac-
tice have embedded network structure: that is, the broader models are network
problems with additional variables and/or constraints.

In this chapter we consider ways to solve these models using a solution strategy
known as decomposition which permits us to draw upon the many algorithms that
we have developed in previous chapters to exploit the underlying network structure.
In a sense this chapter serves a dual purpose. First, it permits us to introduce a
broader set of network optimization models than we have been considering in our
earlier discussion. As such, this chapter provides a glimpse of how network flow
models arise in a wide range of applied problem settings that cannot be modeled as
pure network flow problems. Second, the chapter introduces a solution method,
known as Lagrangian relaxation, that has become one of the very few solution
methods in optimization that cuts across the domains of linear and integer program-
ming, combinatorial optimization, and nonlinear programming.

Perhaps the best way to understand the basic idea of Lagrangian relaxation is
via an example.

598

Constralned Shortest Paths
Consider the network shown in Figure 16.I(a) which has two attributes associated
with each arc (i, j): a cost Cij and a traversal time tij' Suppose that we wish to find
the shortest path from the source node 1 to the sink node 6, but we wish to restrict
our choice of paths to those that require no more than T = 10 time units to traverse.
This type of constrained shortest path application arises frequently in practice since
in many contexts a company (e.g., a package delivery firm) wants to provide its
services at the lowest possible cost and yet ensure a certain level of service to its
customers (as embodied in the time restriction). In general, the constrained shortest
path problem from node 1 to node n can be stated as the following integer program-
ming problem:

subject to

:L Xij-
{j: U.j)EA}

Minimize :L CijXij
(iJ)EA

{

I
:L Xji = 0

{j:(j.i)EA} -I

:L tijxij T,
(i.j)EA

for i = 1
for i E N - {l, n},
for i = n

Xij = 0 or 1 for all (i, j) E A.

(16.la)

(16.lb)

(16.lc)

(16.ld)

The problem is not a shortest path problem because of the timing restriction.
Rather, it is a shortest path problem with an additional side constraint (16.lc). Instead
of solving this problem directly, suppose that we adopt an indirect approach by
combining time and cost into a single modified cost; that is, we place a dollar equiv-
alent on time. So instead of setting a limit on the total time we can take on the chosen
path, we set a "toll charge" on each arc proportional to the time that it takes to

(a) (b)

Figure 16.1 Time-constrained shortest path problem: (a) constrained shortest path problem
(bold lines denote the shortest path for J.L = 0); (b) modified cost c + J.Ll with Lagrange
multiplier J.L = 2 (bold lines denote the shortest path).

Sec. 16.1 Introduction S99

traverse that arc. For example, we might charge $2 for each hour that it takes to
traverse any arc. Note that if the toll charge is zero, we are ignoring time altogether
and the problem becomes a usual shortest path problem with respect to the given
costs. On the other hand, if the toll charge is very large, these charges become the
dominant cost and we will be seeking the quickest path from the source to the sink.
Can we find a toll charge somewhere in between these values so that by solving the
shortest path problem with the combined costs (the toll charges and the original
costs), we solve the constrained shortest path problem as a single shortest path
problem?

For any choice of the toll charge, we solve a shortest path problem with
respect to the modified costs Cij + For the sample data shown in Figure 16.1(a),
if = 0, the modified problem becomes the shortest path problem with respect to
the original costs Cij and the shortest path 1-2-4-6 has length 3. This value is an
obvious lower bound on the length of the constrained shortest path since it ignores
the timing constraint. Now suppose that we set = 2 and solve the modified prob-
lem. Figure 16.1(b) shows the modified costs Cij + 2tij. The shortest path 1-3-2-
5-6 has length 35. In this case, the path 1-3-2-5-6 that solves the modified problem
happens to require 10 units to traverse, so it is a feasible constrained shortest path.
Is it an optimal constrained shortest path?

To answer this question, let us make an important observation (which we will
prove formally in the next section). Let P, with cost Cp = L(i.})EP Cij and traversal
time tp = LU.})EP tij, be any feasible path to the constrained shortest path problem,
and let denote the optimal length of the shortest path with the modified costs
when we impose a toll of units. Since the path P is feasible for the constrained
shortest path problem, the time tp required to traverse this path is at most T = 10
units. With respect to the modified costs Cij + the cost Cp + of the path P
is the path's true cost Cp plus units. Therefore, if we subtract from the
modified cost Cp + of this path, we obtain a lower bound Cp + - =
Cp + - T) Cp on the cost Cp of this path. Since the shortest path with respect
to the modified arc costs is less than or equal to the modified cost of any particular
path, Cp + and so - is a common lower bound on the length of
any feasible path P and thus on the length of the constrained shortest path. Because
this argument is completely general and applies to any value 2: 0 of the toll charges,
if we subtract the optimal length of the shortest path of the modified problem,
we obtain a lower bound on the optimal cost of the constrained shortest path problem.

Bounding Principle. For any nonnegative value of the toll the length l(fL)
of the modified shortest path with costs Cij + minus is a lower bound on the
length of the constrained shortest path.

Note that for our numerical example, for = 2, the cost of the modified shortest
path problem is 35 units and so 35 - 2(T) = 35 - 2(1 0) = 15 is a lower bound on
the length of the optimal constrained shortest path. But since the path 1-3-2-5-6
is a feasible solution to the constrained shortest path problem and its cost equals
the lower bound of 15 units, we can be assured that it is an optimal constrained
shortest path.

Observe that in this example we have been able to solve a difficult optimization

600 Lagrangian Relaxation and Network Optimization Chap. 16

model (the constrained shortest path problem is an Xg:>-complete problem) by re-
moving one or more problem constraints-in this case the single timing constraint-
that makes the problem much more difficult to solve. Rather than solving the difficult
optimization problem directly, we combined the complicating timing constraint with
the original objective function, via the toll IJ., so that we could then solve a resulting
embedded shortest path problem. The motivation for adopting this approach was
our observation that the original constrained shortest path problem had an attractive
substructure, the shortest path problem, that we would like to exploit algorithmically.
Whenever we can identify such attractive substructure, we could adopt a similar
approach. For reasons that will become clearer in the next section, this general
solution approach has become known as Lagrangian relaxation.

In our example we have been fortunate to find a constrained shortest path by
solving the Lagrangian subproblem for a particular choice of the toll IJ.. We will not
always be so lucky; nevertheless, as we will see, the lower bounding mechanism of
Lagrangian relaxation frequently provides valuable information that we can exploit
algorithmically.

Lagrangian relaxation is a general solution strategy for solving mathematical
programs that permits us to decompose problems to exploit their special structure.
As such, this solution approach is perfectly tailored for solving many models with
embedded network structure. The Lagrangian solution strategy has a number of
significant advantages:

1. Since it is often possible to decompose models in several ways and apply La-
grangian relaxation to each different decomposition, Lagrangian relaxation is
a very flexible solution approach. Indeed, because of its flexibility, Lagrangian
relaxation is more of a general problem solving strategy and solution framework
than any single solution technique.

2. In decomposing problems, Lagrangian relaxation solves core subproblems as
stand-alone models. Consequently, the solution approach permits us to exploit
any known methodology or algorithm for solving the subproblems. In partic-
ular, when the subproblems are network models, the Lagrangian solution ap-
proach can take advantage of the various algorithms that we have developed
previously in this book.

3. As we have already noted, Lagrangian relaxation permits us to develop bounds
on the value of the optimal objective function and, frequently, to quickly gen-
erate good, though not necessarily optimal solutions with associated perfor-
mance guarantees-that is, a bound on how far the solution could possibly be
from optimality (in objective function value). In many instances in the context
of integer programming, the bounds provided by Lagrangian relaxation meth-
ods are much better than those generated by solving the linear programming
relaxation of the problems, and as a consequence, Lagrangian relaxation is
often an attractive alternative to linear programming as a bounding mechanism
in branch-and-bound methods for solving integer programs.

4. In many instances we can use Lagrangian relaxation methods to devise effective
heuristic solution methods for solving complex combinatorial optimization
problems and integer programs.

Sec. 16.1 Introduction 601

In the remainaer of this chapter we describe the Lagrangian relaxation solution
approach in more detail and demonstrate its use in solving several important network
optimization models. Our purpose is not to present a comprehensive treatment of
Lagrangian relaxation or of its applications to the field of network optimization, but
rather to introduce this general solution strategy and to illustrate its applications in
a way that would lay the essential foundations for applying the method in many other
problem contexts. As a by-product of this discussion, in the text and in the exercises
at the end of this chapter we introduce several noteworthy network optimization
models that we do not treat elsewhere in the book.

Since one of the principal uses of Lagrangian relaxation is within implicit enu-
meration procedures for solving integer programs, before describing Lagrangian re-
laxation in more detail, we first discuss its use within classical branch-and-bound
algorithms for solving integer programs. The reader can skip this section without
loss of continuity.

16.2 PROBLEM RELAXATIONS AND BRANCH AND
BOUND

In the last section we observed that Lagrangian relaxation permits us to develop a
lower bound on the optimal length of a constrained shortest path. In Section 16.3
we develop a generalization of this result, showing that we can obtain a lower bound
on the optimal objective function value of any minimization problem. These lower
bounds can be of considerable value: for example, for our constrained shortest path
example, we were able to use a lower bound to demonstrate that a particular solution
that we generated by solving a shortest path subproblem, with modified costs, was
optimal for the overall constrained problem. In general, we will not always be as
fortunate in being able to use a lower bound to guarantee that the solution to a single
subproblem solves the original problem. Nevertheless, as we show briefly in the
section, we might still be able to use lower bounds as an algorithmic tool in reducing
the number of computations required to solve combinatorial optimization problems
formulated as integer programs.

Consider the following integer programming model:

Minimize ex

subject to

xE F.

In this formulation, the set F represents the set of feasible solutions to an integer
program, that is, the set of solutions x = (XI, X2, ••• , xJ) to the system

S1ix = b,

Xj = 0 or 1 for j = 1, 2, ... , J.

In a certain conceptual sense, this integer program is trivial to solve: We simply
enumerate every combination of the decision variables, that is, all zero-one vectors
(XI, X2, ••• ,xJ) obtained by setting each variable Xj to value zero or 1; from among

602 Lagrangian Relaxation and Network Optimization Chap. 16

all those vectors that satisfy the given equality constraint sflx = b, we choose the
combination with the smallest value of the objective function ex. Of course, because
of its combinatorial explosiveness, this total enumeration procedure is limited to
very small problems; for a problem with 100 decision variables, even if we could
compute one solution every nanosecond (10 -9 second), enumerating all 2100 solutions
would take us over a million million years-that is, a million different million years!

Can we avoid any of these computations? Suppose that F = FI U F2. For
example, we might obtain F' from F by adding the constraint Xl = 0 and F2 by
adding the constraint x, = 1. Note that the optimal solution over the feasible set F
is the best of the optimal solutions over FI and F2. Suppose that we already have
found an optimal solution x to min{ex : x E F2} and that its objective function value
is z(x) = 100. The number of potential integer solutions in F' is still 2J - I, so it will
be prohibitively expensive to enumerate all these possibilities, except when J is
small.

Rather than attempt to solve the integer program over the feasible region F',
suppose that we solve a relaxed version of the problem, possibly by relaxing the
integrality constraints, and/or possibly by performing a Lagrangian relaxation of the
problem. In general, we obtain a relaxation by removing some constraints from the
model: for example, by replacing the restrictions Xj 2: 0 and integer, by the restriction
Xj 2: 0, or by deleting one or more constraints of the form ax = We could use
many different types of relaxation-in Lagrangian relaxation, for example, we not
only delete some problem constraints, but we also change the objective function of
the problem. For the purpose of this discussion, we merely require that we relax
some of the problem constraints and that the objective function value of the relax-
ation is a lower bound on the objective function value of the original problem.

Let x' denote an optimal solution to the relaxation, and let z(x ') denote the
objective function value of this solution. We consider four possibilities:

1. The solution X I does not exist because the relaxed problem has no feasible
solution.

2. The solution x' happens to lie in F' (even though we relaxed some of the
constraints).

3. The solution x' does not lie in F' and its objective function value z(x ') satisfies
the inequality z(x ') 2: z(x) = 100.

4. The solution x' does not lie in F' and its objective function value z(x ') of x'
satisfies the inequality z(x') < z(x) = 100.

Note that these four alternatives exhaust all possible outcomes and are mutually
exclusive. Therefore, exactly one of them must occur.

We now make an important observation. In cases 1 to 3, we can terminate our
computations: we have solved the original problem over the set F, even though we
have not explicitly solved any integer program (assuming that we obtained the so-
lution over the set F2 without solving an integer program). In case 1, since the
relaxation of the set FI is empty, the set FI is also empty, so the solution x solves
the original (overall) integer program. In case 2, since we have found the optimal
solution in the relaxation (and so a superset) of the set FI, and this solution lies in

Sec. 16.2 Problem Relaxations and Branch and Bound 603

FI, we have also found the best solution in FI; therefore, either x or x' is the solution
to the original problem (whichever solution has the smaller objective function value).
Note that in this case we have implicitly considered (enumerated) all of the solutions
in FI in the sense that we know that no solution in this set is better than x. In case
3, the solution x has as good an objective function value as the best solution in a
relaxation of FI, so it has an objective function value that is as good as any solution
in Fl. Therefore, x solves the original problem. Note that in case 3 we have used
bounding information on the objective function value to eliminate the solutions in
the set FI from further consideration.

In case 4, we have not yet solved the original problem. We can either try to
solve the problem minimize {ex: x E FI} by some direct method of integer pro-
gramming or, we can partition FI into two sets F3 and F4. For example, we might
obtain F3 from F by constraining Xl = 0 and X2 = 0 and obtain F4 by setting XI = 0
and X2 = 1. We could then apply any relaxation or direct approach for the problems
defined over the sets F3 and F4.

In a general branch-and-bound procedure, we would systematically partition
the feasible region F into subregions F 1, F2, F3, . . . , FK. Let x denote the best
feasible solution (in objective function value) we have obtained in prior computa-
tions. Suppose that for each k = 1, 2, ... , K, either Fk is empty or Xk is a solution
of a relaxation of the set Fk and ex :S cxk. Then no point in any of the regions FI,
p2, F 3, ... , Fk could have a better objective function value than x, so x solves the
original optimization problem. If ex > exk, though, for any region Fk, we would
need to subdivide this region by "branching" on some of the variables (i.e., dividing
a subregion in two by setting Xj = 0 or Xj = 1 for some variable j to define two new
subregions). Whenever we have satisfied the test ex :S exk for all of the subregions
(or we know they are empty), we have solved the original problem.

The intent of the branch-and-bound method is to find an optimal solution by
solving only a small number of relaxations. To do so, we would need to obtain good
solutions quickly and obtain good relaxations so that the objective function value
z(xk) of the solution Xk to the relaxation of the set Fk is close in objective function
value to the optimal solution over Fk itself.

In practice, in implementing the branch-and-bound procedure, we need to make
many design decisions concerning the order for choosing the subregions, the vari-
ables to branch on for each subregion, and mechanisms (e.g., heuristic procedures)
that we might use to find "good" feasible solutions. The literature contains many
clever approaches for resolving these issues and for designing branch-and-bound
procedures that are quite effective in practice. We also need to develop good re-
laxations that would permit us to obtain effective (tight) lower bounds: if the lower
bounds are weak, cases 2 and 3 will rarely occur and the branch-and-bound procedure
will degenerate into complete -enumeration. On the other hand, if the bounds are
very tight, the relaxations will permit us to eliminate much of the enumeration and
develop very effective solution procedures. Since our purpose in this chapter is to
introduce one relaxation procedure that has proven to be very effective in practice
and discuss its applications, we will not consider the detailed design choices for
implementing the branch-and-bound procedure.

We next summarize the basic underlying ideas of the Lagrangian relaxation
technique.

604 Lagrangian Relaxation and Network Optimization Chap. 16

16.3 LAGRANGIAN RELAXATION TECHNIQUE
To describe the general form of the Lagrangian relaxation procedure, suppose that
we consider the following generic optimization model formulated in terms of a vector
x of decision variables:

subject to
z* = min ex

stlx = b,

xEX.

(P)

This model (P) has a linear objective function ex and a set stlx = b of explicit
linear constraints. The decision variables x are also constrained to lie in a given
constraint set X which, as we will see, often models embedded network flow struc-
ture. For example, the constraint set X = {x : Xx = q, 0 x u} might be all the
feasible solutions to a network flow problem with a supply/demand vector q. Or,
the set X might contain the incidence vectors of all spanning trees or matchings of
a given graph. Unless we state otherwise, we assume that the set X is finite (e.g.,
for network flow problems, we will let it be the finite set of spanning tree solutions).

