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-Mohandas Gandhi 
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16.1 INTRODUCTION 

As we have noted throughout our discussion in this book, the basic network flow 
models that we have been studying-shortest paths, maximum flows, minimum cost 
flows, minimum spanning trees, matchings, and generalized and convex flows-
arise in numerous applications. These core network models are also building blocks 
for many other models and applications, in the sense that many models met in prac-
tice have embedded network structure: that is, the broader models are network 
problems with additional variables and/or constraints. 

In this chapter we consider ways to solve these models using a solution strategy 
known as decomposition which permits us to draw upon the many algorithms that 
we have developed in previous chapters to exploit the underlying network structure. 
In a sense this chapter serves a dual purpose. First, it permits us to introduce a 
broader set of network optimization models than we have been considering in our 
earlier discussion. As such, this chapter provides a glimpse of how network flow 
models arise in a wide range of applied problem settings that cannot be modeled as 
pure network flow problems. Second, the chapter introduces a solution method, 
known as Lagrangian relaxation, that has become one of the very few solution 
methods in optimization that cuts across the domains of linear and integer program-
ming, combinatorial optimization, and nonlinear programming. 

Perhaps the best way to understand the basic idea of Lagrangian relaxation is 
via an example. 

598 



Constralned Shortest Paths 
Consider the network shown in Figure 16.I(a) which has two attributes associated 
with each arc (i, j): a cost Cij and a traversal time tij' Suppose that we wish to find 
the shortest path from the source node 1 to the sink node 6, but we wish to restrict 
our choice of paths to those that require no more than T = 10 time units to traverse. 
This type of constrained shortest path application arises frequently in practice since 
in many contexts a company (e.g., a package delivery firm) wants to provide its 
services at the lowest possible cost and yet ensure a certain level of service to its 
customers (as embodied in the time restriction). In general, the constrained shortest 
path problem from node 1 to node n can be stated as the following integer program-
ming problem: 

subject to 

:L Xij-
{j: U.j)EA} 

Minimize :L CijXij 
(iJ)EA 

{

I 
:L Xji = 0 

{j:(j.i)EA} -I 

:L tijxij T, 
(i.j)EA 

for i = 1 
for i E N - {l, n}, 
for i = n 

Xij = 0 or 1 for all (i, j) E A. 

(16.la) 

(16.lb) 

(16.lc) 

(16.ld) 

The problem is not a shortest path problem because of the timing restriction. 
Rather, it is a shortest path problem with an additional side constraint (16.lc). Instead 
of solving this problem directly, suppose that we adopt an indirect approach by 
combining time and cost into a single modified cost; that is, we place a dollar equiv-
alent on time. So instead of setting a limit on the total time we can take on the chosen 
path, we set a "toll charge" on each arc proportional to the time that it takes to 

(a) (b) 

Figure 16.1 Time-constrained shortest path problem: (a) constrained shortest path problem 
(bold lines denote the shortest path for J.L = 0); (b) modified cost c + J.Ll with Lagrange 
multiplier J.L = 2 (bold lines denote the shortest path). 
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traverse that arc. For example, we might charge $2 for each hour that it takes to 
traverse any arc. Note that if the toll charge is zero, we are ignoring time altogether 
and the problem becomes a usual shortest path problem with respect to the given 
costs. On the other hand, if the toll charge is very large, these charges become the 
dominant cost and we will be seeking the quickest path from the source to the sink. 
Can we find a toll charge somewhere in between these values so that by solving the 
shortest path problem with the combined costs (the toll charges and the original 
costs), we solve the constrained shortest path problem as a single shortest path 
problem? 

For any choice of the toll charge, we solve a shortest path problem with 
respect to the modified costs Cij + For the sample data shown in Figure 16.1(a), 
if = 0, the modified problem becomes the shortest path problem with respect to 
the original costs Cij and the shortest path 1-2-4-6 has length 3. This value is an 
obvious lower bound on the length of the constrained shortest path since it ignores 
the timing constraint. Now suppose that we set = 2 and solve the modified prob-
lem. Figure 16.1(b) shows the modified costs Cij + 2tij. The shortest path 1-3-2-
5-6 has length 35. In this case, the path 1-3-2-5-6 that solves the modified problem 
happens to require 10 units to traverse, so it is a feasible constrained shortest path. 
Is it an optimal constrained shortest path? 

To answer this question, let us make an important observation (which we will 
prove formally in the next section). Let P, with cost Cp = L(i.})EP Cij and traversal 
time tp = LU.})EP tij, be any feasible path to the constrained shortest path problem, 
and let denote the optimal length of the shortest path with the modified costs 
when we impose a toll of units. Since the path P is feasible for the constrained 
shortest path problem, the time tp required to traverse this path is at most T = 10 
units. With respect to the modified costs Cij + the cost Cp + of the path P 
is the path's true cost Cp plus units. Therefore, if we subtract from the 
modified cost Cp + of this path, we obtain a lower bound Cp + - = 
Cp + - T) Cp on the cost Cp of this path. Since the shortest path with respect 
to the modified arc costs is less than or equal to the modified cost of any particular 
path, Cp + and so - is a common lower bound on the length of 
any feasible path P and thus on the length of the constrained shortest path. Because 
this argument is completely general and applies to any value 2: 0 of the toll charges, 
if we subtract the optimal length of the shortest path of the modified problem, 
we obtain a lower bound on the optimal cost of the constrained shortest path problem. 

Bounding Principle. For any nonnegative value of the toll the length l(fL) 
of the modified shortest path with costs Cij + minus is a lower bound on the 
length of the constrained shortest path. 

Note that for our numerical example, for = 2, the cost of the modified shortest 
path problem is 35 units and so 35 - 2( T) = 35 - 2( 1 0) = 15 is a lower bound on 
the length of the optimal constrained shortest path. But since the path 1-3-2-5-6 
is a feasible solution to the constrained shortest path problem and its cost equals 
the lower bound of 15 units, we can be assured that it is an optimal constrained 
shortest path. 

Observe that in this example we have been able to solve a difficult optimization 

600 Lagrangian Relaxation and Network Optimization Chap. 16 



model (the constrained shortest path problem is an Xg:>-complete problem) by re-
moving one or more problem constraints-in this case the single timing constraint-
that makes the problem much more difficult to solve. Rather than solving the difficult 
optimization problem directly, we combined the complicating timing constraint with 
the original objective function, via the toll IJ., so that we could then solve a resulting 
embedded shortest path problem. The motivation for adopting this approach was 
our observation that the original constrained shortest path problem had an attractive 
substructure, the shortest path problem, that we would like to exploit algorithmically. 
Whenever we can identify such attractive substructure, we could adopt a similar 
approach. For reasons that will become clearer in the next section, this general 
solution approach has become known as Lagrangian relaxation. 

In our example we have been fortunate to find a constrained shortest path by 
solving the Lagrangian subproblem for a particular choice of the toll IJ.. We will not 
always be so lucky; nevertheless, as we will see, the lower bounding mechanism of 
Lagrangian relaxation frequently provides valuable information that we can exploit 
algorithmically. 

Lagrangian relaxation is a general solution strategy for solving mathematical 
programs that permits us to decompose problems to exploit their special structure. 
As such, this solution approach is perfectly tailored for solving many models with 
embedded network structure. The Lagrangian solution strategy has a number of 
significant advantages: 

1. Since it is often possible to decompose models in several ways and apply La-
grangian relaxation to each different decomposition, Lagrangian relaxation is 
a very flexible solution approach. Indeed, because of its flexibility, Lagrangian 
relaxation is more of a general problem solving strategy and solution framework 
than any single solution technique. 

2. In decomposing problems, Lagrangian relaxation solves core subproblems as 
stand-alone models. Consequently, the solution approach permits us to exploit 
any known methodology or algorithm for solving the subproblems. In partic-
ular, when the subproblems are network models, the Lagrangian solution ap-
proach can take advantage of the various algorithms that we have developed 
previously in this book. 

3. As we have already noted, Lagrangian relaxation permits us to develop bounds 
on the value of the optimal objective function and, frequently, to quickly gen-
erate good, though not necessarily optimal solutions with associated perfor-
mance guarantees-that is, a bound on how far the solution could possibly be 
from optimality (in objective function value). In many instances in the context 
of integer programming, the bounds provided by Lagrangian relaxation meth-
ods are much better than those generated by solving the linear programming 
relaxation of the problems, and as a consequence, Lagrangian relaxation is 
often an attractive alternative to linear programming as a bounding mechanism 
in branch-and-bound methods for solving integer programs. 

4. In many instances we can use Lagrangian relaxation methods to devise effective 
heuristic solution methods for solving complex combinatorial optimization 
problems and integer programs. 
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In the remainaer of this chapter we describe the Lagrangian relaxation solution 
approach in more detail and demonstrate its use in solving several important network 
optimization models. Our purpose is not to present a comprehensive treatment of 
Lagrangian relaxation or of its applications to the field of network optimization, but 
rather to introduce this general solution strategy and to illustrate its applications in 
a way that would lay the essential foundations for applying the method in many other 
problem contexts. As a by-product of this discussion, in the text and in the exercises 
at the end of this chapter we introduce several noteworthy network optimization 
models that we do not treat elsewhere in the book. 

Since one of the principal uses of Lagrangian relaxation is within implicit enu-
meration procedures for solving integer programs, before describing Lagrangian re-
laxation in more detail, we first discuss its use within classical branch-and-bound 
algorithms for solving integer programs. The reader can skip this section without 
loss of continuity. 

16.2 PROBLEM RELAXATIONS AND BRANCH AND 
BOUND 

In the last section we observed that Lagrangian relaxation permits us to develop a 
lower bound on the optimal length of a constrained shortest path. In Section 16.3 
we develop a generalization of this result, showing that we can obtain a lower bound 
on the optimal objective function value of any minimization problem. These lower 
bounds can be of considerable value: for example, for our constrained shortest path 
example, we were able to use a lower bound to demonstrate that a particular solution 
that we generated by solving a shortest path subproblem, with modified costs, was 
optimal for the overall constrained problem. In general, we will not always be as 
fortunate in being able to use a lower bound to guarantee that the solution to a single 
subproblem solves the original problem. Nevertheless, as we show briefly in the 
section, we might still be able to use lower bounds as an algorithmic tool in reducing 
the number of computations required to solve combinatorial optimization problems 
formulated as integer programs. 

Consider the following integer programming model: 

Minimize ex 

subject to 

xE F. 

In this formulation, the set F represents the set of feasible solutions to an integer 
program, that is, the set of solutions x = (XI, X2, ••• , xJ) to the system 

S1ix = b, 

Xj = 0 or 1 for j = 1, 2, ... , J. 

In a certain conceptual sense, this integer program is trivial to solve: We simply 
enumerate every combination of the decision variables, that is, all zero-one vectors 
(XI, X2, ••• ,xJ) obtained by setting each variable Xj to value zero or 1; from among 
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all those vectors that satisfy the given equality constraint sflx = b, we choose the 
combination with the smallest value of the objective function ex. Of course, because 
of its combinatorial explosiveness, this total enumeration procedure is limited to 
very small problems; for a problem with 100 decision variables, even if we could 
compute one solution every nanosecond (10 -9 second), enumerating all 2100 solutions 
would take us over a million million years-that is, a million different million years! 