As its name suggests, the Lagrangian relaxation procedure uses the idea of
relaxing the explicit linear constraints by bringing them into the objective function
with associated Lagrange multipliers (this old idea might be a familiar one from
advanced calculus in the context of solving nonlinear optimization problems). We
refer to the resulting problem

Minimize ex + - b)

subject to
xEX,

as a Lagrangian relaxation or Lagrangian subproblem of the original problem, and
refer to the function

= min{cx + - b) : x EX},

as the Lagrangian function. Note that since in forming the Lagrangian relaxation,
we have eliminated the constraints stlx = b from the problem formulation, the so-
lution of the Lagrangian subproblem need not be feasible for the original problem
(P). Can we obtain any useful information about the original problem even when the
solution to the Lagrangian subproblem is not feasible in the original problem (P)?
The following elementary observation is a key result that helps to answer this ques-
tion and that motivates the use of the Lagrangian relaxation technique in general.

Lemma 16.1 (Lagrangian Bounding Principle). For any vector of the La-
grangian multipliers, the value of the Lagrangian function is a lower bound
on the optimal objective function value z* of the original optimization problem (P).

Proof. Since sflx = b for every feasible solution to (P), for any vector of
Lagrangian multipliers, z * = min{ ex : sflx = b, x E X} = min{ ex + IJ.(stlx - b) :
sflx = b, x E X}. Since removing the constraints sflx = b from the second formulation

Sec. 16.3 Lagrangian Relaxation Technique 605

cannot lead to an increase in the value of the objective function (the value might
decrease), z* min{cx + - b) : x E X} = •

As we have seen, for any value of the Lagrangian multiplier is a lower
bound on the optimal objective function value of the original problem. To obtain the
sharpest possible lower bound, we would need to solve the following optimization
problem

L * =
which we refer to as the Lagrangian multiplier problem associated with the original
optimization problem (P). The Lagrangian bounding principle has the following im-
mediate implication.

Property 16.2 (Weak Duality). The optimal objective function value L * of the
Lagrangian multiplier problem is always a lower bound on the optimal objective
function value of the problem (P) (i.e., L * z*).

Our preceding discussion provides us with valid bounds for comparing objective
function values of the Lagrange multiplier problem and optimization (P) for any
choices of the Lagrange multipliers and any feasible solution x of (P):

These inequalities furnish us with a guarantee when a Lagrange mUltiplier to the
Lagrange multiplier problem or a feasible solution x to the original problem (P) are
optimal.

Property 16.3 (Optimality Test)
(a) Suppose that is a vector of Lagrangian multipliers and x is a feasible solution

to the optimization problem (P) satisfying the condition = cx. Then
is an optimal solution of the Lagrangian multiplier problem [i.e., L * = L(J-L)]
and x is an optimal solution to the optimization problem (P).

(b) If for some choice of the Lagrangian multiplier vector the solution x* of the
Lagrangian relaxation is feasible in the optimization problem (P), then x* is an
optimal solution to the optimization problem (P) and is an optimal solution to
the Lagrangian multiplier problem.

Note that by assumption in part (b) of this property, = cx* + -
b) and 3lx* = b. Therefore, = cx* and part (a) implies that x* solves problem
(P) and solves the Lagrangian multiplier problem.

As indicated by Property 16.3, the bounding principle immediately implies one
advantage of the Lagrangian relaxation approach-the method can give us a certif-
icate [in the form of the equality L(JJ.) = cx for some Lagrange multiplier J-L] for
guaranteeing that a given feasible solution x to the optimization problem (P) is an
optimal solution. Even if < cx, having the lower bound permits us to state a
bound on how far a given solution is from optimality: If [cx - 0.05,
for example, we know that the objective function value of the feasible solution x is
no more than 5% from optimality. This type of bound is very useful in practice-it

606 Lagrangian Relaxation and Network Optimization Chap. 16

permits us to assess the degree of suboptimality of given solutions and it permits us
to terminate our search for an optimal solution when we have a solution that we
know is close enough to optimality (in objective function value) for our purposes.

Lagrangian Relaxation and Inequality Constraints
In the optimization model (P), the constraints :Ax = b are all equality constraints.
In practice, we often encounter models, such as the constrained shortest path prob-
lem, that are formulated more naturally in inequality form :Ax :s b. The Lagrangian
multiplier problem for these problems is a slight variant of the one we have just
introduced: The Lagrangian multiplier problem becomes

L * = max L(fJ.).

That is, the only change in the Lagrangian multiplier problem is that the La-
grangian multipliers now are restricted to be nonnegative. In Exercise 16.1, by in-
troducing "slack variables" to formulate the inequality problem as an equivalent
equality problem, we show how to obtain this optimal multiplier problem from the
one we have considered for the equality problem. This development implies that the
bounding property, the weak duality property, and the optimality test 16.3(a) are
valid when we apply Lagrangian relaxation to any combination of equality and in-
equality constraints.

There is, however, one substantial difference between relaxing equality con-
straints and inequality constraints. When we relax inequality constraints stlx :s b, if
the solution x* of the Lagrangian subproblem happens to satisfy these constraints,
it need not be optimal (see Exercise 16.2). In addition to being feasible, this solution
needs to satisfy the complementary slackness condition fJ.(stlx* - b) = 0, which is
familiar to us from much of our previous discussion of network flows in section 9.4.

Property 16.4. Suppose that we apply Lagrangian relaxation to the optimi-
zation problem (PS) defined as minimize {cx : stlx :s b and x E X} by relaxing the
inequalities stlx :S b. Suppose, further, that for some choice of the Lagrangian mul-
tiplier vector fJ., the solution x* of the Lagrangian relaxation (1) is feasible in the
optimization problem (PS

), and (2) satisfies the complementary slackness condition
fJ.(stlx* - b) = 0. Then x* is an optimal solution to the optimization problem (PS).

Proof. By assumption, L(fJ.) = cx* + fJ.(:Ax* - b). Since fJ.(stlx* - b) = 0,
L(fJ.) = cx*. Moreover, since :Ax* :S b, x* is feasible, and so by Property 16.3(a)
x* solves problem (PS). •

Are solutions to the Lagrangian subproblem of use in solving the original prob-
lem? Properties 16.3 and 16.4 show that certain solutions of the Lagrangian sub-
problem provably solve the original problem. We might distinguish two other cases:
(1) when solutions obtained by relaxing inequality constraints are feasible but are
not provably optimal for the original problem (since they do not satisfy the com-
plementary slackness condition), and (2) when solutions to the Lagrangian relaxation
are not feasible in the original problem.

In the first case, the solutions are candidate optimal solutions (possibly for use

Sec. 16.3 Lagrangian Relaxation Technique 607

in a branch-and-bound procedure). In the second case, for many applications, re-
searchers have been able to devise methods to modify "modestly" infeasible so-
lutions so that they become feasible with only a slightly degradation in the objective
function value. These observations suggest that we might be able to use the solutions
obtained from the Lagrangian subproblem as "approximate" solutions to the original
problem, even when they are not provably optimal; in these instances, we can use
Lagrangian relaxation as a heuristic method for generating provably good solutions
in practice (the solutions might be provably good because of the Lagrangian lower
bound information). The development of these heuristic methods depends heavily
on the problem context we are studying, so we will not attempt to provide any further
details.

Solving the Lagrangian Multiplier Problem
How might we solve the Lagrangian multiplier problem? To develop an understand-
ing of possible solution techniques, let us consider the constrained shortest path
problem that we defined in Section 16.1. Suppose that now we have a time limitation
of T = 14 instead of T = 10. When we relax the time constraint, the Lagrangian
multiplier function for the constrained shortest path problem becomes

= min{cp + - T) : P E Cl}}.

In this formulation, Cl} is the collection of all directed paths from the source node 1
to the sink node n. For convenience, we refer to the quantity cp + - T) as
the composite cost of the path P. For a specific value of the Lagrangian multiplier

we can solve by enumerating all the directed paths in Cl} and choosing the
path with the smallest composite cost. Consequently, we can solve the Lagrangian
multiplier problem by determining for all nonnegative values of the Lagrangian
multiplier and choosing the value that achieves max 2:0

Let us illustrate this brute force approach geometrically. Figure 16.2 records
the cost and time data for every path for our numerical example. Note that the
composite cost cp + - T) for any path P is a linear function of with an
intercept of cp and a slope of (tp - T). In Figure 16.3 we have plotted each of these
path composite cost functions. Note that for any specific value of the Lagrange
mUltiplier we can find by evaluating each composite cost function (line) and
identifying the one with the least cost. This observation implies that the Lagrangian
multiplier function is the lower envelope of the composite cost lines and that
the highest point on this envelope corresponds to the optimal solution of the La-
grangian mUltiplier problem.

In practice, we would never attempt to solve the problem in this way because
the number of directed paths from the source node to the sink node typically grows
exponentially in the number of nodes in the underlying network, so any such enu-
meration procedure would be prohibitively expensive. Nevertheless, this problem
geometry helps us to understand the nature of the Lagrangian multiplier problem
and suggests methods for solving the problem.

As we noted in the preceding paragraph, to find the optimal multiplier value
* of the Lagrangian mUltiplier problem, we need to find the highest point of the

Lagrangian multiplier function Suppose that we consider the polyhedron de-

608 Lagrangian Relaxation ana Network Optimization Chap. 16

Path cost Path time Composite cost
Path P Cp tp Cp + J1 (tp - T)

1-2-4-6 3 18 3 + 4

1-2-5-6 5 15 5 +
1-2-4-5-6 14 14 14

1-3-2-4-6 13 13 13-

1-3-2-5-6 15 10 15 - 4

1-3-2-4-5-6 24 9 24 - 5

1-3-4-6 16 17 16 + 3

1-3-4-5-6 27 13 27 -

1-3-5-6 24 8 24 - 6

Figure 16.2 Path cost and time data for constrained shortest path example with T
= 14.

fined by those points that lie on or below the function L(,....). These are the shaded
points in Figure 16.3. Then geometrically, we are finding the highest point in a
polyhedron defined by the function L(,....), which is a linear program.

Even though we have illustrated this property on a specific example, this sit-
uation is completely general. Consider the generic optimization model (P), defined

40

30

'til
OE-.,

.':: I

8.'£ 20
S+ 8

IO

o

o 2 3 4

Lagrange multiplier

Figure 16.3 Lagrangian function for T = 14.

Sec. 16.3 Lagrangian Relaxation Technique

5

Paths

1-3-4-6

1-2-4-6
1-3-4-5-6

1-2-4-5-6

1-2-5-6
1-3-2-4-6

1-3-2-4-5-6

609

as min{ cx : Stlx = b, x E X} and suppose that the set X = {x I , x 2 , ..• ,XK} is finite.
By relaxing the constraints Stlx = b, we obtain the Lagrangian multiplier function
L(,....) = min{cx + ,....(Stlx - b) : x E X}. By definition,

for all k = 1, 2, ... , K.

In the space of composite costs and Lagrange multipliers,.... (as in Figure 16.3),
each function cxk + ,....(Stlxk - b) is a multidimensional "line" called a hyperplane
(if ,.... is two-dimensional, it is a plane). The Lagrangian multiplier function L(,....) is
the lower envelope of the hyperplanes cxk + ,....(Stlxk - b) for k = I, 2, ... , K. In
the Lagrangian multiplier problem, we wish to determine the highest point on this
envelope: We can find this point by solving the optimization problem

Maximize w

subject to

for all k = 1, 2, . . . , K,

J-l unrestricted,

which is clearly a linear program. We state this result as a theorem.

Theorem 16.5. The Lagrangian multiplier problem L * = with
L(,....) = min{cxk + J-l(Stlx - b) : x E X} is equivalent to the linear programming
problem L* = max{w : w cxk + J-l(Stlx k - b) for k = 1,2, ... , K}. •

Since, as shown by the preceding theorem, the Lagrangian multiplier problem
is a linear program, we could solve this problem by applying the linear programming
methodology. One resulting algorithm, which is known as Dantzig- Wolfe decom-
position or generalized linear programming, is an important solution methodology
that we discuss in some depth in Chapter 17 in the context of solving the multicom-
modity flow problem. One of the disadvantages of this approach is that it requires
the solution of a series of linear programs that are rather expensive computationally.
Another approach might be to apply some type of gradient method to the Lagrangian
function L(J-l). As shown by the constrained shortest path example, the added com-
plication of this approach is that the Lagrangian function L(J-l) is not differentiable.
It is differentiable whenever the optimal solution of the Lagrangian subproblem is
unique; but when the subproblem has two or more solutions, the Lagrangian function
generally is not differentiable. For example, in Figure 16.4, at J-l = 0, the path
1-2-4-6 is the unique shortest path solution to the subproblem and the function
L(fJ..) is differentiable. At this point, for the path P = 1-2-4-6, L(fJ..) = Cp +
fJ..(tp - D; since tp = 18 and T = 14, L(fJ..) has a slope (tp - T) = (18 - 14) = 4.
At the point fJ.. = 2, however, the paths 1-2-5-6 and 1-3-2-5-6 both solve the
Lagrangian subproblem and the Lagrangian function is not differentiable. To ac-
commodate these situations, we next describe a technique, known as the subgradient
optimization technique, for solving the (nondifferentiable) Lagrangian multiplier
problem.

610 Lagrangian Relaxation and Network Optimization Chap. 16

40

Paths
30

... I ...
20

1-2-4-6

8 + ... u"
10 1-2-5-6

TargetL = 7

o
1-3-2-5-6

ILk = 0 1Lk+ I = I 2 3 4 5

Lagrangian multiplier IL ..

Figure 16.4 Steps of Newton's method for T = 14.

Bubgradient Optimization Technique
In solving optimization problems with the nonlinear objective function f(x) of an
n-dimensional vector x, researchers and practitioners often use variations of the
following classical idea: Form the gradient V f(x) of f defined as a row vector with
components (af(x)ldxl, aj(x)ldx2, ... , af(x)ldxn). Recall from advanced calculus
that the directional derivative of f in the direction d satisfies the equality

lim f(x + ad) - f(x) = Vf(x)d.
8-0 a

So if we choose the direction d so that Vf(x)d > 0 and move in the direction d with
a small enough "step length" a-that is, change x to x + ad-we move uphill. This
simple observation lies at the core of a considerable literature in nonlinear pro-
gramming known as gradient methods.

Suppose that in solving the Lagrangian multiplier problem, we are at a point
where the Lagrangian function L(fJ..) = min{ex + fJ..(six - b) : x E X} has a unique
solution X, so is differentiable. Since L(fJ..) = ex + p,(six - b) and the solution
x remains optimal for small changes in the value of fJ.., the gradient at this point is
six - b, so a gradient method would change the value of fJ.. as follows:

fJ.. +- fJ.. + a(six - b).

In this expression, a is a step size (a scalar) that specifies how far we move in
the gradient direction. Note that this procedure has a nice intuitive interpretation.
If (six - b)i = 0, the solution x uses up exactly the required units of the ith resource,
and we hold the Lagrange multiplier (the toll) fJ..i of that resource at its current value;

Sec. 16.3 Lagrangian Relaxation Technique 611

if (sctx - b); < 0, the solution x uses up less than the available units of the
ith resource and we decrease the Lagrange multiplier fJ..i on that resource; and if
(sa.x - b); > 0, the solution x uses up more than the available units of the ith resource
and we increase the Lagrange multiplier fJ..i on that resource.

To solve the Lagrangian multiplier problem, we adopt a rather natural extension
of this solution approach. We let fJ..0 be any initial choice of the Lagrange multiplier;
we determine the subsequent values fJ.. k for k = 1, 2, ... ,of the Lagrange multipliers
as follows:

fJ..k+1 = fJ..k + ek(sa.Xk - b).

In this expression, Xk is any solution to the Lagrangian subproblem when fJ.. = fJ.. k
and ek is the step length at the kth iteration.

To ensure that this method solves the Lagrangian multiplier problem, we need
to exercise some care in the choice of the step sizes. If we choose them too small,
the algorithm would become stuck at the current point and not converge; if we choose
the step sizes too large, the iterates fJ..k might overshoot the optimal solution and
perhaps even oscillate between two nonoptimal solutions (see Exercise 16.4 for an
example). The following compromise ensures that the algorithm strikes an appro-
priate balance between these extremes and does converge:

k

0 and L 00.

j=1

For example, choosing ek = Ilk satisfies these conditions. These conditions
ensure that the algorithm always converges to an optimal solution of the multiplier
problem, but a proof of this convergence result is beyond the scope of our coverage
in this book (the reference notes cite papers and books that examine the convergence
of subgradient methods).