Can we avoid any of these computations? Suppose that F = FI U F2. For 
example, we might obtain F' from F by adding the constraint Xl = 0 and F2 by 
adding the constraint x, = 1. Note that the optimal solution over the feasible set F 
is the best of the optimal solutions over FI and F2. Suppose that we already have 
found an optimal solution x to min{ex : x E F2} and that its objective function value 
is z(x) = 100. The number of potential integer solutions in F' is still 2J - I, so it will 
be prohibitively expensive to enumerate all these possibilities, except when J is 
small. 

Rather than attempt to solve the integer program over the feasible region F', 
suppose that we solve a relaxed version of the problem, possibly by relaxing the 
integrality constraints, and/or possibly by performing a Lagrangian relaxation of the 
problem. In general, we obtain a relaxation by removing some constraints from the 
model: for example, by replacing the restrictions Xj 2: 0 and integer, by the restriction 
Xj 2: 0, or by deleting one or more constraints of the form ax = We could use 
many different types of relaxation-in Lagrangian relaxation, for example, we not 
only delete some problem constraints, but we also change the objective function of 
the problem. For the purpose of this discussion, we merely require that we relax 
some of the problem constraints and that the objective function value of the relax-
ation is a lower bound on the objective function value of the original problem. 

Let x' denote an optimal solution to the relaxation, and let z(x ' ) denote the 
objective function value of this solution. We consider four possibilities: 

1. The solution X I does not exist because the relaxed problem has no feasible 
solution. 

2. The solution x' happens to lie in F' (even though we relaxed some of the 
constraints). 

3. The solution x' does not lie in F' and its objective function value z(x ' ) satisfies 
the inequality z(x ' ) 2: z(x) = 100. 

4. The solution x' does not lie in F' and its objective function value z(x ' ) of x' 
satisfies the inequality z(x') < z(x) = 100. 

Note that these four alternatives exhaust all possible outcomes and are mutually 
exclusive. Therefore, exactly one of them must occur. 

We now make an important observation. In cases 1 to 3, we can terminate our 
computations: we have solved the original problem over the set F, even though we 
have not explicitly solved any integer program (assuming that we obtained the so-
lution over the set F2 without solving an integer program). In case 1, since the 
relaxation of the set FI is empty, the set FI is also empty, so the solution x solves 
the original (overall) integer program. In case 2, since we have found the optimal 
solution in the relaxation (and so a superset) of the set FI, and this solution lies in 
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FI, we have also found the best solution in FI; therefore, either x or x' is the solution 
to the original problem (whichever solution has the smaller objective function value). 
Note that in this case we have implicitly considered (enumerated) all of the solutions 
in FI in the sense that we know that no solution in this set is better than x. In case 
3, the solution x has as good an objective function value as the best solution in a 
relaxation of FI, so it has an objective function value that is as good as any solution 
in Fl. Therefore, x solves the original problem. Note that in case 3 we have used 
bounding information on the objective function value to eliminate the solutions in 
the set FI from further consideration. 

In case 4, we have not yet solved the original problem. We can either try to 
solve the problem minimize {ex: x E FI} by some direct method of integer pro-
gramming or, we can partition FI into two sets F3 and F4. For example, we might 
obtain F3 from F by constraining Xl = 0 and X2 = 0 and obtain F4 by setting XI = 0 
and X2 = 1. We could then apply any relaxation or direct approach for the problems 
defined over the sets F3 and F4. 

In a general branch-and-bound procedure, we would systematically partition 
the feasible region F into subregions F 1, F2, F3, . . . , FK. Let x denote the best 
feasible solution (in objective function value) we have obtained in prior computa-
tions. Suppose that for each k = 1, 2, ... , K, either Fk is empty or Xk is a solution 
of a relaxation of the set Fk and ex :S cxk. Then no point in any of the regions FI, 
p2, F 3, ... , Fk could have a better objective function value than x, so x solves the 
original optimization problem. If ex > exk, though, for any region Fk, we would 
need to subdivide this region by "branching" on some of the variables (i.e., dividing 
a subregion in two by setting Xj = 0 or Xj = 1 for some variable j to define two new 
subregions). Whenever we have satisfied the test ex :S exk for all of the subregions 
(or we know they are empty), we have solved the original problem. 

The intent of the branch-and-bound method is to find an optimal solution by 
solving only a small number of relaxations. To do so, we would need to obtain good 
solutions quickly and obtain good relaxations so that the objective function value 
z(xk) of the solution Xk to the relaxation of the set Fk is close in objective function 
value to the optimal solution over Fk itself. 

In practice, in implementing the branch-and-bound procedure, we need to make 
many design decisions concerning the order for choosing the subregions, the vari-
ables to branch on for each subregion, and mechanisms (e.g., heuristic procedures) 
that we might use to find "good" feasible solutions. The literature contains many 
clever approaches for resolving these issues and for designing branch-and-bound 
procedures that are quite effective in practice. We also need to develop good re-
laxations that would permit us to obtain effective (tight) lower bounds: if the lower 
bounds are weak, cases 2 and 3 will rarely occur and the branch-and-bound procedure 
will degenerate into complete -enumeration. On the other hand, if the bounds are 
very tight, the relaxations will permit us to eliminate much of the enumeration and 
develop very effective solution procedures. Since our purpose in this chapter is to 
introduce one relaxation procedure that has proven to be very effective in practice 
and discuss its applications, we will not consider the detailed design choices for 
implementing the branch-and-bound procedure. 

We next summarize the basic underlying ideas of the Lagrangian relaxation 
technique. 
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16.3 LAGRANGIAN RELAXATION TECHNIQUE 
To describe the general form of the Lagrangian relaxation procedure, suppose that 
we consider the following generic optimization model formulated in terms of a vector 
x of decision variables: 

subject to 
z* = min ex 

stlx = b, 

xEX. 

(P) 

This model (P) has a linear objective function ex and a set stlx = b of explicit 
linear constraints. The decision variables x are also constrained to lie in a given 
constraint set X which, as we will see, often models embedded network flow struc-
ture. For example, the constraint set X = {x : Xx = q, 0 x u} might be all the 
feasible solutions to a network flow problem with a supply/demand vector q. Or, 
the set X might contain the incidence vectors of all spanning trees or matchings of 
a given graph. Unless we state otherwise, we assume that the set X is finite (e.g., 
for network flow problems, we will let it be the finite set of spanning tree solutions). 

As its name suggests, the Lagrangian relaxation procedure uses the idea of 
relaxing the explicit linear constraints by bringing them into the objective function 
with associated Lagrange multipliers (this old idea might be a familiar one from 
advanced calculus in the context of solving nonlinear optimization problems). We 
refer to the resulting problem 

Minimize ex + - b) 

subject to 
xEX, 

as a Lagrangian relaxation or Lagrangian subproblem of the original problem, and 
refer to the function 

= min{cx + - b) : x EX}, 

as the Lagrangian function. Note that since in forming the Lagrangian relaxation, 
we have eliminated the constraints stlx = b from the problem formulation, the so-
lution of the Lagrangian subproblem need not be feasible for the original problem 
(P). Can we obtain any useful information about the original problem even when the 
solution to the Lagrangian subproblem is not feasible in the original problem (P)? 
The following elementary observation is a key result that helps to answer this ques-
tion and that motivates the use of the Lagrangian relaxation technique in general. 

Lemma 16.1 (Lagrangian Bounding Principle). For any vector of the La-
grangian multipliers, the value of the Lagrangian function is a lower bound 
on the optimal objective function value z* of the original optimization problem (P). 

Proof. Since sflx = b for every feasible solution to (P), for any vector of 
Lagrangian multipliers, z * = min{ ex : sflx = b, x E X} = min{ ex + IJ.( stlx - b) : 
sflx = b, x E X}. Since removing the constraints sflx = b from the second formulation 
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cannot lead to an increase in the value of the objective function (the value might 
decrease), z* min{cx + - b) : x E X} = • 

As we have seen, for any value of the Lagrangian multiplier is a lower 
bound on the optimal objective function value of the original problem. To obtain the 
sharpest possible lower bound, we would need to solve the following optimization 
problem 

L * = 
which we refer to as the Lagrangian multiplier problem associated with the original 
optimization problem (P). The Lagrangian bounding principle has the following im-
mediate implication. 

Property 16.2 (Weak Duality). The optimal objective function value L * of the 
Lagrangian multiplier problem is always a lower bound on the optimal objective 
function value of the problem (P) (i.e., L * z*). 

Our preceding discussion provides us with valid bounds for comparing objective 
function values of the Lagrange multiplier problem and optimization (P) for any 
choices of the Lagrange multipliers and any feasible solution x of (P): 

These inequalities furnish us with a guarantee when a Lagrange mUltiplier to the 
Lagrange multiplier problem or a feasible solution x to the original problem (P) are 
optimal. 

Property 16.3 (Optimality Test) 
(a) Suppose that is a vector of Lagrangian multipliers and x is a feasible solution 

to the optimization problem (P) satisfying the condition = cx. Then 
is an optimal solution of the Lagrangian multiplier problem [i.e., L * = L(J-L)] 
and x is an optimal solution to the optimization problem (P). 

( b) If for some choice of the Lagrangian multiplier vector the solution x* of the 
Lagrangian relaxation is feasible in the optimization problem (P), then x* is an 
optimal solution to the optimization problem (P) and is an optimal solution to 
the Lagrangian multiplier problem. 

Note that by assumption in part (b) of this property, = cx* + -
b) and 3lx* = b. Therefore, = cx* and part (a) implies that x* solves problem 
(P) and solves the Lagrangian multiplier problem. 

As indicated by Property 16.3, the bounding principle immediately implies one 
advantage of the Lagrangian relaxation approach-the method can give us a certif-
icate [in the form of the equality L(JJ.) = cx for some Lagrange multiplier J-L] for 
guaranteeing that a given feasible solution x to the optimization problem (P) is an 
optimal solution. Even if < cx, having the lower bound permits us to state a 
bound on how far a given solution is from optimality: If [cx - 0.05, 
for example, we know that the objective function value of the feasible solution x is 
no more than 5% from optimality. This type of bound is very useful in practice-it 
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permits us to assess the degree of suboptimality of given solutions and it permits us 
to terminate our search for an optimal solution when we have a solution that we 
know is close enough to optimality (in objective function value) for our purposes. 

Lagrangian Relaxation and Inequality Constraints 
In the optimization model (P), the constraints :Ax = b are all equality constraints. 
In practice, we often encounter models, such as the constrained shortest path prob-
lem, that are formulated more naturally in inequality form :Ax :s b. The Lagrangian 
multiplier problem for these problems is a slight variant of the one we have just 
introduced: The Lagrangian multiplier problem becomes 

L * = max L(fJ.). 

That is, the only change in the Lagrangian multiplier problem is that the La-
grangian multipliers now are restricted to be nonnegative. In Exercise 16.1, by in-
troducing "slack variables" to formulate the inequality problem as an equivalent 
equality problem, we show how to obtain this optimal multiplier problem from the 
one we have considered for the equality problem. This development implies that the 
bounding property, the weak duality property, and the optimality test 16.3(a) are 
valid when we apply Lagrangian relaxation to any combination of equality and in-
equality constraints. 

There is, however, one substantial difference between relaxing equality con-
straints and inequality constraints. When we relax inequality constraints stlx :s b, if 
the solution x* of the Lagrangian subproblem happens to satisfy these constraints, 
it need not be optimal (see Exercise 16.2). In addition to being feasible, this solution 
needs to satisfy the complementary slackness condition fJ.(stlx* - b) = 0, which is 
familiar to us from much of our previous discussion of network flows in section 9.4. 

Property 16.4. Suppose that we apply Lagrangian relaxation to the optimi-
zation problem (PS) defined as minimize {cx : stlx :s b and x E X} by relaxing the 
inequalities stlx :S b. Suppose, further, that for some choice of the Lagrangian mul-
tiplier vector fJ., the solution x* of the Lagrangian relaxation (1) is feasible in the 
optimization problem (PS

), and (2) satisfies the complementary slackness condition 
fJ.(stlx* - b) = 0. Then x* is an optimal solution to the optimization problem (PS). 

Proof. By assumption, L(fJ.) = cx* + fJ.(:Ax* - b). Since fJ.(stlx* - b) = 0, 
L(fJ.) = cx*. Moreover, since :Ax* :S b, x* is feasible, and so by Property 16.3(a) 
x* solves problem (PS). • 

Are solutions to the Lagrangian subproblem of use in solving the original prob-
lem? Properties 16.3 and 16.4 show that certain solutions of the Lagrangian sub-
problem provably solve the original problem. We might distinguish two other cases: 
(1) when solutions obtained by relaxing inequality constraints are feasible but are 
not provably optimal for the original problem (since they do not satisfy the com-
plementary slackness condition), and (2) when solutions to the Lagrangian relaxation 
are not feasible in the original problem. 

In the first case, the solutions are candidate optimal solutions (possibly for use 
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in a branch-and-bound procedure). In the second case, for many applications, re-
searchers have been able to devise methods to modify "modestly" infeasible so-
lutions so that they become feasible with only a slightly degradation in the objective 
function value. These observations suggest that we might be able to use the solutions 
obtained from the Lagrangian subproblem as "approximate" solutions to the original 
problem, even when they are not provably optimal; in these instances, we can use 
Lagrangian relaxation as a heuristic method for generating provably good solutions 
in practice (the solutions might be provably good because of the Lagrangian lower 
bound information). The development of these heuristic methods depends heavily 
on the problem context we are studying, so we will not attempt to provide any further 
details. 

Solving the Lagrangian Multiplier Problem 
How might we solve the Lagrangian multiplier problem? To develop an understand-
ing of possible solution techniques, let us consider the constrained shortest path 
problem that we defined in Section 16.1. Suppose that now we have a time limitation 
of T = 14 instead of T = 10. When we relax the time constraint, the Lagrangian 
multiplier function for the constrained shortest path problem becomes 

= min{cp + - T) : P E Cl}}. 

In this formulation, Cl} is the collection of all directed paths from the source node 1 
to the sink node n. For convenience, we refer to the quantity cp + - T) as 
the composite cost of the path P. For a specific value of the Lagrangian multiplier 

we can solve by enumerating all the directed paths in Cl} and choosing the 
path with the smallest composite cost. Consequently, we can solve the Lagrangian 
multiplier problem by determining for all nonnegative values of the Lagrangian 
multiplier and choosing the value that achieves max .... 2:0 

Let us illustrate this brute force approach geometrically. Figure 16.2 records 
the cost and time data for every path for our numerical example. Note that the 
composite cost cp + - T) for any path P is a linear function of with an 
intercept of cp and a slope of (tp - T). In Figure 16.3 we have plotted each of these 
path composite cost functions. Note that for any specific value of the Lagrange 
mUltiplier we can find by evaluating each composite cost function (line) and 
identifying the one with the least cost. This observation implies that the Lagrangian 
multiplier function is the lower envelope of the composite cost lines and that 
the highest point on this envelope corresponds to the optimal solution of the La-
grangian mUltiplier problem. 

In practice, we would never attempt to solve the problem in this way because 
the number of directed paths from the source node to the sink node typically grows 
exponentially in the number of nodes in the underlying network, so any such enu-
meration procedure would be prohibitively expensive. Nevertheless, this problem 
geometry helps us to understand the nature of the Lagrangian multiplier problem 
and suggests methods for solving the problem. 

As we noted in the preceding paragraph, to find the optimal multiplier value 
* of the Lagrangian mUltiplier problem, we need to find the highest point of the 

Lagrangian multiplier function Suppose that we consider the polyhedron de-
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Path cost Path time Composite cost 
Path P Cp tp Cp + J1 (tp - T) 

1-2-4-6 3 18 3 + 4 .... 

1-2-5-6 5 15 5 + .... 
1-2-4-5-6 14 14 14 

1-3-2-4-6 13 13 13- .... 

1-3-2-5-6 15 10 15 - 4 .... 

1-3-2-4-5-6 24 9 24 - 5 .... 

1-3-4-6 16 17 16 + 3 .... 

1-3-4-5-6 27 13 27 - .... 

1-3-5-6 24 8 24 - 6 .... 

Figure 16.2 Path cost and time data for constrained shortest path example with T 
= 14. 

fined by those points that lie on or below the function L(,....). These are the shaded 
points in Figure 16.3. Then geometrically, we are finding the highest point in a 
polyhedron defined by the function L(,....), which is a linear program. 

Even though we have illustrated this property on a specific example, this sit-
uation is completely general. Consider the generic optimization model (P), defined 
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Figure 16.3 Lagrangian function for T = 14. 
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as min{ cx : Stlx = b, x E X} and suppose that the set X = {x I , x 2 , ..• ,XK} is finite. 
By relaxing the constraints Stlx = b, we obtain the Lagrangian multiplier function 
L(,....) = min{cx + ,....(Stlx - b) : x E X}. By definition, 

for all k = 1, 2, ... , K. 

In the space of composite costs and Lagrange multipliers,.... (as in Figure 16.3), 
each function cxk + ,....(Stlxk - b) is a multidimensional "line" called a hyperplane 
(if ,.... is two-dimensional, it is a plane). The Lagrangian multiplier function L(,....) is 
the lower envelope of the hyperplanes cxk + ,....(Stlxk - b) for k = I, 2, ... , K. In 
the Lagrangian multiplier problem, we wish to determine the highest point on this 
envelope: We can find this point by solving the optimization problem 

Maximize w 

subject to 

for all k = 1, 2, . . . , K, 

J-l unrestricted, 

which is clearly a linear program. We state this result as a theorem. 

Theorem 16.5. The Lagrangian multiplier problem L * = with 
L(,....) = min{cxk + J-l(Stlx - b) : x E X} is equivalent to the linear programming 
problem L* = max{w : w cxk + J-l(Stlx k - b) for k = 1,2, ... , K}. • 

Since, as shown by the preceding theorem, the Lagrangian multiplier problem 
is a linear program, we could solve this problem by applying the linear programming 
methodology. One resulting algorithm, which is known as Dantzig- Wolfe decom-
position or generalized linear programming, is an important solution methodology 
that we discuss in some depth in Chapter 17 in the context of solving the multicom-
modity flow problem. One of the disadvantages of this approach is that it requires 
the solution of a series of linear programs that are rather expensive computationally. 
Another approach might be to apply some type of gradient method to the Lagrangian 
function L(J-l). As shown by the constrained shortest path example, the added com-
plication of this approach is that the Lagrangian function L(J-l) is not differentiable. 
It is differentiable whenever the optimal solution of the Lagrangian subproblem is 
unique; but when the subproblem has two or more solutions, the Lagrangian function 
generally is not differentiable. For example, in Figure 16.4, at J-l = 0, the path 
1-2-4-6 is the unique shortest path solution to the subproblem and the function 
L(fJ..) is differentiable. At this point, for the path P = 1-2-4-6, L(fJ..) = Cp + 
fJ..(tp - D; since tp = 18 and T = 14, L(fJ..) has a slope (tp - T) = (18 - 14) = 4. 
At the point fJ.. = 2, however, the paths 1-2-5-6 and 1-3-2-5-6 both solve the 
Lagrangian subproblem and the Lagrangian function is not differentiable. To ac-
commodate these situations, we next describe a technique, known as the subgradient 
optimization technique, for solving the (nondifferentiable) Lagrangian multiplier 
problem. 
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Figure 16.4 Steps of Newton's method for T = 14. 

Bubgradient Optimization Technique 
In solving optimization problems with the nonlinear objective function f(x) of an 
n-dimensional vector x, researchers and practitioners often use variations of the 
following classical idea: Form the gradient V f(x) of f defined as a row vector with 
components (af(x)ldxl, aj(x)ldx2, ... , af(x)ldxn ). Recall from advanced calculus 
that the directional derivative of f in the direction d satisfies the equality 

lim f(x + ad) - f(x) = Vf(x)d. 
8-0 a 

So if we choose the direction d so that Vf(x)d > 0 and move in the direction d with 
a small enough "step length" a-that is, change x to x + ad-we move uphill. This 
simple observation lies at the core of a considerable literature in nonlinear pro-
gramming known as gradient methods. 

Suppose that in solving the Lagrangian multiplier problem, we are at a point 
where the Lagrangian function L(fJ..) = min{ex + fJ..(six - b) : x E X} has a unique 
solution X, so is differentiable. Since L(fJ..) = ex + p,(six - b) and the solution 
x remains optimal for small changes in the value of fJ.., the gradient at this point is 
six - b, so a gradient method would change the value of fJ.. as follows: 

fJ.. +- fJ.. + a(six - b). 

In this expression, a is a step size (a scalar) that specifies how far we move in 
the gradient direction. Note that this procedure has a nice intuitive interpretation. 
If (six - b)i = 0, the solution x uses up exactly the required units of the ith resource, 
and we hold the Lagrange multiplier (the toll) fJ..i of that resource at its current value; 
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if (sctx - b); < 0, the solution x uses up less than the available units of the 
ith resource and we decrease the Lagrange multiplier fJ..i on that resource; and if 
(sa.x - b); > 0, the solution x uses up more than the available units of the ith resource 
and we increase the Lagrange multiplier fJ..i on that resource. 

To solve the Lagrangian multiplier problem, we adopt a rather natural extension 
of this solution approach. We let fJ..0 be any initial choice of the Lagrange multiplier; 
we determine the subsequent values fJ.. k for k = 1, 2, ... ,of the Lagrange multipliers 
as follows: 

fJ..k+1 = fJ..k + ek(sa.Xk - b). 

In this expression, Xk is any solution to the Lagrangian subproblem when fJ.. = fJ.. k 
and ek is the step length at the kth iteration. 

To ensure that this method solves the Lagrangian multiplier problem, we need 
to exercise some care in the choice of the step sizes. If we choose them too small, 
the algorithm would become stuck at the current point and not converge; if we choose 
the step sizes too large, the iterates fJ..k might overshoot the optimal solution and 
perhaps even oscillate between two nonoptimal solutions (see Exercise 16.4 for an 
example). The following compromise ensures that the algorithm strikes an appro-
priate balance between these extremes and does converge: 

k 

0 and L 00. 

j=1 

For example, choosing ek = Ilk satisfies these conditions. These conditions 
ensure that the algorithm always converges to an optimal solution of the multiplier 
problem, but a proof of this convergence result is beyond the scope of our coverage 
in this book (the reference notes cite papers and books that examine the convergence 
of subgradient methods). 