One important variant of the subgradient optimization procedure would be an
adaptation of "Newton's method" for solving systems of nonlinear equations. Sup-
pose, as before, that L(fJ..k) = cxk + Jj.k(sa.Xk - b); that is, Xk solves the Lagrangian
subproblem when fJ.. = fJ.. k. Suppose that we assume that Xk continues to solve the
Lagrangian subproblem as we vary fJ..; or, stated in another way, we make a linear
approximation r(fJ..) = cxk + fJ..(sctx k - b) to L(fJ..). Suppose further that we know
the optimal value L * of the Lagrangian multiplier problem (which we do not). Then
we might move in the subgradient direction until the value of the linear approximation
exactly equals L *. Figure 16.4 shows an example of this procedure when applied to
our constrained shortest path example, starting with fJ.. k = O. At this point, the path
P = 1-2-4-6 solves the Lagrangian subproblem and sa.Xk - b equals tp - T =
18 - 14 = 4. Since L * = 7 and the path P has a cost Cp = 3, in accordance with
this linear approximation, or Newton's method, we would approximate L(fJ..) by r(.... >
= 3 + 4Jj., set 3 + 4fJ.. = 7, and define the new value of fJ.. as fJ..k+ J = (7 - 3)/4 =
1. In general, we set the step length ek so that

r(fJ..k+ I) = cxk + fJ..k+ I (sa.xk - b) = L *,

or since, fJ..k+ 1 = fJ..k + ek(sa.Xk - b),
r(fJ..k+l) = cxk + [fJ..k + ek(sa.Xk - b)](sa.xk - b) = L*.

612 Lagrangian Relaxation and Network Optimization Chap. /6

Collecting terms, recalling that L(fJ..k) = cxk + fJ..(stxk - b), and letting /I y II =
(L,; yJ)1/2 denote the Euclidean norm of the vector y, we can solve for the step length
and find that

L* - L(fJ..k)
6k = 1/ stxk - b 1/ 2 '

Since we do not know the optimal objective function value L * of the Lagrangian
multiplier problem (after all, that's what we are trying to find), practitioners of La-
grangian relaxation often use the following popular heuristic for selecting the step
length:

6 _ AdVB - L(fJ..k)]
k - 1/ stxk - b 1/ 2 •

In this expression, VB is an upper bound on the optimal objective function
value z* of the problem (P), and so an upper bound on L* as well, and Ak is a scalar
chosen (strictly) between 0 and 2. Initially, the upper bound is the objective function
value of any known feasible solution to the problem (P). As the algorithm proceeds,
if it generates a better (i.e., lower cost) feasible solution, it uses the objective function
value of this solution in place of the upper bound VB. V sually, practitioners choose
the scalars Ak by starting with Ak = 2 and then reducing Ak by a factor of 2 whenever
the best Lagrangian objective function value found so far has failed to increase in
a specified number of iterations. Since this version of the algorithm has no convenient
stopping criteria, practitioners usually terminate it after it has performed a specified
number of iterations.

The rationale for these choices of the step size and the convergence proof of
the subgradient method would take us beyond the scope of our coverage. In passing,
we might note that the subgradient optimization procedure is not the only way to
solve the Lagrangian multiplier problem: practitioners have used a number of other
heuristics, including methods known as multiplier ascent methods that are tailored
for special problems. Since we merely wish to introduce some of the basic concepts
of Lagrangian relaxation and to indicate some of the essential methods used to solve
the Lagrangian mUltiplier problem, we will not discuss these alternative methods.

Subgradient Optimization and Inequality Constraints
As we noted earlier in this section, if we apply Lagrangian relaxation to a problem
with constraints stx b stated in inequality form instead of the equality constraints,
the Lagrange multipliers fJ.. are constrained to be nonnegative. The update formula
fJ..k+ I = fJ..k + 6k(stxk - b) might cause one or more of the components fJ..i of fJ.. to
become negative. To avoid this possibility, we modify the update formula as follows:

fJ..k+l = [fJ..k + 6k(stxk - b)]+.

In this expression, the notation [y] + denotes the "positive part" of the vector y;
that is, the ith component of [y] + equals the maximum of 0 and Yi. Stated in another
way, if the update formula fJ.. k + I = fJ.. k + 6k(stxk - b) would cause the ith component
of fJ..i to be negative, then we simply set the value of this component to be zero. We
then implement all the other steps of the subgradient procedure (i.e., the choice of

Sec. 16.3 Lagrangian Relaxation Technique 613

the step size 8 at each step and the solution of the Lagrangian subproblems) exactly
the same as for problems with equality constraints. For problems with both equality
and inequality constraints, we use a straightforward mixture of the equality and
inequality versions of the algorithm: whenever the update formula for the Lagrange
multipliers would cause any component fJ..i of fJ.. corresponding to an inequality con-
straint to become negative, we set the value of that multiplier to be zero.

Let us illustrate the subgradient method for inequality constraints on our con-
strained shortest path example. Suppose that we start to solve our constrained short-
est path problem at fJ.. 0 = 0 with A 0 = O.S and with VB = 24, the cost corresponding
to the shortest path 1-3-5-6joining nodes 1 and 6. Suppose that we choose to reduce
the scalar Ak by a factor of 2 whenever three successive iterations at a giveri\value
of Ak have not improved on the best Lagrangian objective function value L(fJ..). As
we have already noted, the solution XO to the Lagrangian subproblem with fJ.. = 0
corresponds to the path P = 1-2-4-6, the Lagrangian subproblem has an objective
function value of L(O) = 3, and the subgradient Stlxu - b at fJ.. = 0 is (tp - 14) =
IS - 14 = 4. So at the first step, we choose

80 = 0.S(24 - 3)/16 = 1.05,

fJ..1 = [0 + 1.05(4)] + = 4.2.

For this value of the Lagrange multiplier, from Figure 16.3, we see that the path
P = 1-3-2-5-6 solves the Lagrangian subproblem; therefore, L(4.2) = 15 +
4.2(10) - 4.2(14) = 15 - 16.S = -1.S, and Stlx l - b equals (tp - 14) = 10 -
14 = - 4. Since the path 1-3-2-5-6 is feasible, and its cost of 15 is less than VB,
we change VB to value 15. Therefore,

81 = 0.S(15 + I.S)/16 = 0.S4,

fJ..2 = [4.2 + 0.S4(- 4)] + = 0.S4.

From iterations 2 through 5, the shortest paths alternate between the paths 1-2-4-
6 and 1-3-2-5-6. At the end of the fifth iteration, the algorithm has not improved
upon (increased) the best Lagrangian objective function value of 6.36 for three it-
erations, so we reduce Ak by a factor of 2. In the next 7 iterations the shortest paths
are the paths 1-2-5-6, 1-3-5-6, 1-3-2-5-6, 1-3-2-5-6, 1-2-5-6, 1-3-5-6, and
1-3-2-5-6. Once again for three consecutive iterations, the algorithm has not im-
proved the best Lagrangian objective function value, so we decrease Ak by a factor
of 2 to value 0.2. From this point on, the algorithm chooses either path 1-3-2-5-
6 or path 1-2-5-6 as the shortest path at each step. Figure 16.5 shows the first 33
iterations of the subgradient algorithm. As we see, the Lagrangian objective function
value is converging to the optimal value L * = 7 and the Lagrange multiplier is
converging to its optimal value of fJ.. * = 2.

Note that for this example, the optimal multiplier objective function value of
L * = 7 is strictly less than the length of the shortest constrained path, which has
value 13. In these instances, we say that the Lagrangian relaxation has a duality
(relaxation) gap. To solve problems with a duality gap to completion (i.e., to find
an optimal solution and a guarantee that it is optimal), we would apply some form
of enumeration procedure, such as branch and bound, using the Lagrangian lower
bound to help reduce the amount of concentration required.

614 Lagrangian Relaxation and Network Optimization Chap. 16

k k tp - T L(.... k) A.k Ok

0 0.0000 4 3.0000 0.80000 1.0500
4.2000 -4 -1.8000 0.80000 0.8400

2 0.8400 4 6.3600 0.80000 0.4320
3 2.5680 -4 4.7280 0.80000 0.5136
4 0.5136 4 5.0544 0.80000 0.4973
5 2.5027 -4 4.9891 0.40000 0.2503
6].5016 1 6.5016 0.40000 3.3993
7 4.9010 -6 - 5.4059 0.40000 0.2267
8 3.5406 -4 0.8376 0.40000 0.3541
9 2.1244 -4 6.5026 0.40000 0.2124

10 1.2746 I 6.2746 0.40000 3.4902
II 4.7648 -6 -4.5886 0.40000 0.2177
12 3.4589 -4 1.1646 0.20000 0.1729
13 2.7671 -4 3.9316 0.20000 0.1384
14 2.2137 -4 6.1453 0.20000 0.1107
15 1.7709 6.7709 0.20000 1.6458
16 3.4167 -4 1.3330 0.20000 0.1708
17 2.7334 -4 4.0664 0.20000 0.1367
18 2.1867 -4 6.2531 0.10000 0.0547
19 1.9680 6.9680 0.10000 0.8032
20 2.7712 -4 3.9150 0.10000 0.0693
21 2.4941 -4 5.0235 0.10000 0.0624
22 2.2447 -4 6.0212 0.05000 0.0281
23 2.1325 -4 6.4701 0.05000 0.0267
24 2.0258 -4 6.8966 0.05000 0.0253
25 1.9246 6.9246 0.00250 0.0202
26 1.9447 6.9447 0.00250 0.0201
27 1.9649 6.9649 0.00250 0.0201
28 1.9850 6.9850 0.00250 0.0200
29 2.0050 -4 6.9800 0.00250 0.0013
30 2.0000 -4 7.0000 0.00250 0.0012
31 1.9950 I 6.9950 0.00250 0.0200
32 2.0150 -4 6.9400 0.00250 0.0013
33 2.0100 -4 6.9601 0.00125 0.0006

Figure 16.5 Subgradient optimization for a constrained shortest path problem.

18.4 LAGRANGIAN RELAXATION AND LINEAR
PROGRAMMING

In this section we discuss several theoretical properties of the Lagrangian relaxation
technique. As we have noted earlier in Section 16.2, the primary use of the La-
grangian relaxation technique is to obtain lower bounds on the objective function
values of (discrete) optimization problems. By relaxing the integrality constraints in
the integer programming formulation of a discrete optimization problem, thereby

Sec. 16.4 Lagrangian Relaxation and Linear Programming 615

creating a linear programming relaxation, we obtain an alternative method for gen-
erating a lower bound. Which of these lower bounds is sharper (i.e., larger in value)?
In this section we answer this question by showing that the lower bound obtained
by the Lagrangian relaxation technique is at least as sharp as that obtained by using
a linear programming relaxation. As a result, and because the Lagrangian relaxation
bound is often easier to obtain than the linear programming relaxation bound, La-
grangian relaxation has become a very useful lower bounding technique in practice.

The content in this section requires some background in linear algebra and
linear programming. We refer the reader to Appendix C for a review of this material.

Our first result in this section concerns the application of Lagrangian relaxation
to a linear programming problem.

Theorem 16.6. Suppose that we apply the Lagrangian relaxation technique
to a linear programming problem (PI) defined as min{cx : sIx = b, qj;x ::; q, x O}
by relaxing the constraints sIx = b. Then the optimal value L * of the Lagrangian
multiplier probLem equaLs the optimal objective function value of (PI).

Proof We use linear programming optimality conditions to prove the theorem.
Suppose that x* is an optimal solution of the linear programming problem (PI) and
that 1T* and -y* denote vectors of optimal dual variables associated with the con-
straints sIx = band qj;x ::; q. By linear programming theory, x*, 1T*, and -y* satisfy
the following dual feasibility and complementary slackness conditions:

c + 1T*sI + -y*qj; 0, [c + 1T*sI + -y*qj;]x* = 0, and -y*[qj;x - q] = O.

Consider the Lagrangian subproblem L(f.1) at f.1 = 1T*, which is L(1T*) =
min{cx + 1T*(sIx - b) : qj;x ::; q, x O}. Notice that x* is feasible for this problem
because it is feasible to (PI). Moreover, for the fixed value f.1 = 1T*, the previous
dual feasibility and complementary slackness conditions are exactly those for the
Lagrangian subproblem; therefore, x* also solves the Lagrangian subproblem at f.1
= 1T*. But since 1T*(sIx* - b) = 0, L(1T*) = cx*. Consequently, Property 16.3
implies that L* = L(1T*) = cx*, the optimal objective function value of (PI) . •

The preceding theorem shows that the Lagrangian relaxation technique pro-
vides an alternative method for solving a linear programming problem. Instead of
solving the linear programming problem directly using any linear programming al-
gorithm, we can relax a subset of the constraints and solve the Lagrangian multiplier
problem by using subgradient optimization and solving a sequence of relaxed prob-
lems. In some situations the relaxed problem is easy to solve, but the original problem
is not; in these situations, a Lagrangian relaxation-based algorithm is an attractive
solution approach.

Suppose next that we apply Lagrangian relaxation to a discrete optimization
problem (P) defined as min{cx : sIx = b, x E X}. We assume that the discrete set
X is specified as X = {x : qj;x ::; q, x 0 and integer} for an integer matrix Cfn and
an integer vector q. Consequently, the problem (P) becomes

z* = min{cx : sIx = b, Cfnx ::; q, x 0 and integer}. (P)

616 Lagrangian Relaxation and Network Optimization Chap. 16

We incur essentially no loss of generality by specifying the set X in this manner
because we can formulate almost all real-life discrete optimization problems as in-
teger programming problems. Let (LP) denote the linear programming relaxation of
the problem (P) and let ZO denote its optimal objective function value. That is,

ZO = min{cx : silx = b, CZ/Jx ::; q, x O}. (LP)

Clearly, ZO ::; z * because the set of feasible solutions of (P) lies within the set
of feasible solutions of (LP). Therefore, the linear programming relaxation provides
a valid lower bound on the optimal objective function value of (P). We have earlier
shown in Property 16.2 that the Lagrangian mUltiplier problem also gives a lower
bound L * on the optimal objective function value of (P). We now show that ZO ::;
L *; that is, Lagrangian relaxation yields a lower bound that is at least as good as
that obtained from the linear programming relaxation. We establish this result by
showing that the Lagrangian multiplier problem also solves a linear programming
problem but that the solution space for this problem is contained within the solution
space of the problem (LP). The linear programming problem that the Lagrangian
mUltiplier problem solves uses "convexification" of the solution space X = {x : CZ/Jx
::; q, x 0 and integer}.

We assume that X = {x 1, x 2 , ••• , x K } is a finite set. We say that a solution
x is a convex combination of the solutions Xl, x 2 , ••• , x K if x = :Lf = 1 AkXk for
some nonnegative weights AI, A2, ... , AK satisfying the condition :Lf = 1 Ak = I.
Let denote the convex hull of X (i.e., the set of all convex combinations of
X). In the subsequent discussion we use the following properties of

Property 16.7
(a) The set is a polyhedron, that is, it can be expressed as a solution space

defined by a finite number of linear inequalities.
(b) Each extreme point solution of the polyhedron lies in X, and if we optimize

a linear objective function over some solution in X will be an optimal
solution.

(c) The set is contained in the set of solutions {x : CZ/Jx ::; q, x O}.

Proof. Part (a) is a well-known result in linear algebra which we do not prove.
The first statement in part (b) follows from the fact that every point of not in
X is a convex combination, with positive weights, of two or more points in X and
so is not an extreme point (see Appendix C). The second statement in part (b) is a
consequence of the fact that linear programs always have at least one extreme point
solution (see Appendix C). Part (c) follows from the fact that every solution in
X also belongs to the convex set {x : CZ/Jx ::; q, x O}, and consequently, every
convex combination of solutions in X, which defines also belongs to the set
{x : 2Llx ::; q, x O}. •

We now prove the main result of this section.

Theorem 16.8. The optimal objective function value L * of the Lagrangian
multiplier problem equals the optimal objective function value of the linear program
min{cx : silx = b, x E

Sec. /6.4 Lagrangian Relaxation and Linear Programming 617

Proof. Consider the Lagrangian subproblem

L(....) = min{cx + (.Stlx - b) : x EX},

for some choice of the Lagrange multipliers. This problem is equivalent to the
problem

L(....) = min{cx + ,....(Sllx - b) : x E (16.2)

because by Property 16.7(b), some extreme point solution of solves this prob-
lem and each extreme point solution of'M(X) belongs to X. Now, notice that the
Lagrangian subproblem defined by (16.2) is a linear programming problem because
by Property 16.7(a), we can formulate the set as the set of solutions of a finite
number of linear inequalities. Therefore, we can conceive of the Lagrangian sub-
problem (16.2) as a relaxation of the following linear programming problem:

min{ cx : Sllx = b, x E 'M(X)}.