One important variant of the subgradient optimization procedure would be an 
adaptation of "Newton's method" for solving systems of nonlinear equations. Sup-
pose, as before, that L(fJ..k) = cxk + Jj.k(sa.Xk - b); that is, Xk solves the Lagrangian 
subproblem when fJ.. = fJ.. k. Suppose that we assume that Xk continues to solve the 
Lagrangian subproblem as we vary fJ..; or, stated in another way, we make a linear 
approximation r(fJ..) = cxk + fJ..(sctx k - b) to L(fJ..). Suppose further that we know 
the optimal value L * of the Lagrangian multiplier problem (which we do not). Then 
we might move in the subgradient direction until the value of the linear approximation 
exactly equals L *. Figure 16.4 shows an example of this procedure when applied to 
our constrained shortest path example, starting with fJ.. k = O. At this point, the path 
P = 1-2-4-6 solves the Lagrangian subproblem and sa.Xk - b equals tp - T = 
18 - 14 = 4. Since L * = 7 and the path P has a cost Cp = 3, in accordance with 
this linear approximation, or Newton's method, we would approximate L(fJ..) by r( .... > 
= 3 + 4Jj., set 3 + 4fJ.. = 7, and define the new value of fJ.. as fJ..k+ J = (7 - 3)/4 = 
1. In general, we set the step length ek so that 

r(fJ..k+ I) = cxk + fJ..k+ I (sa.xk - b) = L *, 

or since, fJ..k+ 1 = fJ..k + ek(sa.Xk - b), 
r(fJ..k+l) = cxk + [fJ..k + ek(sa.Xk - b)](sa.xk - b) = L*. 
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Collecting terms, recalling that L(fJ..k) = cxk + fJ..(stxk - b), and letting /I y II = 
(L,; yJ)1/2 denote the Euclidean norm of the vector y, we can solve for the step length 
and find that 

L* - L(fJ..k) 
6k = 1/ stxk - b 1/ 2 ' 

Since we do not know the optimal objective function value L * of the Lagrangian 
multiplier problem (after all, that's what we are trying to find), practitioners of La-
grangian relaxation often use the following popular heuristic for selecting the step 
length: 

6 _ AdVB - L(fJ..k)] 
k - 1/ stxk - b 1/ 2 • 

In this expression, VB is an upper bound on the optimal objective function 
value z* of the problem (P), and so an upper bound on L* as well, and Ak is a scalar 
chosen (strictly) between 0 and 2. Initially, the upper bound is the objective function 
value of any known feasible solution to the problem (P). As the algorithm proceeds, 
if it generates a better (i.e., lower cost) feasible solution, it uses the objective function 
value of this solution in place of the upper bound VB. V sually, practitioners choose 
the scalars Ak by starting with Ak = 2 and then reducing Ak by a factor of 2 whenever 
the best Lagrangian objective function value found so far has failed to increase in 
a specified number of iterations. Since this version of the algorithm has no convenient 
stopping criteria, practitioners usually terminate it after it has performed a specified 
number of iterations. 

The rationale for these choices of the step size and the convergence proof of 
the subgradient method would take us beyond the scope of our coverage. In passing, 
we might note that the subgradient optimization procedure is not the only way to 
solve the Lagrangian multiplier problem: practitioners have used a number of other 
heuristics, including methods known as multiplier ascent methods that are tailored 
for special problems. Since we merely wish to introduce some of the basic concepts 
of Lagrangian relaxation and to indicate some of the essential methods used to solve 
the Lagrangian mUltiplier problem, we will not discuss these alternative methods. 

Subgradient Optimization and Inequality Constraints 
As we noted earlier in this section, if we apply Lagrangian relaxation to a problem 
with constraints stx b stated in inequality form instead of the equality constraints, 
the Lagrange multipliers fJ.. are constrained to be nonnegative. The update formula 
fJ..k+ I = fJ..k + 6k(stxk - b) might cause one or more of the components fJ..i of fJ.. to 
become negative. To avoid this possibility, we modify the update formula as follows: 

fJ..k+l = [fJ..k + 6k(stxk - b)]+. 

In this expression, the notation [y] + denotes the "positive part" of the vector y; 
that is, the ith component of [y] + equals the maximum of 0 and Yi. Stated in another 
way, if the update formula fJ.. k + I = fJ.. k + 6k( stxk - b) would cause the ith component 
of fJ..i to be negative, then we simply set the value of this component to be zero. We 
then implement all the other steps of the subgradient procedure (i.e., the choice of 
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the step size 8 at each step and the solution of the Lagrangian subproblems) exactly 
the same as for problems with equality constraints. For problems with both equality 
and inequality constraints, we use a straightforward mixture of the equality and 
inequality versions of the algorithm: whenever the update formula for the Lagrange 
multipliers would cause any component fJ..i of fJ.. corresponding to an inequality con-
straint to become negative, we set the value of that multiplier to be zero. 

Let us illustrate the subgradient method for inequality constraints on our con-
strained shortest path example. Suppose that we start to solve our constrained short-
est path problem at fJ.. 0 = 0 with A 0 = O.S and with VB = 24, the cost corresponding 
to the shortest path 1-3-5-6joining nodes 1 and 6. Suppose that we choose to reduce 
the scalar Ak by a factor of 2 whenever three successive iterations at a giveri\value 
of Ak have not improved on the best Lagrangian objective function value L(fJ..). As 
we have already noted, the solution XO to the Lagrangian subproblem with fJ.. = 0 
corresponds to the path P = 1-2-4-6, the Lagrangian subproblem has an objective 
function value of L(O) = 3, and the subgradient Stlxu - b at fJ.. = 0 is (tp - 14) = 
IS - 14 = 4. So at the first step, we choose 

80 = 0.S(24 - 3)/16 = 1.05, 

fJ..1 = [0 + 1.05(4)] + = 4.2. 

For this value of the Lagrange multiplier, from Figure 16.3, we see that the path 
P = 1-3-2-5-6 solves the Lagrangian subproblem; therefore, L(4.2) = 15 + 
4.2(10) - 4.2(14) = 15 - 16.S = -1.S, and Stlx l - b equals (tp - 14) = 10 -
14 = - 4. Since the path 1-3-2-5-6 is feasible, and its cost of 15 is less than VB, 
we change VB to value 15. Therefore, 

81 = 0.S(15 + I.S)/16 = 0.S4, 

fJ..2 = [4.2 + 0.S4( - 4)] + = 0.S4. 

From iterations 2 through 5, the shortest paths alternate between the paths 1-2-4-
6 and 1-3-2-5-6. At the end of the fifth iteration, the algorithm has not improved 
upon (increased) the best Lagrangian objective function value of 6.36 for three it-
erations, so we reduce Ak by a factor of 2. In the next 7 iterations the shortest paths 
are the paths 1-2-5-6, 1-3-5-6, 1-3-2-5-6, 1-3-2-5-6, 1-2-5-6, 1-3-5-6, and 
1-3-2-5-6. Once again for three consecutive iterations, the algorithm has not im-
proved the best Lagrangian objective function value, so we decrease Ak by a factor 
of 2 to value 0.2. From this point on, the algorithm chooses either path 1-3-2-5-
6 or path 1-2-5-6 as the shortest path at each step. Figure 16.5 shows the first 33 
iterations of the subgradient algorithm. As we see, the Lagrangian objective function 
value is converging to the optimal value L * = 7 and the Lagrange multiplier is 
converging to its optimal value of fJ.. * = 2. 

Note that for this example, the optimal multiplier objective function value of 
L * = 7 is strictly less than the length of the shortest constrained path, which has 
value 13. In these instances, we say that the Lagrangian relaxation has a duality 
(relaxation) gap. To solve problems with a duality gap to completion (i.e., to find 
an optimal solution and a guarantee that it is optimal), we would apply some form 
of enumeration procedure, such as branch and bound, using the Lagrangian lower 
bound to help reduce the amount of concentration required. 
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k .... k tp - T L( .... k) A.k Ok 

0 0.0000 4 3.0000 0.80000 1.0500 
4.2000 -4 -1.8000 0.80000 0.8400 

2 0.8400 4 6.3600 0.80000 0.4320 
3 2.5680 -4 4.7280 0.80000 0.5136 
4 0.5136 4 5.0544 0.80000 0.4973 
5 2.5027 -4 4.9891 0.40000 0.2503 
6 ].5016 1 6.5016 0.40000 3.3993 
7 4.9010 -6 - 5.4059 0.40000 0.2267 
8 3.5406 -4 0.8376 0.40000 0.3541 
9 2.1244 -4 6.5026 0.40000 0.2124 

10 1.2746 I 6.2746 0.40000 3.4902 
II 4.7648 -6 -4.5886 0.40000 0.2177 
12 3.4589 -4 1.1646 0.20000 0.1729 
13 2.7671 -4 3.9316 0.20000 0.1384 
14 2.2137 -4 6.1453 0.20000 0.1107 
15 1.7709 6.7709 0.20000 1.6458 
16 3.4167 -4 1.3330 0.20000 0.1708 
17 2.7334 -4 4.0664 0.20000 0.1367 
18 2.1867 -4 6.2531 0.10000 0.0547 
19 1.9680 6.9680 0.10000 0.8032 
20 2.7712 -4 3.9150 0.10000 0.0693 
21 2.4941 -4 5.0235 0.10000 0.0624 
22 2.2447 -4 6.0212 0.05000 0.0281 
23 2.1325 -4 6.4701 0.05000 0.0267 
24 2.0258 -4 6.8966 0.05000 0.0253 
25 1.9246 6.9246 0.00250 0.0202 
26 1.9447 6.9447 0.00250 0.0201 
27 1.9649 6.9649 0.00250 0.0201 
28 1.9850 6.9850 0.00250 0.0200 
29 2.0050 -4 6.9800 0.00250 0.0013 
30 2.0000 -4 7.0000 0.00250 0.0012 
31 1.9950 I 6.9950 0.00250 0.0200 
32 2.0150 -4 6.9400 0.00250 0.0013 
33 2.0100 -4 6.9601 0.00125 0.0006 

Figure 16.5 Subgradient optimization for a constrained shortest path problem. 

18.4 LAGRANGIAN RELAXATION AND LINEAR 
PROGRAMMING 

In this section we discuss several theoretical properties of the Lagrangian relaxation 
technique. As we have noted earlier in Section 16.2, the primary use of the La-
grangian relaxation technique is to obtain lower bounds on the objective function 
values of (discrete) optimization problems. By relaxing the integrality constraints in 
the integer programming formulation of a discrete optimization problem, thereby 
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creating a linear programming relaxation, we obtain an alternative method for gen-
erating a lower bound. Which of these lower bounds is sharper (i.e., larger in value)? 
In this section we answer this question by showing that the lower bound obtained 
by the Lagrangian relaxation technique is at least as sharp as that obtained by using 
a linear programming relaxation. As a result, and because the Lagrangian relaxation 
bound is often easier to obtain than the linear programming relaxation bound, La-
grangian relaxation has become a very useful lower bounding technique in practice. 

The content in this section requires some background in linear algebra and 
linear programming. We refer the reader to Appendix C for a review of this material. 

Our first result in this section concerns the application of Lagrangian relaxation 
to a linear programming problem. 

Theorem 16.6. Suppose that we apply the Lagrangian relaxation technique 
to a linear programming problem (PI) defined as min{cx : sIx = b, qj;x ::; q, x O} 
by relaxing the constraints sIx = b. Then the optimal value L * of the Lagrangian 
multiplier probLem equaLs the optimal objective function value of (PI). 

Proof We use linear programming optimality conditions to prove the theorem. 
Suppose that x* is an optimal solution of the linear programming problem (PI) and 
that 1T* and -y* denote vectors of optimal dual variables associated with the con-
straints sIx = band qj;x ::; q. By linear programming theory, x*, 1T*, and -y* satisfy 
the following dual feasibility and complementary slackness conditions: 

c + 1T*sI + -y*qj; 0, [c + 1T*sI + -y*qj;]x* = 0, and -y*[qj;x - q] = O. 