Finally, we use Theorem 16.6 to observe that the optimal value L * of the
Lagrangian multiplier problem equals the optimal objective function value of the
linear program min{cx : Sllx = b, x E •

We subsequently refer to the problem min{cx : .9'1x = b, x E 'M(X)} as the
convexified version of problem (P) and refer to it as (CP). The preceding theorem
shows that L * equals the optimal objective function value of the convexified problem.
What is the relationship between the set of feasible solutions of the convexified
problem (CP) and the linear programming relaxation (LP)? We illustrate this rela-
tionship using a numerical example.

For simplicity, in our example we assume that the relaxed constraints are of
the form .9'1x b instead of .9'1x = b. We consider a two-variable problem with the
constraints .9'1x band 2llx q as shown in Figure 16.6(a). This figure also specifies
the set of solutions of the integer programming problem (P), denoted by the circled
points. Figure 16.6(b) shows the solution space of the linear programming relaxation
(LP) of the problem. Figure 16.6(c) shows the convex hull 'M(X) and Figure 16.6(d)
depicts the solution space of the convexified problem (CP). Note that the solution
space of (CP) is a subset of the solution space of (LP).

The preceding result is also easy to establish in general. Notice from Property
16.7(c) that since 'M(X) is contained in the set {x : 2llx q, x O}, the set of solutions
of problem (CP) given by {x : .9'1x = b, x E 'M(X)} is contained in the set of solutions
of (LP) given by {x : .9'1x = b, 2Llx q, x O}. Since optimizing the same objective
function over a smaller solution space cannot improve the objective function value,
we see that ZO L *. We state this important result as a theorem.

Theorem 16.9. When applied to an integer program stated in minimization
form, the lower bound obtained by the Lagrangian relaxation technique is always
as large (or, sharp) as the bound obtained by the linear programming relaxation of
the problem; that is. ZO L * .

Under what situations will the Lagrangian bound equal the linear programming

618 Lagrangian Relaxation and Network Optimization Chap. 16

The set Ix:.stx S b, S q,x 0 and integer' The set Ix: .stx S b, S q,x 0,

t t

(b)

The convex hull '3e(X) The set I x: .stx S b, x E '3e(X)'

t •

o 2
XI -----.

(c) (d)

Figure 16.6 Illustrating the relationship between the problem (LP) and (CP): (a)
solution space of the integer program (P); (b) solution space of the linear programming
relaxation (LP); (c) convex hull '3e(x); (d) solution space of the convexified problem
(CP).

bound? We show that if the Lagrangian subproblem satisfies a property, known as
the integrality property, the Lagrangian bound will equal the linear programming
bound. We say that the Lagrangian subproblem min{dx : =s; q, x 0 and integer}
satisfies the integrality property if it has an integer optimal solution for every choice
of objective function coefficients even if we relax the integrality restrictions on the
variables x. Note that this condition implies that the problems min{cx + f.L(.six -
b) : =s; q, x 0 and integer} and min{cx + f.L(.six - b) : =s; q, x O} have
the same optimal objective function values for every choice of the Lagrange mul-
tiplier f.L. For example, if Jhe constraints :s q are the mass balance constraints
of a minimum cost flow problem (or any of its special cases, such as the maximum
flow, shortest path, and assignment problems), the problem min{cx + f.L(.six - b)
: 2"bx =s; q, x O} will always have an integer optimal solution and imposing integrality
constraints on the variables will not increase the optimal objective function value.

Sec. 16.4 Lagrangian Relaxation and Linear Programming 619

Theorem 16.10. If the Lagrangian subproblem of the optimization problem
(P) satisfies the integrality property, then ZO = L *.

Proof. Observe that the problem min{dx : 9Jx:::; q, x O} will have an integer
optimal solution for every choice of d only if every extreme point solution of the
constraints 9Jx :::; q, x 0, is integer; for otherwise, we can select d so that a
noninteger extreme point solution becomes an optimal solution. This observation
implies that the set {x : 9Jx :::; q, x O} equals the convex hull of X = {x : 9Jx :::;
q, x 0 and integer}, which we have denoted by ::1e(X). This result further implies
that the sets {x : 9'lx = b, 9Jx :::; q, x O} and {x : 9'lx = b, x E ::1e(X)} are the
same. The first of these sets is the set of feasible solutions of the linear programming
relaxation (LP) and the latter set is the set of feasible solutions of the convexified
problem (CP). Since both the problems (LP) and (CP) have the same set of feasible
solutions, they will have the same optimal objective function value, which is the
desired conclusion of the theorem. •

This result shows that for problems satisfying the integrality property, solving
the Lagrangian multiplier problem is equivalent to solving the linear programming
relaxation of the problem. In these situations the Lagrangian relaxation technique
provides no better a bound than the linear programming relaxation. Nevertheless,
the Lagrangian relaxation technique might still be of considerable value, because
solving the Lagrangian multiplier problem might be more efficient than solving the
linear programming relaxation directly. Network optimization problems perhaps pro-
vide the most useful problem domain for exploiting this result because the Lagrangian
subproblem in these cases often happens to be a minimum cost flow problem or one
of its specializations.

As we have noted previously, in many (in fact, most) problem instances, the
optimal objective function value L * of the Lagrangian mUltiplier problem will be
strictly less than the optimal objective function value z* of problem (P); that is, the
problem has a duality gap. As an example, consider the constrained shortest path
example that we discussed in Section 16.3. For this example, L * = 7 and z* = 13.
The duality gap occurs because the Lagrangian multiplier problem solves an optim-
ization problem over a larger solution space (its convexification) than that of the
original problem (P), and consequently, its optimal objective function value might
be smaller.

16.15 APPLICATIONS OF LAGRANGIAN RELAXATION

As we noted earlier in the chapter, Lagrangian relaxation has many applications in
network optimization. In this section we illustrate the breadth of these applications.
The selected applications are both important in practice and illustrate how many of
the network models we have considered in earlier chapters arise as Lagrangian
subproblems. We consider the following models with embedded network structure.

620 Lagrangian Relaxation and Network Optimization Chap. 16

Topic Emhedded network structure

Networks with side constraints • Minimum cost flows
• Shortest paths

Traveling salesman problem • Assignment problem
• Minimum cost flows

Vehicle routing • Assignment problem
• A variant of minimum spanning tree

Network design
Two-duty operator scheduling

Degree-constrained minimum spanning trees
Multi-item production planning

• Shortest paths
• Shortest paths
• Minimum cost flows
• Minimum spanning tree
• Shortest paths
• Minimum cost flows
• Dynamic programs

Application 16.1 Networks with Side Constraints
The constrained shortest path problem is a special case of a broader set of optim-
ization models known as network flow problems with side constraints. We can for-
mulate a generic version of this problem as follows:

Minimize ex

subject to

s4.x b,

Xx = q,

I x u, and Xi} integer for all (i, j) E I.

In this formulation, as in the usual minimum cost flow problem, x is a vector
of arc flows, X is a node-arc incidence matrix, q is a vector of node supplies and
demands, and I and u are lower and upper bounds imposed on the arc flows. The
set I is an index set of variables that must be integer. The flow vector x might be
constrained to be integer or not, depending on the application being modeled. The
added complication in this model are the side constraints s4.x b that further restrict
the arc flows.

For example, in the constrained shortest path problem, the network constraints
model a shortest path problem [i.e., q(s) = 1 and q(t) = -1 for the source node
s and destination node t, and q(j) = 0 for every other node j; also, every lower
bound Ii} = 0 and every upper bound Ui} = 00]. In this case the side constraint
LCi,j)EA ti}xi} T is a single inequality constraint modeling the timing restriction.

The network flow model with side constraints arises in many application con-
texts in which the arc flows consume scarce resources (e.g., labor) or we wish to
impose service constraints on the flows (e.g., maximum delay times in a commu-
nication and transportation network). The model also arises when the network flow
model has multiple commodities, each governed by their own flow constraints, that

Sec. 16.5 Applications of Lagrangian Relaxation 621

share common resources such as arc capacities. In Chapter 17 we consider one such
mode], the classical multicommodity flow problem, in some detail.

We might note that the network flow model with side constraints also arises
in other, perhaps more surprising ways. As an illustration, consider a standard work
force scheduling problem. Suppose that we wish to schedule employees (e.g., tele-
phone operators, production workers, or nurses) in a way that ensures that o.(j)
employees are available for work on thejth day of the week; suppose, further, that
we wish to schedule the employees so that each has two consecutive days off each
week. That is, each of them works 5 consecutive days and then has 2 days off. We
incur a cost Cj for each employee that is scheduled to work on day j. Figure 16.7
shows a network flow model with side constraints for this problem. The network
contains three types of arcs.

1. A "work arc" for each day of the week: The flow on this arc is the number
of employees scheduled to work on that day; the arc has an associated cost
(e.g., weekends might have a pay premium and so a higher cost) and a lower
flow bound equaling the number of employees required to work on that day.

2. A "total work force arc" that introduces the work force at the beginning of
the planning cycle (which we arbitrarily take to be Sunday) and removes it at
the end of the planning cycle (Saturday): the flow y on this arc is the total
number of employees employed during the week.

3. "Days-off arcs" with the flows X sun , Xmon , ... ,Xsat, each representing a sched-
ule with 2 days off beginning with the day indicated by the subscript: The flow
on arc X sun , for example, bypasses the Sunday and Monday work arcs, indi-
cating that the employees working in this schedule are not available for work
on Sunday and Monday.

A complicating feature of this network flow model is a single additional con-
straint indicating that every employee must be assigned to at least one schedule;
that is,

622

y = Xsun + Xmon + ... + Xsat·

Total workforce arc

Total workforce y = x,un + xmon + x tue + x wed + x thu + xfn + Xsat

Figure 16.7 Network model of the cyclic scheduling problem. Lower bound on day
arcs = demand for the day.

Lagrangian Relaxation and Network Optimization Chap. 16

This side constraint specifies a flow relationship between several of the arcs
in the network flow model. Relaxing this constraint and using Lagrangian relaxation
provides us with one algorithmic approach for solving this problem. The algorithmic
procedure for applying Lagrangian relaxation to the general network flow model
with side constraints is essentially the same as the procedure we have discussed for
the constrained shortest path problem: we associate nonnegative Lagrange multi-
pliers J.L with the side constraints 9'lx b and bring them into the objective function
to produce the network flow subproblem

minimize{cx + J.L(9'lx - b) : Xx = q, I x u},

and then solve a sequence of these problems with different values of the Lagrange
multipliers J.L which we update using the subgradient optimization technique. For
each choice of the Lagrangian mUltiplier on this constraint, the Lagrangian sub-
problem is a network flow problem. In Exercise 9.9 we show that we can actually
solve this special case of network flows with side constraints much more efficiently
by solving a polynomial sequence of network flow problems.

Application 16.2 Traveling Salesman Problem
The traveling salesman problem is perhaps the most famous problem in all of network
and combinatorial optimization: Its simplicity and yet its difficulty have made it an
alluring problem that has attracted the attention of many noted researchers over a
period of several decades. The problem is deceptively easy to state: Starting from
his home base, node 1, a salesman wishes to visit each of several cities, represented
by nodes 2, ... , n, exactly once and return home, doing so at the lowest possible
travel cost. We will refer to any feasible solution to this problem as a tour (of the
cities).

The traveling salesman problem is a generic core model that captures the com-
binatorial essence of most routing problems and, indeed, most other routing problems
are extensions of it. For example, in the classical vehicle routing problem, a set of
vehicles, each with a fixed capacity, must visit a set of customers (e.g., grocery
stores) to deliver (or pick up) a set of goods. We wish to determine the best possible
set of delivery routes. Once we have assigned a set of customers to a vehicle, that
vehicle should take the minimum cost tour through the set of customers assigned to
it; that is, it should visit these customers along an optimal traveling salesman tour.

The traveling salesman problem also arises in problems that on the surface
have no connection with routing. For example, suppose that we wish to find a se-
quence for loadingjobs on a machine (e.g., items to be painted), and that whenever
the machine processes job i after job j, we must reset the machine (e.g., clear the
dies of the colors of the previous job), incurring a setup time Cij' Then in order to
find the processing sequence that minimizes the total setup time, we need to solve
a traveling salesman problem-the machine, which functions as the "salesman,"
needs to "visit" the jobs in the most cost-effective manner.

There are many ways to formulate the traveling salesman problem as an op-
timization model. We present a model with an embedded (directed) network flow
structure. Exercises 16.21 and 16.23 consider other modeling approaches. Let Cij

Sec. 16.5 Applications of Lagrangian Relaxation 623

denote the cost of traveling from city i to city j and let Yij be a zero-one variable,
indicating whether or not the salesman travels from city i to city j. Moreover,
let us define flow variables Xij on each arc (i, j) and assume that the salesman has
n - 1 units available at node 1, which we arbitrarily select as a "source node," and
that he must deliver 1 unit to each of the other nodes. Then the model is

subject to

Minimize CijYij
(i.j)EA

Yij = 1 for all i = 1, 2, ... , n,
I S;jS;n

Yij = 1 forallj = 1,2, ... , n,
I s;iS;n

Xx = b,

Yij = 0 or 1

for all (i, j) E A,

for all (i, j) E A,

for all (i, j) E A.

(16.3a)

(16.3b)

(16.3c)

(16.3d)

(16.3e)

(16.30

(16.3g)

To interpret this formulation, let A' = {(i, j) : Yij = I} and let A" {(i, j) :
xij > O}. The constraints (16.3b) and (16.3c) imply that exactly one arc of A I leaves
and enters any node i; therefore, A I is the union of node disjoint cycles containing
all of the nodes of N. In general, any integer solution satisfying (16.3b) and (16.3c)
will be the union of disjoint cycles; if any such solution contains more than one
cycle, we refer to each of the cycles as subtours, since they pass through only a
subset of the nodes. Figure 16.8 gives an example of a subtour solution to the con-
straints (16.3b) and (16.3c).

Home base

Figure 16.8 Infeasible solution for the
traveling salesman problem containing
subtours.

Constraint (16.3d) ensures that A" is connected since we need to send 1 unit
of flow from node 1 to every other node via arcs in A ". The "forcing" constraints
(16.3e) imply that A" is a subset of A'. [Notice that since no arc need ever carry
more than (n - 1) units of flow, the forcing constraint for arc (i, j) is redundant if
Yij = 1.] These conditions imply that the arc set A' is connected and so cannot
contain any subtours. We conclude that the formulation (16.3) is a valid formulation
for the traveling salesman problem.

One of the nice features of this formulation is that we can apply Lagrangian
relaxation to it in several ways. For example, suppose that we attach Lagrange
multipliers J.Lij 0 with the forcing constraints (16.3e) and bring them into the ob-
jective function, giving the Lagrangian objective function

624 Lagrangian Relaxation and Network Optimization Chap. 16

Minimize
(i,j)EA (i,j)EA

and leaving (16.3b)-(16.3d), (16.30, and (16.3g) as constraints in the Lagrangian
subproblem. Note that nothing in this Lagrangian subproblem couples the variables
Yi) and Xi). Therefore, the subproblem decomposes into two separate subproblems:
(1) an assignment problem in the variables Yi), and (2) a minimum cost flow problem
in the variables Xi). SO for any choice of the Lagrangian multipliers J,L, we solve two
network flow subproblems; by using subgradient optimization we can find the best
lower bound and optimal values of the multipliers. By relaxing other constraints in
this model, or by applying Lagrangian relaxation to other formulations of the trav-
eling salesman problem, we could define other network flow subproblems (see Ex-
ercise 16.19).

Application 16.3 Vehicle Routing
The vehicle routing problem is a generic model that practitioners encounter in many
problem settings including the delivery of consumer products to grocery stores, the
collection of money from vending machines and telephone coin boxes, and the de-
livery of heating oil to households. As we have noted earlier in this section, the
vehicle routing problem is a generalization of the traveling salesman problem.

The vehicle routing problem is easy to state: Given (1) a fleet of K capacitated
vehicles domiciled at a common depot, say node 1, (2) a set of customer sites j =
2, 3, ... , n, each with a prescribed demand dj , and (3) a cost Ci) of traveling from
location ito locationj, what is the minimum cost set of routes for delivering (picking
up) the goods to the customer sites? We assume that the vehicle fleet is homogeneous
and that each vehicle has a capacity of u units.

There are many different variants on this core vehicle routing problem. For
example, the vehicle fleet might be nonhomogeneous, each vehicle route might have
a total travel time restriction, or deliveries for each customer might have time window
restrictions (earliest and latest delivery times). We illustrate the use of Lagrangian
relaxation by considering only the basic model, which we formulate with decision
variables xt indicating whether (xt = 1) or not (xt = 0) we dispatch vehicle k on
arc (i, j) and Yi) indicating whether some vehicle travels on arc (i, j):

Minimize Ci)xt (16.4a)
1 :5k:5K (i,j)EA

subject to

xt = Yi), (16.4b)
1 :5k:5K

Yi) = 1 for i = 2,3, ... ,n, (16.4c)
l:5j:511

yi) = I forj= 2,3, ... ,n, (16.4d)

yJj=K, (16.4e)
l:5j:511

Yil = K, (16.40
I :5j:511

Sec. 16.5 Applications of Lagrangian Relaxation 625

L L d;xt:5 u
2os;;os;n los;jos;n

L L Yij:51 Q 1 - 1
iEQjEQ

Yij = 0 or 1

xt = Oor 1

for all k = 1, 2, ... ,K,

for all subsets Q of {2, 3, ... ,n},

for all (i,j) E A,

foralI(i,j)EAandaIlk= 1,2, ... ,K.

(16.4g)

(16.4h)

(16.4i)

(16.4j)

Let A' == {(i, j) : Yij = I}. As in our discussion of the traveling salesman
problem, constraints (16.4c) and (16.4d) ensure that A' is the union of node disjoint
cycles containing all of the nodes in N. Constraint (16.4h) ensures that the solution
must contain no cycle using the nodes 2, 3, ... , n (i.e., not contain any subtours
on these nodes); otherwise, the arcs A' would contain some cycle passing through
a set Q of nodes and the solution would violate constraint (16.4h) since the left-hand
side of the constraint (16.4h) would be at least 1 Q I. For this reason, we refer to the
constraints (l6.4h) as subtour breaking constraints.

We might note that if K = 1, and u is so large that the constraint (l6.4g) is
redundant, this model becomes an "assignment-based" formulation of the traveling
salesman problem, which is an alternative formulation to the "flow-based" model
that we introduced previously as (16.3). In Exercise 16.24 we study the relationships
between these formulations as well as a third model, a multicommodity flow-based
formulation.

Note that this formulation has several embedded structures that we might ex-
ploit in a Lagrangian relaxation solution approach. By relaxing some of the con-
straints, we are also able to decompose the problem into independent subproblems.
For example, if we relax only constraints (16.4b), no constraint connects the x vari-
ables and Y variables, so the problem decomposes into separate subproblems in each
of these variables. By relaxing different combinations of the constraints, we create
several different types of subproblems:

1. If we relax the constraints (16.4b), (16.4g) , and (16.4h), the resulting formulation
is an assignment problem.

2. If we relax the constraints (16.4b) to (16.40, and (16.4h), the resulting problem
decomposes into independent "knapsack problems," one for each vehicle k.

3. If we relax constraint (16.4b), the problem decomposes into separate sub-
problems, one in the Y variables and one in the Xk variables for each vehicle
k. The first of these problems is a so-called K-traveling salesman problem (see
Exercise 16.25) and each problem in the variables Xk is a knapsack problem.

4. If we relax the assignment constraints (16.4c) to (16.40, the constraint (l6.4b)
defining y, and the capacity constraint (16.4g), the resulting problem is a min-
imum forest problem on the nodes 2, 3, ... , n. This problem is easy to solve
by a simple variant of any minimum spanning tree algorithm. We could
strengthen this approach by adding other (redundant) constraints to the problem
formulation (see Exercise 16.28).

5. If we relax constraints (16.4b), (16.4c), and (l6.4e) to (l6.4g), the subproblem
with the constraints (l6.4d), (16.4h), and (l6.4i) becomes a directed minimum
spanning tree problem-any feasible solution will be a directed spanning tree

626 Lagrangian Relaxation and Network Optimization Chap. 16

with exactly one arc directed into each node (except for the root node 1).
Although we do not consider this problem in this book, it is polynomially solv-
able.

6. If we relax the constraint (16.4g), the problem becomes a variant of the
K -traveling salesman problem.

These various possibilities illustrate the remarkable flexibility of the Lagrangian
relaxation solution approach.

Application 16.4 Network Design
Suppose that we have the flexibility of designing a network as well as determining
its optimal flow (routing). That is, we have a directed network G = (N, A) and can
introduce an arc or not into the design of the network: If we use (introduce) an arc
(i, j), we incur a design (construction) cost f ij. Our problem is to find the design
that minimizes the total systems cost-that is, the sum of the design cost and the
routing cost. This type of model arises in many application contexts, for example,
the design of telecommunication or computer networks, load planning in the trucking
industry (i.e., the design of a routing plan for trucks), and the design of production
schedules.

Many alternative modeling assumptions arise in practice. We consider one
version of the problem, the uncapacitated network design problem. In this model
we need to route multiple commodities on the network; each commodity k has a
single source node Sk and a single destination node d k • Once we introduce an arc
(i, j) into the network, we have sufficient capacity to route all of the flow by all
commodities on this arc.

To formulate this problem as an optimization model, let Xk denote the vector
of flows of commodity k on the network. Rather than letting xi model the total flow
of commodity k on arc (i, j), however, we let xi· denote the fraction of the required
flow of commodity k to be routed from the source Sk to the destination d k that flows
on arc (i,j). Let c k denote the cost vector for commodity k, which we scale to reflect
the way that we have defined xi [i.e., ci is the per unit cost for commodity k on arc
(i, j) times the flow requirement of that Also, let Yij be a zero-one
vector indicating whether or not we select arc (i, j) as part of the network design.
Using this notation, we can formulate the network design problem as follows:

Minimize (16.5a)

subject to

L xi- L xt
{j:(i.j)EA} {j:(j,i)EA}

= {-i if i = Sk

if i = d k for all i E N, k = 1, 2, ... ,K, (16.5b)
otherwise

for all (i, j) E A, k = 1, 2, . . . , K, (16.5c)

Sec. 16.5 Applications of Lagrangian Relaxation 627

for all (i, j) E A and all k = 1, 2, . . . , K, (16.5d)

Yij = 0 or 1 for all (i, j) E A. (16.5e)

In this formulation, the "forcing constraints" (16.5c) state that if we do not select
arc (i,j) as part of the design, we cannot flow any fraction of commodity k's demand
on this arc, and if we do select arc (i, j) as part of the design, we can flow as much
of the demand of commodity k as we like on this arc.

Note that if we remove the forcing constraints from this model, the resulting
model in the flow variables Xk decomposes into a set of independent shortest path
problems, one for each commodity k. Consequently, the model is another attractive
candidate for the application of Lagrangian relaxation. To see why this type of
solution approach might be attractive, consider a typically sized problem with, say,
50 nodes and 500 candidate arcs. Suppose that we have a separate commodity for
each pair of nodes (as is typical in communication settings in which each node is
sending messages to every other node). Then we have 50(49) = 2450 commodities.
Since each commodity can flow on each arc, the model has 2450(500) = 1,225,000
flow variables, and since (1) each flow variable defines a forcing constraint, and (2)
each commodity has a flow balance constraint at each node, the model has 1,225,000
+ 2450(50) = 1,347,500 constraints. In addition, it has 500 zero-one variables. So
even as a linear program, this model far exceeds the capabilities of current state of
the art software systems. By decomposing the problem, however, for each choice
of the vector of Lagrange mUltipliers, we will solve 2450 small shortest path prob-
lems.

Application 16.lS Two-Duty Operator Scheduling
In many different problem contexts in work force planning, a private firm or public-
sector organization must schedule its employees-for example, nurses, airline
crews, telephone operators-to provide needed services. Typically, the problems
are complicated by complex work rules, for example, airline crews have limits on
the number of hours that they can fly in any week or month. Moreover, frequently,
the demand for the services of these employees varies considerably by time of the
day or week, or across geography (as in the case of airline crew scheduling). Con-
sequently, finding a minimum cost schedule requires that we balance the prevailing
work rules with the demand patterns. Figure 16.9 shows one example of a work
force planning problem, which we will view as a driver schedule for a single bus
line.

Every column in this table corresponds to a possible schedule. For example,
in schedule 1, a driver operates the bus line in two shifts, from 8 to 11 and then
from 1 to 3; in schedule 2 the driver works a single shift, from 11 to 1, and in schedule
3, he/she drives from 3 to 6. As indicated by the column entitled demand in the
table, we wish to find a set of schedules satisfying the property that at least one
driver is assigned to the bus at every hour of the day from 8 A.M. until 6 P.M. (if two
drivers are assigned to the same bus at the same time, one drives and the other is
a rider). One possibility is to choose schedules 1, 2, and 3; another is schedules 4
and 5; and still another is schedules 3, 5, and 6. Each schedulej has an associated

628 Lagrangian Relaxation and Network Optimization Chap. 16

Schedule
Time

period 1 2 3 4 5 6 7 8 Demand

8-9 1 0 0 1 0 1 0 1
9-10 I 0 0 I 0 1 0 1

1O-11 I 0 0 0 1 0 0 1
11-12 0 1 0 0 1 0 0 1
12-1 0 1 0 0 1 0 0 I
1-2 1 0 0 I 0 I 1 0
2-3 1 0 0 I 0 1 1 0
3-4 0 0 I I 0 0 I 0
4-5 0 0 I I 0 0 I 0
5-6 0 0 I I 0 0 I 0

Cost C. C2 C3 C4 C5 C6 C7 C8

Figure 16.9 Two-duty operator schedule.

cost Cj and we wish to choose the set of schedules that meets the scheduling re-
quirement at the lowest possible cost. To formulate this problem formally as an
optimization model, let Xj be a binary (i.e., zero-one) variable indicating whether
(Xj = 1) or not (Xj = 0), we choose schedule}, and let 31 denote the zero-one matrix
of coefficients of the scheduling table (i.e., the ijth element is 1 if schedule) has a
driver on duty during the ith hour of the day). Also, let e denote a column of 1 'so
Then the model is

Minimize cx

subject to

3lx e,

Xj = 0 or 1 for} = 1, 2, ... , n.

(16.6a)

(16.6b)

(16.6c)

The choice of the available schedules in the problem depends on the governing
work rules; as an illustration, in our example, no operator works in any shift of less
than 2 hours. Moreover, note that the schedules permit split shifts, that is, time on,
time off, and then time on again as in schedule 1. Note, however, that no schedule
has more than two shifts. We refer to this special version of the general operator
scheduling problem as the two-duty operator scheduling problem.

In Exercise 4.13 we showed how to solve the single-duty scheduling problem
as a shortest path problem: The shortest path model contains a node for each time
period 1, 2, ... , T to be covered, plus an artificial end node T + 1, and an arc
from node i to node} whenever a schedule starts at the beginning of time period i
and ends at the beginning of time period}. We interpret arc (i,}) as H covering" the
time periods i, i + 1, ... ,} - 1. The network also contains Hbackward" arcs of
the form () + I,}) that permits us to "back up" from time period} + 1 to time
period} so that we can cover any node more than once and model the possibility
that a schedule might assign more than one driver to any time period. Can we use

Sec. 16.5 Applications of Lagrangian Relaxation 629

Lagrangian relaxation to exploit the fact that the single-duty problem is a shortest
path problem? To do so, we will use an idea known as variable splitting.

Consider any column j of the matrix 31 that contains two sequences of l' s-
that is, corresponds to a schedule with two shifts. Let us make two columns 31; and
31J out of this column; each of these columns contains one of the duties (sequence
of 1 's) from 31j , so 31j = 31; + 31J. Let us also replace the variable Xj in our model
with two variables x; and xJ. We form a new model with these variables as

Minimize e' x' + e"x"

subject to

31lx' + 31"x" e,
x' - x" 0,

x; and xJ o or 1 for j = 1, 2, ... , n.

(16.7a)

(16.7b)

(16.7c)

(16.7d)

For convenience, in formulating this model we have assumed that we have split
every column of the matrix 31. If not, we can simply assume that some columns of
31" are columns of zeros. Moreover, we can split the cost of each variable Xj arbitrarily
between e; and eJ. For example, we could let each of these costs be half of ej. This
model and the original model (16.6) are clearly equivalent. Note, however, that the
new model reveals embedded network structure; as shown in Figure 16.10, which
is the network model associated with the data in Figure 16.9, the model is a shortest
path problem with the complicating constraints that we need to choose arcs in pairs:
We choose either both or none of the arcs corresponding to the variables xj and
xJ. If we eliminate the "complicating" constraint x' - x" = 0, the problem becomes
an easily solvable single duty scheduling problem, which as we have seen before,
we can solve via a shortest path computation. This observation suggests that we
adopt a Lagrangian relaxation approach, relaxing the constraints with a Lagrange
multiplier fJ. so that the Lagrangian subproblem has the objective function

L{fJ.) = min{e ' + fJ.)x ' + {e" - fJ.)x". (16.8)

Now, as usual to solve the Lagrangian multiplier problem, we apply subgradient

630

Paired arcs

-- Paired arcs ----------

-------://
./

./
--././

Figure 16.10 Shortest path subproblem for the two duty scheduling problem.

Lagrangian Relaxation and Network Optimization Chap. 16

optimization, or some other solution technique, to maximize L(fJ.) over all possible
choices of the Lagrange multipliers fJ..

When we split a column Aj into two columns Ai and Ai, it does not matter
how we split the cost Cj between c; and cJ, as long as Cj = ci + cJ. Since xi =
xi in any feasible solution, the cost of any feasible solution will be the same no matter
how we allocate the cost. However, cost splitting does make a significant difference
in the relaxed problem obtained by dropping the constraint xi = xJ. If we were to
make c; large and ci small, then in the solution to the relaxed problem we would
probably find that xi would be 0 and xJ would be 1. Similarly, if we made ci small
and cJ large, in the solution to the relaxed problem we would likely find that xi
would be 1 and xi would be o. Ideally, we should allocate the costs between c J and
ci, so that either x; = xJ = 0 or xi = xJ = 1 in the relaxed problem.

As it turns out, we need not worry about the cost allocation at all if we use
Lagrangian relaxation since the Lagrange mUltiplier fJ.j for the constraint x J - xJ =
o does the cost allocation. Suppose, for example, that cJ = Cj and cJ = O. Then,
since we are relaxing the constraint xi - xJ = 0, the coefficient of x} in the relaxed
problem is Cj + fJ.j, and the coefficient of xi is - fJ.j. As fJ.j ranges over the real
numbers, we obtain all possible ways of splitting the cost Cj between cJ and cJ.

The operator scheduling problem we have considered permits us to find an
optimal schedule of drivers for a single bus line. If we wish to schedule several bus
lines simultaneously, the right-hand-side coefficients in the constraints (16.6) will be
arbitrary positive integers, indicating the number of required operators for each time
period during the day. In this instance, the variable splitting device still permits us
to use Lagrangian relaxation and network optimization to solve the problem. In this
instance, the Lagrangian subproblems will be minimum cost flow problems rather
than shortest path problems.

As this application shows, embedded network flow structure is not always so
apparent and, consequently, the use of Lagrangian relaxation often requires con-
siderable ingenuity in model formulation. Indeed, the application of Lagrangian re-
laxation typically requires considerable skill in modeling. Moreover, as several of
our examples have shown, we often can formulate network optimization problems
in several different ways, and by doing so we might be able to recognize and exploit
different network substructures. The models we have proposed for the traveling
salesman problem, both in the discussion of this problem and in the discussion of
the vehicle routing problem, illustrate these possibilities. As a result, the design and
implementation of Lagrangian relaxation algorithms often require careful choices
concerning the "best" models to use and the "best" constraints to relax. The lit-
erature that we cite in the reference notes gives some guidance concerning these
issues; successful prior applications, such as those that we have discussed in this
section and in the exercises at the end of this chapter, provide additional guides.

Application 18.8 Degree-Constrained Minimum
Spanning Trees

Suppose that we wish to find a minimum spanning tree of a network, but with the
added provision that the tree contain exactly k arcs incident to a given root node,
say node 1 (in some settings, the degree of the root node should be at most k). This

Sec. 16.5 Applications of Lagrangian Relaxation 631

degree-constrained minimum spanning tree problem arises in several applications.
For example, in computer networking, the root node might be a central processor
with a fixed number of ports and the other nodes might be terminals that we need
to connect to the processor. In the communication literature, this problem has be-
come known as the teleprocessing design problem or as the multidrop terminal layout
problem. The vehicle routing problem, described in Application 16.3, provides an-
other application setting. If we are routing k vehicles and we delete the last arc from
every route, every solution is a spanning tree with k arcs incident to the depot (the
tree has additional structure: each subtree off the root is a single path). Therefore,
the degree constrained minimum spanning tree problem is a relaxation of the vehicle
routing problem. Note that this relaxation is stronger than the minimum spanning
tree relaxation that we discussed in Application 16.3.