Consider the Lagrangian subproblem L(f.1) at f.1 = 1T*, which is L(1T*) = 
min{cx + 1T*(sIx - b) : qj;x ::; q, x O}. Notice that x* is feasible for this problem 
because it is feasible to (PI). Moreover, for the fixed value f.1 = 1T*, the previous 
dual feasibility and complementary slackness conditions are exactly those for the 
Lagrangian subproblem; therefore, x* also solves the Lagrangian subproblem at f.1 
= 1T*. But since 1T*(sIx* - b) = 0, L(1T*) = cx*. Consequently, Property 16.3 
implies that L* = L(1T*) = cx*, the optimal objective function value of (PI) . • 

The preceding theorem shows that the Lagrangian relaxation technique pro-
vides an alternative method for solving a linear programming problem. Instead of 
solving the linear programming problem directly using any linear programming al-
gorithm, we can relax a subset of the constraints and solve the Lagrangian multiplier 
problem by using subgradient optimization and solving a sequence of relaxed prob-
lems. In some situations the relaxed problem is easy to solve, but the original problem 
is not; in these situations, a Lagrangian relaxation-based algorithm is an attractive 
solution approach. 

Suppose next that we apply Lagrangian relaxation to a discrete optimization 
problem (P) defined as min{cx : sIx = b, x E X}. We assume that the discrete set 
X is specified as X = {x : qj;x ::; q, x 0 and integer} for an integer matrix Cfn and 
an integer vector q. Consequently, the problem (P) becomes 

z* = min{cx : sIx = b, Cfnx ::; q, x 0 and integer}. (P) 
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We incur essentially no loss of generality by specifying the set X in this manner 
because we can formulate almost all real-life discrete optimization problems as in-
teger programming problems. Let (LP) denote the linear programming relaxation of 
the problem (P) and let ZO denote its optimal objective function value. That is, 

ZO = min{cx : silx = b, CZ/Jx ::; q, x O}. (LP) 

Clearly, ZO ::; z * because the set of feasible solutions of (P) lies within the set 
of feasible solutions of (LP). Therefore, the linear programming relaxation provides 
a valid lower bound on the optimal objective function value of (P). We have earlier 
shown in Property 16.2 that the Lagrangian mUltiplier problem also gives a lower 
bound L * on the optimal objective function value of (P). We now show that ZO ::; 
L *; that is, Lagrangian relaxation yields a lower bound that is at least as good as 
that obtained from the linear programming relaxation. We establish this result by 
showing that the Lagrangian multiplier problem also solves a linear programming 
problem but that the solution space for this problem is contained within the solution 
space of the problem (LP). The linear programming problem that the Lagrangian 
mUltiplier problem solves uses "convexification" of the solution space X = {x : CZ/Jx 
::; q, x 0 and integer}. 

We assume that X = {x 1, x 2 , ••• , x K } is a finite set. We say that a solution 
x is a convex combination of the solutions Xl, x 2 , ••• , x K if x = :Lf = 1 AkXk for 
some nonnegative weights AI, A2, ... , AK satisfying the condition :Lf = 1 Ak = I. 
Let denote the convex hull of X (i.e., the set of all convex combinations of 
X). In the subsequent discussion we use the following properties of 

Property 16.7 
(a) The set is a polyhedron, that is, it can be expressed as a solution space 

defined by a finite number of linear inequalities. 
(b) Each extreme point solution of the polyhedron lies in X, and if we optimize 

a linear objective function over some solution in X will be an optimal 
solution. 

(c) The set is contained in the set of solutions {x : CZ/Jx ::; q, x O}. 

Proof. Part (a) is a well-known result in linear algebra which we do not prove. 
The first statement in part (b) follows from the fact that every point of not in 
X is a convex combination, with positive weights, of two or more points in X and 
so is not an extreme point (see Appendix C). The second statement in part (b) is a 
consequence of the fact that linear programs always have at least one extreme point 
solution (see Appendix C). Part (c) follows from the fact that every solution in 
X also belongs to the convex set {x : CZ/Jx ::; q, x O}, and consequently, every 
convex combination of solutions in X, which defines also belongs to the set 
{x : 2Llx ::; q, x O}. • 

We now prove the main result of this section. 

Theorem 16.8. The optimal objective function value L * of the Lagrangian 
multiplier problem equals the optimal objective function value of the linear program 
min{cx : silx = b, x E 
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Proof. Consider the Lagrangian subproblem 

L( .... ) = min{cx + .... (.Stlx - b) : x EX}, 

for some choice .... of the Lagrange multipliers. This problem is equivalent to the 
problem 

L( .... ) = min{cx + ,....(Sllx - b) : x E (16.2) 

because by Property 16.7(b), some extreme point solution of solves this prob-
lem and each extreme point solution of'M(X) belongs to X. Now, notice that the 
Lagrangian subproblem defined by (16.2) is a linear programming problem because 
by Property 16.7(a), we can formulate the set as the set of solutions of a finite 
number of linear inequalities. Therefore, we can conceive of the Lagrangian sub-
problem (16.2) as a relaxation of the following linear programming problem: 

min{ cx : Sllx = b, x E 'M(X)}. 

Finally, we use Theorem 16.6 to observe that the optimal value L * of the 
Lagrangian multiplier problem equals the optimal objective function value of the 
linear program min{cx : Sllx = b, x E • 

We subsequently refer to the problem min{cx : .9'1x = b, x E 'M(X)} as the 
convexified version of problem (P) and refer to it as (CP). The preceding theorem 
shows that L * equals the optimal objective function value of the convexified problem. 
What is the relationship between the set of feasible solutions of the convexified 
problem (CP) and the linear programming relaxation (LP)? We illustrate this rela-
tionship using a numerical example. 

For simplicity, in our example we assume that the relaxed constraints are of 
the form .9'1x b instead of .9'1x = b. We consider a two-variable problem with the 
constraints .9'1x band 2llx q as shown in Figure 16.6(a). This figure also specifies 
the set of solutions of the integer programming problem (P), denoted by the circled 
points. Figure 16.6(b) shows the solution space of the linear programming relaxation 
(LP) of the problem. Figure 16.6(c) shows the convex hull 'M(X) and Figure 16.6(d) 
depicts the solution space of the convexified problem (CP). Note that the solution 
space of (CP) is a subset of the solution space of (LP). 

The preceding result is also easy to establish in general. Notice from Property 
16.7(c) that since 'M(X) is contained in the set {x : 2llx q, x O}, the set of solutions 
of problem (CP) given by {x : .9'1x = b, x E 'M(X)} is contained in the set of solutions 
of (LP) given by {x : .9'1x = b, 2Llx q, x O}. Since optimizing the same objective 
function over a smaller solution space cannot improve the objective function value, 
we see that ZO L *. We state this important result as a theorem. 

Theorem 16.9. When applied to an integer program stated in minimization 
form, the lower bound obtained by the Lagrangian relaxation technique is always 
as large (or, sharp) as the bound obtained by the linear programming relaxation of 
the problem; that is. ZO L * . 

Under what situations will the Lagrangian bound equal the linear programming 

618 Lagrangian Relaxation and Network Optimization Chap. 16 



The set Ix:.stx S b, S q,x 0 and integer' The set Ix: .stx S b, S q,x 0, 

t t 

(b) 

The convex hull '3e(X) The set I x: .stx S b, x E '3e(X)' 

t • 

o 2 
XI -----. 

(c) (d) 

Figure 16.6 Illustrating the relationship between the problem (LP) and (CP): (a) 
solution space of the integer program (P); (b) solution space of the linear programming 
relaxation (LP); (c) convex hull '3e(x); (d) solution space of the convexified problem 
(CP). 

bound? We show that if the Lagrangian subproblem satisfies a property, known as 
the integrality property, the Lagrangian bound will equal the linear programming 
bound. We say that the Lagrangian subproblem min{dx : =s; q, x 0 and integer} 
satisfies the integrality property if it has an integer optimal solution for every choice 
of objective function coefficients even if we relax the integrality restrictions on the 
variables x. Note that this condition implies that the problems min{cx + f.L(.six -
b) : =s; q, x 0 and integer} and min{cx + f.L(.six - b) : =s; q, x O} have 
the same optimal objective function values for every choice of the Lagrange mul-
tiplier f.L. For example, if Jhe constraints :s q are the mass balance constraints 
of a minimum cost flow problem (or any of its special cases, such as the maximum 
flow, shortest path, and assignment problems), the problem min{cx + f.L(.six - b) 
: 2"bx =s; q, x O} will always have an integer optimal solution and imposing integrality 
constraints on the variables will not increase the optimal objective function value. 
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Theorem 16.10. If the Lagrangian subproblem of the optimization problem 
(P) satisfies the integrality property, then ZO = L *. 

Proof. Observe that the problem min{dx : 9Jx:::; q, x O} will have an integer 
optimal solution for every choice of d only if every extreme point solution of the 
constraints 9Jx :::; q, x 0, is integer; for otherwise, we can select d so that a 
noninteger extreme point solution becomes an optimal solution. This observation 
implies that the set {x : 9Jx :::; q, x O} equals the convex hull of X = {x : 9Jx :::; 
q, x 0 and integer}, which we have denoted by ::1e(X). This result further implies 
that the sets {x : 9'lx = b, 9Jx :::; q, x O} and {x : 9'lx = b, x E ::1e(X)} are the 
same. The first of these sets is the set of feasible solutions of the linear programming 
relaxation (LP) and the latter set is the set of feasible solutions of the convexified 
problem (CP). Since both the problems (LP) and (CP) have the same set of feasible 
solutions, they will have the same optimal objective function value, which is the 
desired conclusion of the theorem. • 

This result shows that for problems satisfying the integrality property, solving 
the Lagrangian multiplier problem is equivalent to solving the linear programming 
relaxation of the problem. In these situations the Lagrangian relaxation technique 
provides no better a bound than the linear programming relaxation. Nevertheless, 
the Lagrangian relaxation technique might still be of considerable value, because 
solving the Lagrangian multiplier problem might be more efficient than solving the 
linear programming relaxation directly. Network optimization problems perhaps pro-
vide the most useful problem domain for exploiting this result because the Lagrangian 
subproblem in these cases often happens to be a minimum cost flow problem or one 
of its specializations. 

As we have noted previously, in many (in fact, most) problem instances, the 
optimal objective function value L * of the Lagrangian mUltiplier problem will be 
strictly less than the optimal objective function value z* of problem (P); that is, the 
problem has a duality gap. As an example, consider the constrained shortest path 
example that we discussed in Section 16.3. For this example, L * = 7 and z* = 13. 
The duality gap occurs because the Lagrangian multiplier problem solves an optim-
ization problem over a larger solution space (its convexification) than that of the 
original problem (P), and consequently, its optimal objective function value might 
be smaller. 