We might formulate the degree-constrained minimum spanning tree problem
as follows.

subject to

Minimize cx

n

Xlj = k,
j=2

xEX.

In this formulation, x = (Xij) is a vector of decision variables and each Xij is a zero-
one variable indicating whether (Xij = 1) or not (Xij = 0), arc (i, j) belongs to the
spanning tree. The number Cij denotes the fixed cost of installing arc (i, j) and the
set X denotes the set of incidence vectors of spanning trees. The additional constraint
states that the degree of node 1 must be k. Let C = max{cij : (i, j) E A}.

To solve this problem, we might use Lagrangian relaxation. If we associate a
Lagrange multiplier fJ. with the degree constraint and relax it, the objective function
of the Lagrangian subproblem becomes cx + fJ. L/=2 Xlj - fJ.k and the remaining
(implicit) constraint, x E X, states that the vector x defines a spanning tree. Note
that if we ignore the last term, fJ.k, which is a constant for any fixed value of fJ., this
problem is a parametric minimum spanning tree problem: for eachj, the cost of arc
(1, j) is Clj + fJ., and whenever i =1= 1 and j =1= 1, the cost of arc (i, j) is Cij' We will
use this observation to solve the degree constrained problem. That is, rather than
using subgradient optimization, we will use a combinatorial algorithm to solve the
Lagrangian multiplier problem.

We first solve the minimum spanning tree problem for fJ. = O. If the degree of
node 1 in the optimal tree equals k, this tree is optimal for the degree-constrained
minimum spanning tree problem. So suppose that the degree of node 1 is different
than k. We first consider the case when the degree of node 1 is strictly less than k.
Notice that since fJ. affects the lengths of only those arcs incident to node 1, changing
the value fJ. affects the ranking of these arcs relative to the arcs not incident to node
1. Consequently, as we decrease the value of fJ., the arcs incident to node 1 become
more attractive relative to the other arcs, so we would insert these arcs into the
spanning tree in place of the other arcs. The algorithm uses this observation: It starts
with a minimum spanning tree TI for fJ. = 0 and by decreasing the value of fJ., it

632 Lagrangian Relaxation and Network Optimization Chap. 16

generates a sequence of spanning trees TI, ... , Tq - I, terminating with a minimum
spanning tree Tq for fJ. = - C - 1. Each tree TI, ... , Tq - I is a minimum spanning
tree for some value of fJ.. The algorithm creates Tj from Tj - I by adding one arc
(1, i) to Tj-l and deleting one arc (p, q) with p =F 1 and q =F 1 from Tj-l. That is,
at each step it increases the degree of node 1 by one. Finally, Tq includes all the
arcs incident to node 1. (For a discussion of parametric minimum spanning trees,
see Exercises 13.35 and 13.36.)

Let Tk denote the tree containing exactly k arcs incident to node 1 and let fJ. k
denote the value of fJ. for which Tk is a minimum spanning tree for the parametric
problem. Further, let Xk denote the incidence vector associated with the span-
ning tree Tk. By definition, Xk solves the Lagrangian multiplier problem L(fJ.) =
ex + fJ. Lf=2 Xi} - fJ.k, x E X, for fJ. = fJ.k because fJ.k is a constant. Now notice
that L(fJ.k) = exk + fJ.k Lf=2 xlj - fJ.kk = exk + fJ.kk - fJ.kk = exk, which implies
that for fJ. = fJ. k, the optimal objective function value of the Lagrangian subproblem
equals the value of a feasible solution Xk of the degree-constrained minimum
spanning tree problem. Property 16.3 shows that Xk is an optimal solution of the
degree-constrained minimum spanning tree problem.

When the optimal tree for fJ. = 0 contains more than k arcs, we parametrically
increase the value of fJ. until fJ. = C + 1. As we increase the value of fJ., the arcs
incident on node 1 become less attractive, and they leave the optimal tree one by
one. Eventually, node 1 will have degree exactly equal to k, and the tree at this
point will be a minimum degree-constrained spanning tree.

Note that this application of Lagrangian relaxation is different than the others
that we have considered in this chapter. In this case we have used Lagrangian re-
laxation to define a parametric problem that is related to the constrained model we
are considering. We have then used a combinatorial algorithm rather than a general-
purpose Lagrangian relaxation algorithm to solve the parametric problem. In this
case the Lagrangian relaxation has proven to be valuable not only in formulating
the parametric problem, but also in validating that the solution generated by the
parametric problem is optimal for the constrained model.

Application 18.7 Multi-item Produotion Planning

In production planning we would like to find the best use of scarce resources (people,
machinery, space) in order to meet customer demand at the least possible cost. As
we show in Chapter 19, the research community has developed a number of different
models for addressing various planning issues in this application domain. Some of
these models are shortest path problems and some are minimum cost flow problems;
still others are multicommodity flow problems or more general models with embed-
ded network flow structure. In this section, to show how we might use Lagrangian
relaxation to solve more general models, we consider two applications of production
planning: multi-item production planning and production planning with changeover
costs.

Suppose that we are producing K items over a planning horizon containing T
periods (e.g., production shifts). Suppose, further, that we produce the items on the
same machine and that we can produce at most one item in each period. We would

Sec. 16.5 Applications of Lagrangian Relaxation 633

like to find the least cost production plan that will satisfy a demand dkt for every
item k in each period t.

Let Xkt denote the amount of item k that we produce in period t and let ht

denote the amount of inventory of item k that we carry from period t to period
t + 1. Let Zkt be a zero-one variable indicating whether or not we produce item
k in period t. With this notation, we can model the multi-item production planning
problem as follows:

K T K T K T

Minimize L L CktXkt + L L hktht + L L FktZkt
k= 1 t= 1 k= 1 t= 1 k= 1 t= 1

subject to
K

L Zkt:5 1 fort = 1,2, ... ,T,
k=1

Xkt + h,t-l - ht = dkt fork = 1,2, ... ,Kandt = 1,2, ... , T,
Xkt:5Pkt Zkt fork = 1,2, ... ,Kandt = 1,2, ... ,T,
Xkt 0, ht 0 for k = 1,2, ... , K and t = 1,2, ... ,T,
Zkt = Oor 1 fork = 1,2, ... ,Kandt = 1,2, ... , T.

(16.9a)

(16.9b)

(16.9c)
(16.9d)
(16.ge)
(16.90

In this model Ckt is the per unit production cost and h kt is the per unit inventory
carrying cost for item k in period t. Fkt is a fixed cost that we incur if we produce
item k in period t and P kt is the production capacity for item k in period t. The
constraint (16.9a) ensures that we produce at most one item in each period. Con-
straint (16.9c) states that we allocate the amount we have on hand of item k in period
t (i.e., the production plus incoming inventory of that item) either to demand in that
period or to inventory at the end of the period. The "forcing" constraint (16.9d)
ensures that the quantity Xkt of item k produced in period t is zero if we do not select
that item for production in that period, that is, if Zkr = 0; this constraint also ensures
that the production of item k in period t never exceeds the production capacity of
that item.

Note that constraints in (16.9b) are the only constraints in this model that link
various items. Therefore, these constraints would be attractive candidates to relax
via Lagrange multipliers At. Doing so creates the following objective function

K T K T K T T

Minimize L L CktXkt + L L hktht + L L [Fkt + At]Zkt - LAt.
k= 1 t= 1 k= I t= I k= I t= 1 t=1

For a fixed value of the Lagrange multipliers, the last term is a constant, so the
problem separates into a single-item production planning problem for each item k;
the production and inventory carrying costs in the relaxation are the same as those
in the original model, and in each period the fixed cost for each item in the relaxation
is At units more than in the original model.

The subproblems assume different forms, depending on the nature of the pro-
duction capacities. In Chapter 19 we show that whenever each single-item sub-
problem is uncapacitated (i.e., Pkt is as large as the sum of the demands dkt in periods
t + 1, t + 2, ... , n, we can solve each single-item subproblem as a shortest path
problem. If we impose production capacities, the subproblems are NP-complete. In

634 Lagrangian Relaxation and fVetwork Optimization Chap. 16

these instances, since the number of time periods is often very small, we might use
a dynamic programming approach for solving the subproblems.

To conclude this discussion, we might note that we can enrich this basic multi-
item production planning model in a variety of ways. For example, as shown in
Chapter 19, we can model multiple stages of production or the backlogging of de-
mand. As another example, we can model situations in which we incur a startup
cost whenever we initiate the production of a new item. To model this situation, we
let Ykt be a zero-one variable, indicating whether or not the production system
switches from not producing item k in period t - 1 to producing the item in period
t. We then add the following constraints to the basic model (16.9):

Zkt - Zk,t-I $ Ykt for k = 1,2, ... ,K and t = 1,2, ... , T,

and for each "turn on" variable Ykt, we add a cost term CXktYkt to the objective function
(CXkt is the cost for turning on the machine to produce item k in period t). By relaxing
these constraints as well as the item choice constraints (16.9b), we again obtain
separate production planning problems for each item. Or, by relaxing only the item
choice constraints, we obtain a single-item production planning problem in which
we incur three types of production costs: (1) a cost for turning the machine on, (2)
a cost for setting up the machine in any period to produce any amount of the item,
and (3) a per unit production cost.

This startup cost problem is important in many practical production settings.
Moreover, this model is illustrative of the enhancements that we can make to the
basic production planning problem and once again demonstrates the algorithmic
flexibility of Lagrangian relaxation.

16.8 SUMMABY
Lagrangian relaxation is a flexible solution strategy that permits modelers to exploit
the underlying structure in any optimization problem by relaxing (i.e., removing)
complicating constraints. This approach permits us to "pull apart" models by re-
moving constraints and instead place them in the objective function with associated
Lagrange multipliers. In this chapter we have developed the core theory of La-
grangian relaxation, described popular solution approaches, and examined several
application contexts in which Lagrangian relaxation effectively exploits network
substructure.

The starting point for the application and theory of Lagrangian relaxation (as
applied to a model specified as a minimization problem) is a key bounding principle
stating that for any value of the Lagrange multiplier, the optimal value of the relaxed
problem, called the Lagrangian subproblem, is always a lower bound on the objective
function value of the problem. To obtain the best lower bound, we need to choose
the Lagrangian multiplier so that the optimal value of the Lagrangian subproblem
is as large as possible. We call this problem the Lagrangian multiplier problem. We
can solve the Lagrangian multiplier problem in a variety of ways. The subgradient
optimization technique is possibly the most popular technique for solving the La-
grangian multiplier problem and we have described this technique in some detail.
The subgradient optimization technique solves a sequence of Lagrangian subprob-
lems.

Sec. 16.6 Summary 635

Usually, we choose the constraints to relax so that the Lagrangian subproblem
is much easier to solve than the original problem. Consequently, when applying
Lagrangian relaxation, we solve many "simple" problems instead of one single
"complicated" problem. Frequently, the complicating constraints that we relax are
the only constraints that couple otherwise independent subsystems (e.g., shortest
path problems); in these instances, Lagrangian relaxation permits us to decompose
a problem into smaller, more tractable subproblems. For this reason, the research
community often refers to Lagrangian relaxation as a decomposition technique.

In discussing the theory of Lagrangian relaxation, we showed how to formulate
the Lagrangian multiplier problem as an associated linear program with a large num-
ber of constraints; we also showed how to interpret the Lagrangian multiplier prob-
lem as a convexification of the original optimization model. That is, instead of re-
stricting our choices to a discrete set of possible alternatives (e.g., spanning tree
solutions), the multiplier problem produces the same objective function value that
we would obtain if we solved the original problem, but permitted the use of convex
combinations of the alternatives. We also showed that when applied to integer pro-
grams, the Lagrangian relaxation always gives at least as large a lower bound as
does the linear programming relaxation of the problem. Finally, we showed that
whenever the Lagrangian subproblem satisfies the integrality property (so it has an
integer solution for all values of the Lagrange multiplier), solving the Lagrange mul-
tiplier problem is equivalent to solving the linear programming relaxation of the
original optimization model. In these instances, even though the Lagrangian ap-
proach provides the same lower bound as the linear programming relaxation, it does
have the ability to solve network (or other) subproblems quickly, which is often
greatly preferred to solving the original problem by general-purpose linear program-
ming codes.

Our discussion of applications has introduced several important network op-
timization models: networks with side constraints, the traveling salesman problem,
vehicle routing, network design, personnel scheduling, degree-constrained minimum
spanning trees, and production planning. As we have seen, these optimization models
have applications in such diverse settings as machine scheduling, communication
system design, delivery of consumer goods, telephone coin box collection, telephone
operator scheduling, logistics, and production. Consequently, our discussion has
illustrated the broad applicability of Lagrangian relaxation across many practical
problem contexts. It has also illustrated the versatility of Lagrangian relaxation and
its ability to exploit the core network substructures-shortest paths, minimum cost
flows, the assignment problem, and minimum spanning tree problems-that we have
studied in previous chapters. Our discussion of applications has also highlighted
several other points:

1. Need for creative modeling. Formulating Lagrangian relaxations can require
considerable ingenuity in modeling (as in the variable splitting device that we
used to study the two-duty operator scheduling problem).

2. Flexibility of Lagrangian relaxation. In many models, such as the vehicle rout-
ing problem, we can obtain a variety of different Lagrangian subproblems by
relaxing different constraints. This variety of potential subproblems permits us
to develop different algorithms for solving the same problem.

Lagrangian Relaxation and Network Optimization Chap. 16

3. Use of Lagrangian relaxation as a conceptual as well as algorithmic tool. On
some occasions, as in our discussion of the degree-constrained minimum span-
ning tree problem, we can use the bounding information provided by Lagran-
gian relaxation as a stand-alone tool that is unrelated to any iterative method
for solving the Lagrangian multiplier problem. For example, we can use the
bounds to analyze the solutions generated by combinatorial or heuristic al-
gorithms for solving a problem.

REFERENCE NOTES
The Lagrange multiplier technique of nonlinear optimization dates to the eighteenth
century and was suggested by the famous mathematician Lagrange, for whom the
technique is named. The use of this technique in integer programming and discrete
optimization is much more recent, originating in the seminal papers by Held and
Karp [1970, 1971], who studied the traveling salesman problem. Everett's [1963]
development of Lagrangian mUltiplier methods for general mathematical program-
ming problems was a precursor to this development. Held and Karp's application
of the Lagrange multiplier method was not only an eye-opening successful appli-
cation, but also set out many key ideas in applying the method to integer program-
ming problems. Fisher [1981, 1985], Geoffrion [1974], and Shapiro [1979] provide
insightful surveys of Lagrangian relaxation and its uses in integer programming. The
papers by Fisher contain many citations to successful applications in a wide variety
of problem settings. For a discussion of the branch-and-bound algorithm, see Win-
ston [1991].

Most of the key results of Lagrangian relaxation (e.g., the bounding properties
and optimality conditions) are special cases of more general results in mathematical
programming duality theory. Rockafellar [1970] and Stoer and Witzgall [1970] pro-
vide comprehensive treatments of this subject. Magnanti, Shapiro, and Wagner
[1976] establish the equivalence of the Lagrangian multiplier problem and generalized
linear programming, whose development by Dantzig and Wolfe [1961] predates the
formal development of Lagrangian relaxation in integer programming. The integrality
property is due to Geoffrion [1974]. The subgradient method is an outgrowth of so-
called relaxation methods for solving systems of linear inequalities. Bertsimas and
Orlin [1991] have developed the most efficient algorithms (in the worst-case sense)
for solving many classes of Lagrangian relaxation problems.

Several of the application contexts that we have discussed in Section 16.5 and
in the exercises have very extensive literatures. The following books and survey
articles, which contain many references to the literature, serve as good sources of
information on these topics.

Traveling salesman problem: the book edited by Lawler, Lenstra, Rinnooy
Kan, and Shmoys [1985]
Vehicle routing: surveys by Bodin, Golden, Assad, and Ball [1983], Laporte
and N obert [1987], and Magnanti [1981]
Network design: surveys by Magnanti and Wong [1984], Magnanti, Wolsey,
and Wong [1992], and Minoux [1989]

Chap. 16 Reference Notes 637

Production planning: the survey paper by Shapiro [1992], the book by Hax
and Candea [1984], and the paper by Graves [1982]

Several other of the applications discussed in this chapter are adapted from
research papers from the literature. For a Lagrangian relaxation-based branch-and-
bound approach to the constrained shortest path problem, see Handler and Zang
[1980]. Shepardson and Marsten [1980] have used the variable splitting device and
Lagrangian relaxation for solving the two-duty operator scheduling problem and
applied this approach to bus operator scheduling. For an algorithmic approach to
the network design problem, see Balakrishnan, Magnanti, and Wong [1989a]. Vol-
genant [1989] considers the degree-constrained minimum spanning tree problem.

EXERCISES
16.1. Lagrangian relaxation and inequality constraints. To develop the Lagrangian mUltiplier

problem for an inequality constraint problem stated as min{ ex : stlx b, x E X},
suppose that we add nonnegative "slack" variables s to model the problem in the
following equivalent equality form: min{ex : stlx + s = b, x E X and s OJ.
(a) State the Lagrangian mUltiplier problem for the equality formulation.
(b) Show that if some J.Li < 0, then L(J.L) = -00. Further, show that if some J.Li> 0,

then in the optimal solution of the Lagrangian subproblem L(J.L)' the slack variable
Sj = O.

(c) Conclude from part (b) that the Lagrangian multiplier problem of the inequality
constrained problem is maxlJ.2:0 L(J.L) with L(J.L) = min{ex + J.L(stlx - b) : x EX}.

16.2. Consider the problem
Minimize - 2x - 3y

subject to

x + 4y 5,

x, y E {O, I},

and the corresponding relaxed problem
Minimize - 2x - 3y + (x + 4y - 5)

subject to
x, Y E {O, l}.

Show that x = 1, y = 0 solves the relaxed problem, is feasible for the original problem,
and yet does not solve the original problem. (Reconcile this example with Property
16.4.)

16.3. Lagrangian relaxation applied to linear programs. Suppose that we apply Lagrangian
relaxation to the linear program q} defined as min{ ex : stlx = b, x O} by relaxing
the equality constraints stlx = b. The Lagrangian function is L(J.L) = minx 2:o {ex -
J.L(stlx - b)} = minx 2:o {(e - J.Lstl)x + J.Lb}. (Since the constraints stlx = b are equalities,
the Lagrange multipliers J.L are unconstrained in sign. For the purpose of this exercise,
we have chosen a different sign convention than usual, that is, used - J.L in place of
J.L.) Now, consider the Lagrangian multiplier problem maxIJ.L(J.L).

638

(a) Suppose we choose a value of J.L so that for some}, (e - J.Lstl)j < O. Show that
L(J.L) = -00.

(b) Suppose we choose a value of J.L so that for some}, (e - J.Lstl)j> O. Show that in
the optimal solution of the Lagrangian subproblem, Xj = o.

(c) Conclude from parts (a) and (b) that the Lagrangian mUltiplier problem is equiv-

Lagrangian Relaxation and Network Optimization Chap. 16

alent to the linear programming dual of 'lP, that is, the problem max JLb, subject
to JL.s.4. :s c.

16.4. Oscillation in Lagrangian relaxation. Suppose that we apply Lagrangian relaxation to
the constrained shortest path example shown in Figure 16.1 with the time constraint
of T = 14, starting with value JLo = 0 for the Lagrange multiplier JL. Show that if we
choose the step size Ok = 1 at each iteration, the subgradient algorithm JLk+ I = JLk +
Ok(.s.4.Xk - b) oscillates between the values JL = 0 and JL = 4 and the Lagrangian
subproblem solutions alternate between the paths 1-2-4-6 and 1-3-2-5-6.

16.5. In Section 16.4 we showed that when T = 14, our constrained shortest path example
had an optimal objective function value z* = 13 while the Lagrange multiplier problem
had a value L * = 7. Show that L * equals the optimal objective function value of the
linear programming relaxation of the problem. Interpret the solution of the linear pro-
gram as the convex hull of shortest path solutions. That is, find a set of paths whose
convex combination satisfies the timing constraint and whose weighted (i.e., convex
combination) cost equals L * .

16.6. Suppose that X is a finite set and that when we solve the Lagrangian multiplier problem
corresponding to the optimization problem min{cx : .s.4.x = b, x E X} for any value
of c, we find that the problem has no duality gap, that is, if x* solves the given optimi-
zation problem and JL * is an optimal solution to the Lagrangian multiplier problem,
then cx* = L(JL *). Show that the polyhedron {x : .s.4.x = b and x E 'af(Xn has integer
extreme points. (Hint: Use the results given in the proofs of Theorems 16.9 and 16.10.)

16.7. Lagrangian relaxation interpretation of successive shortest paths. Recall from Section
9.7 that each intermediate stage of the successive shortest path algorithm for solving
the minimum cost flow problem maintains a pseudoflow x satisfying the flow bound
constraints and a vector 71' of node potentials satisfying the conditions cij = cij - 71'(i)
+ 71'(j) 0 for all arcs (i,}) E G(x).
(a) Show that the pseudoflow x is optimal for the problem obtained by relaxing the

mass balance constraints and replacing the objective function cx with the La-
grangian function

Minimize (cij - 71'(i) + 71'(j»xij.
U.j)EA

(b) Interpret the successive shortest path algorithm as a method that proceeds by
adjusting the Lagrangian mUltipliers. At each stage the method adjusts the mul-
tipliers 71' so that (1) the current pseudoflow x is optimal for the Lagrangian sub-
problem, and (2) some alternate optimal pseudoflow x' for the Lagrangian relax-
ation is "less infeasible" than x. Finally, when the optimal pseudoflow becomes
a flow, we obtain an optimal solution of the Lagrangian subproblem that is also
feasible for the original problem; therefore, it must be an optimal solution of the
original problem.

16.8. Generalized assignment problem (Ross and Soland [1975]). The generalized assignment
problem is the optimization model

subject to

Xi} = 1
jEJ

ai}xij dj
iEI

xi} 0 and integer

Minimize ci}xi} (16. lOa)
iEI jEJ

for all i E I, (16. lOb)

for all} E J, (16.lOc)

for all (i,}) E A. (16.lOd)

In this problem we wish to assign III "objects" to I J I "boxes." The variable
xi} = 1 if we assign object i to box j and Xi} = 0 otherwise. We wish to assign each

Chap. 16 Exercises 639

object to exactly 1 box; if assigned to box j, object i consumes aij units of a given
"resource" in that box. The total amount of resource available in the jth box is dj •

This generic model arises in a variety of problem contexts. For example, in machine
scheduling, the objects are jobs, the boxes are machines; aij is the processing time for
job i on machine j and dj is the total amount of time available on machine j.
(a) Outline the steps required for solving the Lagrangian subproblem obtained by (1)

relaxing the constraint (16. lOb), and (2) by relaxing the constraint (16.lOc).
(b) Compare the lower bounds obtained by the two relaxations suggested in part (a).

Which provides the sharper lower bound? Why? (Hint: Use Theorems 16.9 and
16.10.)

(c) Compare the optimal objective function value of the Lagrangian multiplier problem
for each relaxation suggested in part (a) with the bound obtained by the linear
programming relaxation of the generalized assignment model.

16.9. FacUity location (Erlenkotter [1978]). Consider the following facility location model:

Minimize cijxij + FjYj (16. 11 a)
iEI jEJ jEJ

subject to

xij = 1 for all i = 1, 2, ... , I, (16.11b)
jEJ

dixij S KjYj for allj = 1,2, ... , J, (16. 11 c)
iEI

Os xij S 1 for all i E I and j E J, (16. 11 d)

Yj = 0 or 1 for allj E J. (16. 11 e)
In this model, I denotes a set of customers and J denotes a set of potential facility
(e.g., warehouse) locations used to supply to the customers. The zero-one variable
Yj indicates whether or not we choose to locate a facility at location j and Xij is the
fraction of the demand of customer i that we satisfy from facility j. The constant d;
is the demand of customer i. The cost coefficient Cij is the cost (e.g., the transportation
cost) of satisfying all of the ith customer's demand from facility j, and the cost coef-
ficient Fj is the fixed cost of opening (e.g., leasing) a facility of size Kj at location j.
The constraints (16. 11 b) state that we need to satisfy all of the demand for each cus-
tomer, and the constraints (16.11c) state that (1) we cannot meet any of the demand
of any customer if we do not locate a facility at locationj (i.e., Xij = 0 if Yj = 0), and
(2) if we do locate a facility at location j (Le., Yj = 1), the total demand met by the
facility cannot exceed the facility's capacity Kj •

(a) Show how you would solve the Lagrangian subproblem obtained by relaxing the
constraints (16.11b). (Hint: Note that the Lagrangian subproblem decomposes into
a separate subproblem for each location.)

(b) Show next how you would solve the Lagrangian subproblem if we relax the con-
straints (16.llc). (Hint: Note that the Lagrangian subproblem decomposes into a
separate subproblem for each customer.)

(c) Show that if III = I J I = 1, K, = 10, d, = 5, and C'I = 0, the relaxation suggested
in part (a) gives a sharper lower bound than the relaxation in part (b). Next prove
the general result that the relaxation in part (a) gives at least as good a bound as
given by the relaxation in part (b).

16.10. Modified facUity location. Suppose that in the model considered in Exercise 16.9, we
impose the additional constraint that the demand for each customer should be "sole
sourced"; that is, each variable xij has value zero or I.

640

(a) Show how to use the solution of a single knapsack problem for each facility j to
solve the Lagrangian relaxation obtained by relaxing the constraints (16.11b).

(b) Show that the bound obtained from the Lagrangian multiplier problem by relaxing

Lagrangian Relaxation and Network Optimization Chap. 16

the constraints (16.11 b) is always at least as strong as the bound obtained by
relaxing the constraints (16.11c).

16.11 Tightening the facility location relaxation. Suppose that we add the redundant con-
straints Xij s min{Yb KJ to the facility location model described in Exercise 16.9 and
then we apply Lagrangian relaxation by relaxing the constraints (16.11b) or (l6.11c).
(a) Show that the bound obtained from the Lagrangian multiplier problem is always

as strong or stronger than the bound obtained by relaxing the corresponding con-
straints in the original model without the additional constraints Xij :s.:; min{yj, Kid;}.

(b) How would you solve the Lagrangian subproblem with the added constraints
Xij s min{yj, K)d;}?

(c) How would your answers to parts (a) and (b) change if we considered the sole-
sourcing-facility location model described in Exercise 16.1O?

16.12. Local access capacity expansion (Balakrishnan, Magnanti, and Wong [1991]). The lowest
level of national telephone networks are trees that connect individual customers to
the rest of the national network through special nodes known as switching centers,
which route telephone calls to their final destination. Each local access network (tree)
T has its own switching center. As demand for service increases, telephone companies
have two basic options for increasing the capacity of a local access network: (1) they
can install more copper cables on the arcs of the networks; or (2) they can install
devices, called multiplexers (or concentrators), at the nodes. The multiplexers com-
press calls so that they use less downstream cable capacity. We assume that once a
call reaches a mUltiplexer, it requires negligible cable capacity to send it to the switch-
ing center. Every call must be routed through the tree T either to the switching center
or to one of the multiplexers. Suppose that the existing capacity of arc (i, j) is Uij and
increasing the capacity by Yij units incurs an arc-dependent cost Ci.JYij. Let d; denote
the numbers of calls originating at node i that must be routed to the switching center
or to a multiplexer. Each multiplexer has two associated costs: (1) a fixed cost F, and
(2) a variable throughput cost (l incurred for each unit of call compressed by that
multiplexer. The optimization problem is to meet the demand for service by incurring
minimum total cost.
(a) Let Zi be a zero-one variable indicating whether or not we place a multiplexer at

node i. Further, let Xij be a zero-one variable indicating whether or not we assign
node i to the multiplexer j. In the local access network T, for any pair (i, j] of
nodes, we let Pij denote the unique path between these two nodes, and for any
arc (k, I) in T, we let Qkl be the set of all node pairs [i, j] from which Pij contains
the arc (k, I). We assume that node 1 is the switching center. Let node S denote
the remaining nodes in the network. Using this notation, give an integer program-
ming formulation of the local access network design problem.

(b) Suggest two relaxations of the formulation in part (a) that produce a relaxed prob-
lem with a structure that we have treated in this book.

16.13. Contiguous local access capacity expansion problem (Balakrishnan, Magnanti, and Wong
[1991]). In most practical settings of the local access capacity expansion problems,
the set of nodes assigned to the switching center or to any multiplexer must be con-
tiguous. That is, if we assign node i to a multiplexer at node j and node k lies on the
path in T from node i to node j, we must also assign node k to the multiplexer at node
j. Therefore, the final configuration of the local access network will be a subdivision
of the tree T into subtrees, with each subtree containing either the switching center
or one multiplexer and the nodes it serves.
(a) Show that we can incorporate the contiguity condition in the formulation of Ex-

ercise 16.12 by adding the following constraints for every pair [i, j] of nodes: if
the path Pij contains node k, then Xkj 2: Xij.

(b) Consider the integer programming formulation of the contiguous local access ca-
pacity expansion problem from part (a). Suppose that we relax the capacity con-
straints imposed on the arcs. Show that we can solve the Lagrangian subproblem
in polynomial time using a dynamic programming technique.

Chap. 16 Exercises 641

16.14. Design of telecommunication networks (Leung, Magnanti, and Singhal [1990] and Mag-
nanti, Mirchandani, and Vachani [1991]). In designing telecommunications networks,
we would like to install sufficient capacity to carry required traffic (telephone calls,
data transmissions) simultaneously between various source-sink locations. Suppose
that (Sk, t k) for 1 s k s K denote K pairs of source-sink locations, and rk denotes
the number of messages sent from the source Sk to the sink tk. We can install either
of two different types of facilities on each link of the transmission network, so-called
TO lines and TI lines. Each TO line can carry 1 unit of message and each TI line can
carry 24 units of messages; installing a TO line on arc (i, j) incurs a cost of ai) and
installing a TI line on arc (i, j) incurs a cost of bi)' Once we have installed the lines,
we incur no additional costs in sending flow on them. This problem arises in practice
because companies with large telecommunication requirements might be able to lease
lines more cost-effectively than paying public tariffs. The same type of problem arises
in trucking of freight; in this setting, the facilities to be "installed" on any arc are the
trucks of a particular type (e.g., 36-foot trailers or 48-foot trailers) to be dispatched
on that arc.
(a) Show how to formulate this telecommunication network design problem with two

types of constraints: (1) a set of network flow constraints modeling the required
flow between every pair of source-sink locations, and (2) capacity constraints
restricting the total flow on each arc to be no more than the capacity that we install
on that arc. (Hint: Use the following integer decision variables: (1) Yu : the number
of TO lines for arc (i, j), (2) Zu : the number of TI lines for arc (i, j), and (3) the
number of messages xi sent from the source Sk to the sink t k that pass through
the arc (i, j).)

(b) How would you solve the linear programming relaxation of this model? (Hint:
Consider two cases: when 24 aij < bij and when 24 au bij.)

(c) Show how to solve the Lagrangian subproblem obtained by relaxing constraints
of type 1 in the model formulation. (Hint: Consider the two cases as in part (b).)

(d) Show how to solve the Lagrangian subproblem obtained by relaxing constraints
of type 2 in the model formulation.

16.15. Steiner tree problem. The Steiner tree problem is an variant of the minimum
spanning tree problem. In this problem we are given a subset S N of nodes, called
customer nodes, and we wish to determine a minimum cost tree (not necessarily a
spanning tree) that must contain all the nodes in S and, optionally, some nodes in
N - S. This problem arises in many application settings, such as the design of rural
road networks, pipeline networks, or communication networks. Formulate this prob-
lem as a special case of the network design problem discussed in Application 16.4 and
show how to apply Lagrangian relaxation to the resulting formulation. (Hint: Designate
any customer node as a source node and send 1 unit of flow to every other customer
node.)

16.16. In this exercise we show how to formulate a directed traveling salesman problem as
a network design problem. Consider a network design problem with the following data:
(1) unit commodity flow requirements between every pair of nodes, (2) the cost of
flow on every arc is zero, and (3) the fixed cost of the arc (i, j) is Ci} + M for some
sufficiently large number M. Show that the optimal network will be an optimal traveling
salesman tour with cij as arc lengths. (Hint: The optimal network must be strongly
connected and must contain the fewest possible number of arcs.)

16.17. Uncapacitated undirected network design problem. In the formulation of the directed
uncapacitated network design problem in Application 16.4, the zero-one vector Yij
indicated whether we would include the directed arc (i, j) in the underlying network.
Suppose, instead, that the arcs are undirected, so if we introduce arc (i, j) in the
network, we can send flow in either direction on the arc.

642

(a) How would you formulate this problem and apply Lagrangian relaxation to obtain
lower bounds?

Lagrangian Relaxation and Network Optimization Chap. 16

(b) Show that in the uncapacitated undirected network design problem, if all flow
costs ct are zero, all the fixed costs f ij are nonnegative, and the problem has a
commodity for each pair of nodes, the problem reduces to the minimum spanning
tree problem.

16.18. (a) Show that if the un capacitated network design problem has a single commodity
(i.e., K = 1), we can solve the problem by solving a single shortest path problem.