16.15 APPLICATIONS OF LAGRANGIAN RELAXATION 

As we noted earlier in the chapter, Lagrangian relaxation has many applications in 
network optimization. In this section we illustrate the breadth of these applications. 
The selected applications are both important in practice and illustrate how many of 
the network models we have considered in earlier chapters arise as Lagrangian 
subproblems. We consider the following models with embedded network structure. 
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Topic Emhedded network structure 

Networks with side constraints • Minimum cost flows 
• Shortest paths 

Traveling salesman problem • Assignment problem 
• Minimum cost flows 

Vehicle routing • Assignment problem 
• A variant of minimum spanning tree 

Network design 
Two-duty operator scheduling 

Degree-constrained minimum spanning trees 
Multi-item production planning 

• Shortest paths 
• Shortest paths 
• Minimum cost flows 
• Minimum spanning tree 
• Shortest paths 
• Minimum cost flows 
• Dynamic programs 

Application 16.1 Networks with Side Constraints 
The constrained shortest path problem is a special case of a broader set of optim-
ization models known as network flow problems with side constraints. We can for-
mulate a generic version of this problem as follows: 

Minimize ex 

subject to 

s4.x b, 

Xx = q, 

I x u, and Xi} integer for all (i, j) E I. 

In this formulation, as in the usual minimum cost flow problem, x is a vector 
of arc flows, X is a node-arc incidence matrix, q is a vector of node supplies and 
demands, and I and u are lower and upper bounds imposed on the arc flows. The 
set I is an index set of variables that must be integer. The flow vector x might be 
constrained to be integer or not, depending on the application being modeled. The 
added complication in this model are the side constraints s4.x b that further restrict 
the arc flows. 

For example, in the constrained shortest path problem, the network constraints 
model a shortest path problem [i.e., q(s) = 1 and q(t) = -1 for the source node 
s and destination node t, and q(j) = 0 for every other node j; also, every lower 
bound Ii} = 0 and every upper bound Ui} = 00]. In this case the side constraint 
LCi,j)EA ti}xi} T is a single inequality constraint modeling the timing restriction. 

The network flow model with side constraints arises in many application con-
texts in which the arc flows consume scarce resources (e.g., labor) or we wish to 
impose service constraints on the flows (e.g., maximum delay times in a commu-
nication and transportation network). The model also arises when the network flow 
model has multiple commodities, each governed by their own flow constraints, that 
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share common resources such as arc capacities. In Chapter 17 we consider one such 
mode], the classical multicommodity flow problem, in some detail. 

We might note that the network flow model with side constraints also arises 
in other, perhaps more surprising ways. As an illustration, consider a standard work 
force scheduling problem. Suppose that we wish to schedule employees (e.g., tele-
phone operators, production workers, or nurses) in a way that ensures that o.(j) 
employees are available for work on thejth day of the week; suppose, further, that 
we wish to schedule the employees so that each has two consecutive days off each 
week. That is, each of them works 5 consecutive days and then has 2 days off. We 
incur a cost Cj for each employee that is scheduled to work on day j. Figure 16.7 
shows a network flow model with side constraints for this problem. The network 
contains three types of arcs. 

1. A "work arc" for each day of the week: The flow on this arc is the number 
of employees scheduled to work on that day; the arc has an associated cost 
(e.g., weekends might have a pay premium and so a higher cost) and a lower 
flow bound equaling the number of employees required to work on that day. 

2. A "total work force arc" that introduces the work force at the beginning of 
the planning cycle (which we arbitrarily take to be Sunday) and removes it at 
the end of the planning cycle (Saturday): the flow y on this arc is the total 
number of employees employed during the week. 

3. "Days-off arcs" with the flows X sun , Xmon , ... ,Xsat, each representing a sched-
ule with 2 days off beginning with the day indicated by the subscript: The flow 
on arc X sun , for example, bypasses the Sunday and Monday work arcs, indi-
cating that the employees working in this schedule are not available for work 
on Sunday and Monday. 

A complicating feature of this network flow model is a single additional con-
straint indicating that every employee must be assigned to at least one schedule; 
that is, 

622 

y = Xsun + Xmon + ... + Xsat· 

Total workforce arc 

Total workforce y = x,un + xmon + x tue + x wed + x thu + xfn + Xsat 

Figure 16.7 Network model of the cyclic scheduling problem. Lower bound on day 
arcs = demand for the day. 
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This side constraint specifies a flow relationship between several of the arcs 
in the network flow model. Relaxing this constraint and using Lagrangian relaxation 
provides us with one algorithmic approach for solving this problem. The algorithmic 
procedure for applying Lagrangian relaxation to the general network flow model 
with side constraints is essentially the same as the procedure we have discussed for 
the constrained shortest path problem: we associate nonnegative Lagrange multi-
pliers J.L with the side constraints 9'lx b and bring them into the objective function 
to produce the network flow subproblem 

minimize{cx + J.L(9'lx - b) : Xx = q, I x u}, 

and then solve a sequence of these problems with different values of the Lagrange 
multipliers J.L which we update using the subgradient optimization technique. For 
each choice of the Lagrangian mUltiplier on this constraint, the Lagrangian sub-
problem is a network flow problem. In Exercise 9.9 we show that we can actually 
solve this special case of network flows with side constraints much more efficiently 
by solving a polynomial sequence of network flow problems. 

Application 16.2 Traveling Salesman Problem 
The traveling salesman problem is perhaps the most famous problem in all of network 
and combinatorial optimization: Its simplicity and yet its difficulty have made it an 
alluring problem that has attracted the attention of many noted researchers over a 
period of several decades. The problem is deceptively easy to state: Starting from 
his home base, node 1, a salesman wishes to visit each of several cities, represented 
by nodes 2, ... , n, exactly once and return home, doing so at the lowest possible 
travel cost. We will refer to any feasible solution to this problem as a tour (of the 
cities). 

The traveling salesman problem is a generic core model that captures the com-
binatorial essence of most routing problems and, indeed, most other routing problems 
are extensions of it. For example, in the classical vehicle routing problem, a set of 
vehicles, each with a fixed capacity, must visit a set of customers (e.g., grocery 
stores) to deliver (or pick up) a set of goods. We wish to determine the best possible 
set of delivery routes. Once we have assigned a set of customers to a vehicle, that 
vehicle should take the minimum cost tour through the set of customers assigned to 
it; that is, it should visit these customers along an optimal traveling salesman tour. 

The traveling salesman problem also arises in problems that on the surface 
have no connection with routing. For example, suppose that we wish to find a se-
quence for loadingjobs on a machine (e.g., items to be painted), and that whenever 
the machine processes job i after job j, we must reset the machine (e.g., clear the 
dies of the colors of the previous job), incurring a setup time Cij' Then in order to 
find the processing sequence that minimizes the total setup time, we need to solve 
a traveling salesman problem-the machine, which functions as the "salesman," 
needs to "visit" the jobs in the most cost-effective manner. 

There are many ways to formulate the traveling salesman problem as an op-
timization model. We present a model with an embedded (directed) network flow 
structure. Exercises 16.21 and 16.23 consider other modeling approaches. Let Cij 
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denote the cost of traveling from city i to city j and let Yij be a zero-one variable, 
indicating whether or not the salesman travels from city i to city j. Moreover, 
let us define flow variables Xij on each arc (i, j) and assume that the salesman has 
n - 1 units available at node 1, which we arbitrarily select as a "source node," and 
that he must deliver 1 unit to each of the other nodes. Then the model is 

subject to 

Minimize CijYij 
(i.j)EA 

Yij = 1 for all i = 1, 2, ... , n, 
I S;jS;n 

Yij = 1 forallj = 1,2, ... , n, 
I s;iS;n 

Xx = b, 

Yij = 0 or 1 

for all (i, j) E A, 

for all (i, j) E A, 

for all (i, j) E A. 

(16.3a) 

(16.3b) 

(16.3c) 

(16.3d) 

(16.3e) 

(16.30 

(16.3g) 

To interpret this formulation, let A' = {(i, j) : Yij = I} and let A" {(i, j) : 
xij > O}. The constraints (16.3b) and (16.3c) imply that exactly one arc of A I leaves 
and enters any node i; therefore, A I is the union of node disjoint cycles containing 
all of the nodes of N. In general, any integer solution satisfying (16.3b) and (16.3c) 
will be the union of disjoint cycles; if any such solution contains more than one 
cycle, we refer to each of the cycles as subtours, since they pass through only a 
subset of the nodes. Figure 16.8 gives an example of a subtour solution to the con-
straints (16.3b) and (16.3c). 

Home base 

Figure 16.8 Infeasible solution for the 
traveling salesman problem containing 
subtours. 

Constraint (16.3d) ensures that A" is connected since we need to send 1 unit 
of flow from node 1 to every other node via arcs in A ". The "forcing" constraints 
(16.3e) imply that A" is a subset of A'. [Notice that since no arc need ever carry 
more than (n - 1) units of flow, the forcing constraint for arc (i, j) is redundant if 
Yij = 1.] These conditions imply that the arc set A' is connected and so cannot 
contain any subtours. We conclude that the formulation (16.3) is a valid formulation 
for the traveling salesman problem. 

One of the nice features of this formulation is that we can apply Lagrangian 
relaxation to it in several ways. For example, suppose that we attach Lagrange 
multipliers J.Lij 0 with the forcing constraints (16.3e) and bring them into the ob-
jective function, giving the Lagrangian objective function 
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Minimize 
(i,j)EA (i,j)EA 

and leaving (16.3b)-(16.3d), (16.30, and (16.3g) as constraints in the Lagrangian 
subproblem. Note that nothing in this Lagrangian subproblem couples the variables 
Yi) and Xi). Therefore, the subproblem decomposes into two separate subproblems: 
(1) an assignment problem in the variables Yi), and (2) a minimum cost flow problem 
in the variables Xi). SO for any choice of the Lagrangian multipliers J,L, we solve two 
network flow subproblems; by using subgradient optimization we can find the best 
lower bound and optimal values of the multipliers. By relaxing other constraints in 
this model, or by applying Lagrangian relaxation to other formulations of the trav-
eling salesman problem, we could define other network flow subproblems (see Ex-
ercise 16.19). 

Application 16.3 Vehicle Routing 
The vehicle routing problem is a generic model that practitioners encounter in many 
problem settings including the delivery of consumer products to grocery stores, the 
collection of money from vending machines and telephone coin boxes, and the de-
livery of heating oil to households. As we have noted earlier in this section, the 
vehicle routing problem is a generalization of the traveling salesman problem. 

The vehicle routing problem is easy to state: Given (1) a fleet of K capacitated 
vehicles domiciled at a common depot, say node 1, (2) a set of customer sites j = 
2, 3, ... , n, each with a prescribed demand dj , and (3) a cost Ci) of traveling from 
location ito locationj, what is the minimum cost set of routes for delivering (picking 
up) the goods to the customer sites? We assume that the vehicle fleet is homogeneous 
and that each vehicle has a capacity of u units. 

There are many different variants on this core vehicle routing problem. For 
example, the vehicle fleet might be nonhomogeneous, each vehicle route might have 
a total travel time restriction, or deliveries for each customer might have time window 
restrictions (earliest and latest delivery times). We illustrate the use of Lagrangian 
relaxation by considering only the basic model, which we formulate with decision 
variables xt indicating whether (xt = 1) or not (xt = 0) we dispatch vehicle k on 
arc (i, j) and Yi) indicating whether some vehicle travels on arc (i, j): 

Minimize Ci)xt (16.4a) 
1 :5k:5K (i,j)EA 

subject to 

xt = Yi), (16.4b) 
1 :5k:5K 

Yi) = 1 for i = 2,3, ... ,n, (16.4c) 
l:5j:511 

yi) = I forj= 2,3, ... ,n, (16.4d) 

yJj=K, (16.4e) 
l:5j:511 

Yil = K, (16.40 
I :5j:511 
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L L d;xt:5 u 
2os;;os;n los;jos;n 

L L Yij:51 Q 1 - 1 
iEQjEQ 

Yij = 0 or 1 

xt = Oor 1 

for all k = 1, 2, ... ,K, 

for all subsets Q of {2, 3, ... ,n}, 

for all (i,j) E A, 

foralI(i,j)EAandaIlk= 1,2, ... ,K. 