(b) Show how to formulate the production planning problems that we described in
Application 16.7 as capacitated or uncapacitated network design problems.

16.19. (a) Suppose that we relax the mass balance constraint Xx = b in the formulation
(16.3) of the traveling salesman problem described in Application 16.2. Show how
to solve the Lagrangian subproblem as an assignment problem. (Hint: Show that
some optimal solution of the Lagrangian subproblem satisfies the conditions
xij = 0 or xij = (n - l)Yii for each arc (i, j) E A. Use this fact to eliminate the
variables xij from the subproblem.)

(b) Suppose that we relax the assignment constraints (l6.3b) and (16.3c) in the for-
mulation (16.3) of the traveling salesman problem. Show how to solve the La-
grangian subproblem as an uncapacitated network design problem.

(c) What is the relationship between the optimal solutions of the Lagrangian multiplier
problems obtained by the relaxations considered in parts (a) and (b), the relaxation
described in the text (obtained by relaxing the forcing constraints xij S (n - 1)Yij) ,
and the optimal objective function value of the linear programming relaxation of
the problem?

16.20. Assignment-based formulation of the traveling salesman problem
(a) Consider the integer program (16.3) with the constraints (16.3d) and (16.3e) re-

placed by the subtour breaking constraints (l6.4h). Show that the resulting model
is an integer programming formulation of the traveling salesman problem.

(b) Show that the solution of the Lagrangian subproblem formed by relaxing the sub-
tour breaking constraints will be a set of directed cycles satisfying the property
that each node is contained in exactly one cycle. Describe a heuristic method for
modifying the Lagrangian subproblem solution so that it becomes a feasible trav-
eling salesman tour.

16.21. Undirected traveling salesman problem. In the undirected (or symmetric) traveling
salesman problem, we can traverse any arc (i, j) in either direction at the same cost
cij' Let Yij indicate whether or not we include arc (i, j) in a feasible tour.
(a) Give a formulation of this problem as an integer program containing three sets of

constraints: (1) degree 2 constraints, indicating that each node should have degree
at most 2 in any feasible tour; (2) sub tour breaking constraints on the nodes
2, 3, ... , n; and (3) a cardinality constraint indicating that the tour contains
exactly n arcs. (Hint: Modify the assignment based formulation of the directed
traveling salesman problem described in Exercise 16.20.)

(b) Show how to apply Lagrangian relaxation in two ways: (1) by relaxing the degree
2 constraints; and (2) by relaxing the subtour breaking constraints and the car-
dinality constraint. In case 1 show how to solve the Lagrangian subproblem as a
I-tree (see Exercise 13.38). In case 2 show how to solve the Lagrangian subproblem
as a matching problem. (Hint: In case 2, first show that any network with narcs
and degree at most 2 on each node, must have a degree of exactly 2 at each node.)

16.22. Multlcommodlty now-based formulation of the traveling salesman problem. In Appli-
cation 16.2 we examined a single-commodity flow-based formulation of the traveling
salesman problem with n - 1 units available at a source node (which we arbitrarily
took to be node 1) and 1 unit of demand required at each other node. Suppose that,
instead, we formulated a multicommodity flow model with 2(n - 1) commodities, with
two commodities k defined for each node k # 1, an "outgoing" commodity and an
"incoming" commodity. The incoming commodity for node k has 1 unit of supply at
node 1 and 1 unit of demand at node k, and the outgoing commodity for node k has

Chap. 16 Exercises 643

1 unit of supply at node k and 1 unit of demand at node 1 (i.e., we wish to send 1 unit
from node 1 to node k and 1 unit from node k to node 1). We can state this formulation
of the traveling salesman problem as the following integer program:

Minimize L cijYij,
(i,j)EA

subject to

L Yij = 1 for all i = 1,2, ... , n,
Isjsn

L Yij = 1 for all j = 1,2, ... , n,
Isisn

Nx k = bk for all k = 2, ... , n,

Nz k = d k for all k = 2, ... , n,

xt :5 Yij and zt :5 Yij for all (i, j) and all k,
Yij and xt = 0 or 1 for all (i, j) and all k.

Note that the supply/demand vectors bk and d k in this formulation have a special
form: d k = - bk and b7 is 1 if i = 1, is - 1 if i = k, and is 0 if i =1= 1 and i =1= k.
(a) Suppose that we apply Lagrangian relaxation to the multicommodity flow-based

model by relaxing the forcing constraints [Le., the constraints xt :5 Yij and
zt :5 Yij, for all (i,j) and all k]. How would you solve the Lagrangian subproblem?

(b) Show that the lower bound L * determined by the Lagrangian mUltiplier problem
for the Lagrangian relaxation in part (a) is always as strong or stronger than the
lower bound determined by relaxing the forcing constraints in the single-com-
modity flow-based formulation. (Hint: Compare the set of feasible solutions of
both problems.)

(c) What is the relationship between the optimal objective function values ofthe linear
programming relaxations of the single and multicommodity flow-based formula-
tions? (Hint: Same as that in part (b).)

16.23. Alternate formulations of the traveling salesman problem (Wong [1980]). In this chapter
we have considered three different formulations of the traveling salesman problem:
(1) a single-commodity flow-based formulation in Application 16.2, (2) an assignment-
based formulation discussed in Exercise 16.20, and (3) a multicommodity flow-based
formulation in Exercise 16.22, where we showed that from the perspective of linear
programming or Lagrangian relaxations, the multicommodity flow-based formulation
is stronger than the single commodity flow-based formulation.
(a) Show that we can replace the subtour breaking constraints in the assignment-

based formulation, or in its linear programming relaxation, by the constraints LiES
kEN-S Yij 2: 1 for all sets S of nodes satisfying the cardinality condition 1 :s
I S I :5 n - 1, and in both cases obtain an equivalent model (i.e., one with the
same feasible solutions).

(b) Using the max-flow min-cut theorem and part (a), show that the linear program-
ming relaxation of the assignment-based formulation of the traveling salesman
problem and the linear programming relaxation of the multicommodity flow-based
formulation are equivalent in the sense that Y is feasible in the linear programming
relaxation of the assignment-based formulations if and only if for some flow vector
x, (x, y) is feasible in the multicommodity flow-based formulation. (Note that the
number of subtour breaking constraints in the assignment-based formulation is
exponential in n. The number of constraints in the multicommodity flow-based
formulation is polynomial in n, so this formulation is a so-called compact for-
mulation.)

16.24. Consider the undirected traveling salesman problem shown in Figure 16.11.
(a) What is the optimal tour length for this problem?

644 Lagrangian Relaxation and Network Optimization Chap. /6

(;\ Y'j 0 0---- 1
o

S
I
T

2. f-------------------__\. o
(a) (b)

Figure 16.11 Traveling salesman problem: (a) network data; (b) solution to the linear pro-
gramming relaxation.

(b) Show that the arc weights shown in Figure 16.II(b) solve the linear programming
relaxation of the formulation developed in Exercise 16.21. Interpret this solution
as the convex hull of I-tree solutions to the Lagrangian subproblem that we obtain
by relaxing the degree two constraints in this formulation. That is, show how to
represent this solution as a convex combination of I-tree solutions.

(c) Show the network corresponding to the equivalent directed traveling salesman
problem and specify the optimal solution to the linear programming relaxation of
the assignment-based formulation and both the single and multicommodity flow-
based formulations.

(d) Interpret the solution to each linear programming relaxation as the convex hull of
solutions to Lagrangian subproblems.

16.25. K-traveling salesman problem. Suppose that we wish to find a set of K
directed cycles in a directed graph satisfying the property that node I is contained in
exactly K cycles and every other node is contained in exactly one cycle. In this model
each arc has an associated cost cij and we wish to find a feasible solution with the
smallest possible sum of arc costs. We refer to this problem as the K -traveling salesman
problem since it corresponds to a situation in which K salesmen, all domiciled at the
same node 1, need to visit all the other nodes of a graph.
(a) Formulate this problem as an optimization model and show how to apply La-

grangian relaxation to the formulation. (Hint: Modify the single-commodity flow-
based formulation given in Application 16.2 or the assignment-based formulation
given in Exercise 16.20.)

(b) By forming K copies of node I and assigning a large cost with all of the arcs joining
the copies of node 1, show how to formulate the problem as an equivalent (single)
traveling salesman problem.

16.U. Consider the K-traveling salesman problem described in Exercise 16.25. Show how
to formulate this problem as a special case of the vehicle routing problem described
in Application 16.3. The resulting formulation will be considerably simpler than the
general vehicle routing problem. (Hint: First show that we can eliminate the con-
straints (l6.4g). Next show how to use the constraints (16.4b) to eliminate the variables
xt·)

16.27. Vehicle routing with nonhomogeneous Deets and with time restrictions. This exercise
studies a generalization of the vehicle routing problem discussed in Application 16.3.
Show how to formulate a vehicle routing problem with each of the following problem
ingredients: (1) each vehicle k in a fleet of K vehicles can have different capacity Uk,

Chap. 16 Exercises 645

or (2) each vehicle must make its deliveries within T hours, given that it takes tij hours
to traverse any arc (i, j).

16.28. Suppose that we add the redundant constraint Yij = n +" K'to the formulation
(16.4) of the vehicle routing problem. Consider the additional set of constraints
kES Ylj + Yij :s I S I for all subsets S of {2, 3, ... , n}.
(a) Are these constraints valid?
(b) Are these constraints implied by the other constraints in the integer programming

formulation ofthe problem? Are they implied by the other constraints in the linear
programming relaxation of the problem?

(c) Suppose that we add the additional constraints to the formulation of the vehicle
routing problem. Show that by relaxing the capacity constraints (16.4g) and the
assignment constraints (16.2c) and (16.2d) for nodes 2, 3, ... , n, the resulting
Lagrangian subproblem decomposes into two subproblems: (i) a degree-con-
strained minimum spanning tree problem with degree K imposed on node 1, and
(ii) a problem of choosing the K cheapest (with respect to the Lagrangian sub-
problem coefficients) arcs of the form Yjl. (Hint: First eliminate the variables xt and then note that the Lagrangian subproblem decomposes into two subprob-
lems, one containing the variables Yjl and one containing all the other variables.)

16.29. Solve the degree-constrained minimum spanning tree problem shown in Figure 16.12
assuming that the degree of node 1 must be 8. Solve it if the degree of node 1 must
be 5.

e------ Length=O.8

Length = 1

Length = 2.5

Figure 16.12 Constrained minimum spanning tree problem.

16.30. Suppose that X is a finite set and that when we solve the Lagrangian multiplier problem
corresponding to the optimization problem min{cx : sIlx = b, x E X} for any value of
c, we find that the problem has no relaxation gap; that is, if x* solves the given
optimization problem and f.!. * is an optimal solution to the Lagrangian multiplier prob-
lem, then cx* = L(f.!. *). Show that the polyhedron {x E '3£(X) : sIlx = b} has integer
extreme points. (Hint: Use the equivalence between convexification and Lagrangian
relaxation (Theorem 16.10) and the fact that every extreme point to a polyhedron CfP
is the unique optimal solution to the linear program min{cx : x E CfP} for some choice
of the objective coefficients c.)

16.31. Let X denote the set of incidence vectors of spanning trees of a given network.

646 Lagrangian Relaxation and Network Optimization Chap. 16

(a) Using Exercise 16.30 and the results in Section 16.4, show that for any value of
k, the polyhedron {x : x E and Lj#l Xij = k} has integer extreme points.
Note that if we view the set of solutions to x E and Lj#l Xlj = k as we
vary k as "parallel slices" through the polyhedron x E this result says that
extreme points of every slice are integer valued.

(b) For any subset S of nodes, let A(S) = {(i, j) E A : i E S andj E S}. Using the
result of part (a) and the development in Section 13.8, show that for any value of
k, the following polyhedron has integer extreme points:

L xlj = k,
j#l

L Xij = n - 1,
(i,j)EA

L xij I S I - 1
(i,j)EA(S)

Xij O.

for any set S of nodes,

(Hint: In Section 13.8 we showed that without the cardinality constraint L#l xlj = k, the extreme points in the polyhedron defined by the remaining con-
straints are incident vectors of spanning tree solutions (and so are integer valued).)

16.32. Suppose that we wish to find a minimum spanning tree of an undirected graph G
satisfying the additional conditions that the degree of node 1 is k and the degree of
node n is I. Suggest a Lagrangian relaxation bounding procedure for this problem.
(Hint: Consider relaxing just one of the two degree constraints.)

16.33. Capacitated minimum spanning tree problem (Gavish [1985]). In some applications of
the minimum spanning tree problem, we want to construct a capacitated tree T rooted
at a specially designated node, say node 1. In this problem we wish to identify a
minimum cost spanning tree subject to the additional condition that no subtree of T
formed by eliminating all the arcs incident to node 1 contains more than a prescribed
number u of nodes. This model arises, for example, in computer networking when
node 1 is a central processor and for reasons of reliability we wish to limit the number
of nodes (terminals) attached to this node through any of its ports (incident arcs). Let
Yij be a zero-one variable, indicating whether or not we include arc (i,j) in the optimal
capacitated tree.
(a) Explain how the capacitated minimum spanning tree problem differs from the

degree-constrained minimum spanning tree problem.
(b) By introducing additional constraints in the integer programming formulation

(13.2) of the minimum spanning tree problem, obtain an integer programming for-
mulation of the capacitated minimum spanning tree problem.

(c) Suggest a Lagrangian-based method for obtaining a lower bound on the optimal
solution by solving a sequence of minimum spanning tree problems.

16.34. Identical customer vehicle routing problem. In the identical customer vehicle routing
problem, each customer has the same demand. Formulate this problem as a capacitated
minimum spanning tree problem with additional constraints. Show how to obtain
bounds on the objective values by applying Lagrangian relaxation to this problem
using the capacitated minimum spanning tree problem as a subproblem.

16.35. Note that every solution to a vehicle routing problem is a degree constrained minimum
spanning tree (with degree K for node 1) together with K additional arcs incident to
node 1 as well as another set of constraints modeling vehicle capacities. Use this
observation to give a formulation of the vehicle routing problem and an associated
Lagrangian relaxation that contains the degree-constrained minimum spanning tree
problem as a subproblem.

16.36. Lagrangian decomposition (Guignard and Kim [1987a,b]). Consider the optimization
problem PI defined as min{cx : sIlx = b, qnx = d, x 0 and integer}. Suppose that
by using a variable splitting technique described in Application 16.5, we restate this

Chap. 16 Exercises 647

problem in the following equivalent form P2: minHcx + icy : dlx = b, qny = d, x -
Y = 0, x, Y 2:: 0 and integer}. We might form three different Lagrangian relaxations
for this problem, one by relaxing the constraint dlx = b "in'-J>2, one by relaxing the
constraint qnx = d in P2, and one by relaxing the constraint x - y in P2. Let L I , L 2,
and L 3 denote the optimal values of the Lagrangian multiplier problems for each of
these relaxations. The approach via problem L3 is known as a Lagrangian decom-
position since it permits us to decompose the problem into two separate subproblems,
one corresponding to each set of equality constraints. Using Theorems 16.8 and Theo-
rem 16.9, show that L3 2:: LI and L3 2:: L2. (Hint: Let HI and HZ, respectively, denote
the convex hulls of the sets {qnx = d, x 2:: 0 and integer} and {dlx = b, x 2:: 0 and
integer}. Consider the sets HI n {x : dlx = b}, HZ n {x : qnx = d}, and HI n fl2,
and consider the minimization of the objective function cx over each of these sets.
Which of these problems has the smallest objective function value? What is the re-
lationship between these optimal objective function values and the values L I , L 2 , and
L3?)

16.37. Example of Lagrangian decomposition. Suppose that we apply the Lagrangian decom-
position procedure to the following integer programming example:

648

subject to

9xI + lOx2 :s 63,

4xI + 9x2 :s 36,

Minimize -2x1 - 3X2

xI. X2 2:: 0 and integer.
In this case, the reformulated problem is:

subject to

9xI + lOx2 :s 63,

4YI + 9y2 :s 36,

XI - YI = 0,

X2 - Y2 = 0,

Minimize - XI - - YI -

XI. Xz, YI, Y2 2:: 0 and integer.
Give a geometrical interpretation of the Lagrangian relaxation obtained by relaxing
each of the following constraints: (1) 4xI + 9X2 :s 36; (2) 4YI + 9Y2 :s 36; and (3)
XI - YI = 0 and X2 - Y2 = O. From these geometrical considerations, interpret the
fact that in the notation of Exercise 16.36, L 3, 2:: L I and that L3 2:: L 2.

Lagrangian Relaxation and Network Optimization Chap. 16