(16.4g) 

(16.4h) 

(16.4i) 

(16.4j) 

Let A' == {(i, j) : Yij = I}. As in our discussion of the traveling salesman 
problem, constraints (16.4c) and (16.4d) ensure that A' is the union of node disjoint 
cycles containing all of the nodes in N. Constraint (16.4h) ensures that the solution 
must contain no cycle using the nodes 2, 3, ... , n (i.e., not contain any subtours 
on these nodes); otherwise, the arcs A' would contain some cycle passing through 
a set Q of nodes and the solution would violate constraint (16.4h) since the left-hand 
side of the constraint (16.4h) would be at least 1 Q I. For this reason, we refer to the 
constraints (l6.4h) as subtour breaking constraints. 

We might note that if K = 1, and u is so large that the constraint (l6.4g) is 
redundant, this model becomes an "assignment-based" formulation of the traveling 
salesman problem, which is an alternative formulation to the "flow-based" model 
that we introduced previously as (16.3). In Exercise 16.24 we study the relationships 
between these formulations as well as a third model, a multicommodity flow-based 
formulation. 

Note that this formulation has several embedded structures that we might ex-
ploit in a Lagrangian relaxation solution approach. By relaxing some of the con-
straints, we are also able to decompose the problem into independent subproblems. 
For example, if we relax only constraints (16.4b), no constraint connects the x vari-
ables and Y variables, so the problem decomposes into separate subproblems in each 
of these variables. By relaxing different combinations of the constraints, we create 
several different types of subproblems: 

1. If we relax the constraints (16.4b), (16.4g) , and (16.4h), the resulting formulation 
is an assignment problem. 

2. If we relax the constraints (16.4b) to (16.40, and (16.4h), the resulting problem 
decomposes into independent "knapsack problems," one for each vehicle k. 

3. If we relax constraint (16.4b), the problem decomposes into separate sub-
problems, one in the Y variables and one in the Xk variables for each vehicle 
k. The first of these problems is a so-called K-traveling salesman problem (see 
Exercise 16.25) and each problem in the variables Xk is a knapsack problem. 

4. If we relax the assignment constraints (16.4c) to (16.40, the constraint (l6.4b) 
defining y, and the capacity constraint (16.4g), the resulting problem is a min-
imum forest problem on the nodes 2, 3, ... , n. This problem is easy to solve 
by a simple variant of any minimum spanning tree algorithm. We could 
strengthen this approach by adding other (redundant) constraints to the problem 
formulation (see Exercise 16.28). 

5. If we relax constraints (16.4b), (16.4c), and (l6.4e) to (l6.4g), the subproblem 
with the constraints (l6.4d), (16.4h), and (l6.4i) becomes a directed minimum 
spanning tree problem-any feasible solution will be a directed spanning tree 
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with exactly one arc directed into each node (except for the root node 1). 
Although we do not consider this problem in this book, it is polynomially solv-
able. 

6. If we relax the constraint (16.4g), the problem becomes a variant of the 
K -traveling salesman problem. 

These various possibilities illustrate the remarkable flexibility of the Lagrangian 
relaxation solution approach. 

Application 16.4 Network Design 
Suppose that we have the flexibility of designing a network as well as determining 
its optimal flow (routing). That is, we have a directed network G = (N, A) and can 
introduce an arc or not into the design of the network: If we use (introduce) an arc 
(i, j), we incur a design (construction) cost f ij. Our problem is to find the design 
that minimizes the total systems cost-that is, the sum of the design cost and the 
routing cost. This type of model arises in many application contexts, for example, 
the design of telecommunication or computer networks, load planning in the trucking 
industry (i.e., the design of a routing plan for trucks), and the design of production 
schedules. 

Many alternative modeling assumptions arise in practice. We consider one 
version of the problem, the uncapacitated network design problem. In this model 
we need to route multiple commodities on the network; each commodity k has a 
single source node Sk and a single destination node d k • Once we introduce an arc 
(i, j) into the network, we have sufficient capacity to route all of the flow by all 
commodities on this arc. 

To formulate this problem as an optimization model, let Xk denote the vector 
of flows of commodity k on the network. Rather than letting xi model the total flow 
of commodity k on arc (i, j), however, we let xi· denote the fraction of the required 
flow of commodity k to be routed from the source Sk to the destination d k that flows 
on arc (i,j). Let c k denote the cost vector for commodity k, which we scale to reflect 
the way that we have defined xi [i.e., ci is the per unit cost for commodity k on arc 
(i, j) times the flow requirement of that Also, let Yij be a zero-one 
vector indicating whether or not we select arc (i, j) as part of the network design. 
Using this notation, we can formulate the network design problem as follows: 

Minimize (16.5a) 

subject to 

L xi- L xt 
{j:(i.j)EA} {j:(j,i)EA} 

= {-i if i = Sk 

if i = d k for all i E N, k = 1, 2, ... ,K, (16.5b) 
otherwise 

for all (i, j) E A, k = 1, 2, . . . , K, (16.5c) 
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for all (i, j) E A and all k = 1, 2, . . . , K, (16.5d) 

Yij = 0 or 1 for all (i, j) E A. (16.5e) 

In this formulation, the "forcing constraints" (16.5c) state that if we do not select 
arc (i,j) as part of the design, we cannot flow any fraction of commodity k's demand 
on this arc, and if we do select arc (i, j) as part of the design, we can flow as much 
of the demand of commodity k as we like on this arc. 

Note that if we remove the forcing constraints from this model, the resulting 
model in the flow variables Xk decomposes into a set of independent shortest path 
problems, one for each commodity k. Consequently, the model is another attractive 
candidate for the application of Lagrangian relaxation. To see why this type of 
solution approach might be attractive, consider a typically sized problem with, say, 
50 nodes and 500 candidate arcs. Suppose that we have a separate commodity for 
each pair of nodes (as is typical in communication settings in which each node is 
sending messages to every other node). Then we have 50(49) = 2450 commodities. 
Since each commodity can flow on each arc, the model has 2450(500) = 1,225,000 
flow variables, and since (1) each flow variable defines a forcing constraint, and (2) 
each commodity has a flow balance constraint at each node, the model has 1,225,000 
+ 2450(50) = 1,347,500 constraints. In addition, it has 500 zero-one variables. So 
even as a linear program, this model far exceeds the capabilities of current state of 
the art software systems. By decomposing the problem, however, for each choice 
of the vector of Lagrange mUltipliers, we will solve 2450 small shortest path prob-
lems. 

Application 16.lS Two-Duty Operator Scheduling 
In many different problem contexts in work force planning, a private firm or public-
sector organization must schedule its employees-for example, nurses, airline 
crews, telephone operators-to provide needed services. Typically, the problems 
are complicated by complex work rules, for example, airline crews have limits on 
the number of hours that they can fly in any week or month. Moreover, frequently, 
the demand for the services of these employees varies considerably by time of the 
day or week, or across geography (as in the case of airline crew scheduling). Con-
sequently, finding a minimum cost schedule requires that we balance the prevailing 
work rules with the demand patterns. Figure 16.9 shows one example of a work 
force planning problem, which we will view as a driver schedule for a single bus 
line. 

Every column in this table corresponds to a possible schedule. For example, 
in schedule 1, a driver operates the bus line in two shifts, from 8 to 11 and then 
from 1 to 3; in schedule 2 the driver works a single shift, from 11 to 1, and in schedule 
3, he/she drives from 3 to 6. As indicated by the column entitled demand in the 
table, we wish to find a set of schedules satisfying the property that at least one 
driver is assigned to the bus at every hour of the day from 8 A.M. until 6 P.M. (if two 
drivers are assigned to the same bus at the same time, one drives and the other is 
a rider). One possibility is to choose schedules 1, 2, and 3; another is schedules 4 
and 5; and still another is schedules 3, 5, and 6. Each schedulej has an associated 
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Schedule 
Time 

period 1 2 3 4 5 6 7 8 Demand 

8-9 1 0 0 1 0 1 0 1 
9-10 I 0 0 I 0 1 0 1 

1O-11 I 0 0 0 1 0 0 1 
11-12 0 1 0 0 1 0 0 1 
12-1 0 1 0 0 1 0 0 I 
1-2 1 0 0 I 0 I 1 0 
2-3 1 0 0 I 0 1 1 0 
3-4 0 0 I I 0 0 I 0 
4-5 0 0 I I 0 0 I 0 
5-6 0 0 I I 0 0 I 0 

Cost C. C2 C3 C4 C5 C6 C7 C8 

Figure 16.9 Two-duty operator schedule. 

cost Cj and we wish to choose the set of schedules that meets the scheduling re-
quirement at the lowest possible cost. To formulate this problem formally as an 
optimization model, let Xj be a binary (i.e., zero-one) variable indicating whether 
(Xj = 1) or not (Xj = 0), we choose schedule}, and let 31 denote the zero-one matrix 
of coefficients of the scheduling table (i.e., the ijth element is 1 if schedule) has a 
driver on duty during the ith hour of the day). Also, let e denote a column of 1 'so 
Then the model is 

Minimize cx 

subject to 

3lx e, 

Xj = 0 or 1 for} = 1, 2, ... , n. 

(16.6a) 

(16.6b) 

(16.6c) 

The choice of the available schedules in the problem depends on the governing 
work rules; as an illustration, in our example, no operator works in any shift of less 
than 2 hours. Moreover, note that the schedules permit split shifts, that is, time on, 
time off, and then time on again as in schedule 1. Note, however, that no schedule 
has more than two shifts. We refer to this special version of the general operator 
scheduling problem as the two-duty operator scheduling problem. 

In Exercise 4.13 we showed how to solve the single-duty scheduling problem 
as a shortest path problem: The shortest path model contains a node for each time 
period 1, 2, ... , T to be covered, plus an artificial end node T + 1, and an arc 
from node i to node} whenever a schedule starts at the beginning of time period i 
and ends at the beginning of time period}. We interpret arc (i,}) as H covering" the 
time periods i, i + 1, ... ,} - 1. The network also contains Hbackward" arcs of 
the form () + I,}) that permits us to "back up" from time period} + 1 to time 
period} so that we can cover any node more than once and model the possibility 
that a schedule might assign more than one driver to any time period. Can we use 
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Lagrangian relaxation to exploit the fact that the single-duty problem is a shortest 
path problem? To do so, we will use an idea known as variable splitting. 

Consider any column j of the matrix 31 that contains two sequences of l' s-
that is, corresponds to a schedule with two shifts. Let us make two columns 31; and 
31J out of this column; each of these columns contains one of the duties (sequence 
of 1 's) from 31j , so 31j = 31; + 31J. Let us also replace the variable Xj in our model 
with two variables x; and xJ. We form a new model with these variables as 

Minimize e' x' + e"x" 

subject to 

31lx' + 31"x" e, 
x' - x" 0, 

x; and xJ o or 1 for j = 1, 2, ... , n. 

(16.7a) 

(16.7b) 

(16.7c) 

(16.7d) 

For convenience, in formulating this model we have assumed that we have split 
every column of the matrix 31. If not, we can simply assume that some columns of 
31" are columns of zeros. Moreover, we can split the cost of each variable Xj arbitrarily 
between e; and eJ. For example, we could let each of these costs be half of ej. This 
model and the original model (16.6) are clearly equivalent. Note, however, that the 
new model reveals embedded network structure; as shown in Figure 16.10, which 
is the network model associated with the data in Figure 16.9, the model is a shortest 
path problem with the complicating constraints that we need to choose arcs in pairs: 
We choose either both or none of the arcs corresponding to the variables xj and 
xJ. If we eliminate the "complicating" constraint x' - x" = 0, the problem becomes 
an easily solvable single duty scheduling problem, which as we have seen before, 
we can solve via a shortest path computation. This observation suggests that we 
adopt a Lagrangian relaxation approach, relaxing the constraints with a Lagrange 
multiplier fJ. so that the Lagrangian subproblem has the objective function 

L{fJ.) = min{e ' + fJ.)x ' + {e" - fJ.)x". (16.8) 

Now, as usual to solve the Lagrangian multiplier problem, we apply subgradient 
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Figure 16.10 Shortest path subproblem for the two duty scheduling problem. 

Lagrangian Relaxation and Network Optimization Chap. 16 



optimization, or some other solution technique, to maximize L(fJ.) over all possible 
choices of the Lagrange multipliers fJ.. 

When we split a column Aj into two columns Ai and Ai, it does not matter 
how we split the cost Cj between c; and cJ, as long as Cj = ci + cJ. Since xi = 
xi in any feasible solution, the cost of any feasible solution will be the same no matter 
how we allocate the cost. However, cost splitting does make a significant difference 
in the relaxed problem obtained by dropping the constraint xi = xJ. If we were to 
make c; large and ci small, then in the solution to the relaxed problem we would 
probably find that xi would be 0 and xJ would be 1. Similarly, if we made ci small 
and cJ large, in the solution to the relaxed problem we would likely find that xi 
would be 1 and xi would be o. Ideally, we should allocate the costs between c J and 
ci, so that either x; = xJ = 0 or xi = xJ = 1 in the relaxed problem. 

As it turns out, we need not worry about the cost allocation at all if we use 
Lagrangian relaxation since the Lagrange mUltiplier fJ.j for the constraint x J - xJ = 
o does the cost allocation. Suppose, for example, that cJ = Cj and cJ = O. Then, 
since we are relaxing the constraint xi - xJ = 0, the coefficient of x} in the relaxed 
problem is Cj + fJ.j, and the coefficient of xi is - fJ.j. As fJ.j ranges over the real 
numbers, we obtain all possible ways of splitting the cost Cj between cJ and cJ. 

The operator scheduling problem we have considered permits us to find an 
optimal schedule of drivers for a single bus line. If we wish to schedule several bus 
lines simultaneously, the right-hand-side coefficients in the constraints (16.6) will be 
arbitrary positive integers, indicating the number of required operators for each time 
period during the day. In this instance, the variable splitting device still permits us 
to use Lagrangian relaxation and network optimization to solve the problem. In this 
instance, the Lagrangian subproblems will be minimum cost flow problems rather 
than shortest path problems. 

As this application shows, embedded network flow structure is not always so 
apparent and, consequently, the use of Lagrangian relaxation often requires con-
siderable ingenuity in model formulation. Indeed, the application of Lagrangian re-
laxation typically requires considerable skill in modeling. Moreover, as several of 
our examples have shown, we often can formulate network optimization problems 
in several different ways, and by doing so we might be able to recognize and exploit 
different network substructures. The models we have proposed for the traveling 
salesman problem, both in the discussion of this problem and in the discussion of 
the vehicle routing problem, illustrate these possibilities. As a result, the design and 
implementation of Lagrangian relaxation algorithms often require careful choices 
concerning the "best" models to use and the "best" constraints to relax. The lit-
erature that we cite in the reference notes gives some guidance concerning these 
issues; successful prior applications, such as those that we have discussed in this 
section and in the exercises at the end of this chapter, provide additional guides. 

Application 18.8 Degree-Constrained Minimum 
Spanning Trees 

Suppose that we wish to find a minimum spanning tree of a network, but with the 
added provision that the tree contain exactly k arcs incident to a given root node, 
say node 1 (in some settings, the degree of the root node should be at most k). This 
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degree-constrained minimum spanning tree problem arises in several applications. 
For example, in computer networking, the root node might be a central processor 
with a fixed number of ports and the other nodes might be terminals that we need 
to connect to the processor. In the communication literature, this problem has be-
come known as the teleprocessing design problem or as the multidrop terminal layout 
problem. The vehicle routing problem, described in Application 16.3, provides an-
other application setting. If we are routing k vehicles and we delete the last arc from 
every route, every solution is a spanning tree with k arcs incident to the depot (the 
tree has additional structure: each subtree off the root is a single path). Therefore, 
the degree constrained minimum spanning tree problem is a relaxation of the vehicle 
routing problem. Note that this relaxation is stronger than the minimum spanning 
tree relaxation that we discussed in Application 16.3. 

We might formulate the degree-constrained minimum spanning tree problem 
as follows. 

subject to 

Minimize cx 

n 

Xlj = k, 
j=2 

xEX. 

In this formulation, x = (Xij) is a vector of decision variables and each Xij is a zero-
one variable indicating whether (Xij = 1) or not (Xij = 0), arc (i, j) belongs to the 
spanning tree. The number Cij denotes the fixed cost of installing arc (i, j) and the 
set X denotes the set of incidence vectors of spanning trees. The additional constraint 
states that the degree of node 1 must be k. Let C = max{cij : (i, j) E A}. 

To solve this problem, we might use Lagrangian relaxation. If we associate a 
Lagrange multiplier fJ. with the degree constraint and relax it, the objective function 
of the Lagrangian subproblem becomes cx + fJ. L/=2 Xlj - fJ.k and the remaining 
(implicit) constraint, x E X, states that the vector x defines a spanning tree. Note 
that if we ignore the last term, fJ.k, which is a constant for any fixed value of fJ., this 
problem is a parametric minimum spanning tree problem: for eachj, the cost of arc 
(1, j) is Clj + fJ., and whenever i =1= 1 and j =1= 1, the cost of arc (i, j) is Cij' We will 
use this observation to solve the degree constrained problem. That is, rather than 
using subgradient optimization, we will use a combinatorial algorithm to solve the 
Lagrangian multiplier problem. 

We first solve the minimum spanning tree problem for fJ. = O. If the degree of 
node 1 in the optimal tree equals k, this tree is optimal for the degree-constrained 
minimum spanning tree problem. So suppose that the degree of node 1 is different 
than k. We first consider the case when the degree of node 1 is strictly less than k. 
Notice that since fJ. affects the lengths of only those arcs incident to node 1, changing 
the value fJ. affects the ranking of these arcs relative to the arcs not incident to node 
1. Consequently, as we decrease the value of fJ., the arcs incident to node 1 become 
more attractive relative to the other arcs, so we would insert these arcs into the 
spanning tree in place of the other arcs. The algorithm uses this observation: It starts 
with a minimum spanning tree TI for fJ. = 0 and by decreasing the value of fJ., it 
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generates a sequence of spanning trees TI, ... , Tq - I, terminating with a minimum 
spanning tree Tq for fJ. = - C - 1. Each tree TI, ... , Tq - I is a minimum spanning 
tree for some value of fJ.. The algorithm creates Tj from Tj - I by adding one arc 
(1, i) to Tj-l and deleting one arc (p, q) with p =F 1 and q =F 1 from Tj-l. That is, 
at each step it increases the degree of node 1 by one. Finally, Tq includes all the 
arcs incident to node 1. (For a discussion of parametric minimum spanning trees, 
see Exercises 13.35 and 13.36.) 

Let Tk denote the tree containing exactly k arcs incident to node 1 and let fJ. k 
denote the value of fJ. for which Tk is a minimum spanning tree for the parametric 
problem. Further, let Xk denote the incidence vector associated with the span-
ning tree Tk. By definition, Xk solves the Lagrangian multiplier problem L(fJ.) = 
ex + fJ. Lf=2 Xi} - fJ.k, x E X, for fJ. = fJ.k because fJ.k is a constant. Now notice 
that L(fJ.k) = exk + fJ.k Lf=2 xlj - fJ.kk = exk + fJ.kk - fJ.kk = exk, which implies 
that for fJ. = fJ. k, the optimal objective function value of the Lagrangian subproblem 
equals the value of a feasible solution Xk of the degree-constrained minimum 
spanning tree problem. Property 16.3 shows that Xk is an optimal solution of the 
degree-constrained minimum spanning tree problem. 

When the optimal tree for fJ. = 0 contains more than k arcs, we parametrically 
increase the value of fJ. until fJ. = C + 1. As we increase the value of fJ., the arcs 
incident on node 1 become less attractive, and they leave the optimal tree one by 
one. Eventually, node 1 will have degree exactly equal to k, and the tree at this 
point will be a minimum degree-constrained spanning tree. 

Note that this application of Lagrangian relaxation is different than the others 
that we have considered in this chapter. In this case we have used Lagrangian re-
laxation to define a parametric problem that is related to the constrained model we 
are considering. We have then used a combinatorial algorithm rather than a general-
purpose Lagrangian relaxation algorithm to solve the parametric problem. In this 
case the Lagrangian relaxation has proven to be valuable not only in formulating 
the parametric problem, but also in validating that the solution generated by the 
parametric problem is optimal for the constrained model. 

Application 18.7 Multi-item Produotion Planning 

In production planning we would like to find the best use of scarce resources (people, 
machinery, space) in order to meet customer demand at the least possible cost. As 
we show in Chapter 19, the research community has developed a number of different 
models for addressing various planning issues in this application domain. Some of 
these models are shortest path problems and some are minimum cost flow problems; 
still others are multicommodity flow problems or more general models with embed-
ded network flow structure. In this section, to show how we might use Lagrangian 
relaxation to solve more general models, we consider two applications of production 
planning: multi-item production planning and production planning with changeover 
costs. 

Suppose that we are producing K items over a planning horizon containing T 
periods (e.g., production shifts). Suppose, further, that we produce the items on the 
same machine and that we can produce at most one item in each period. We would 
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like to find the least cost production plan that will satisfy a demand dkt for every 
item k in each period t. 

Let Xkt denote the amount of item k that we produce in period t and let ht 

denote the amount of inventory of item k that we carry from period t to period 
t + 1. Let Zkt be a zero-one variable indicating whether or not we produce item 
k in period t. With this notation, we can model the multi-item production planning 
problem as follows: 

K T K T K T 

Minimize L L CktXkt + L L hktht + L L FktZkt 
k= 1 t= 1 k= 1 t= 1 k= 1 t= 1 

subject to 
K 

L Zkt:5 1 fort = 1,2, ... ,T, 
k=1 

Xkt + h,t-l - ht = dkt fork = 1,2, ... ,Kandt = 1,2, ... , T, 
Xkt:5Pkt Zkt fork = 1,2, ... ,Kandt = 1,2, ... ,T, 
Xkt 0, ht 0 for k = 1,2, ... , K and t = 1,2, ... ,T, 
Zkt = Oor 1 fork = 1,2, ... ,Kandt = 1,2, ... , T. 

(16.9a) 

(16.9b) 

(16.9c) 
(16.9d) 
(16.ge) 
(16.90 

In this model Ckt is the per unit production cost and h kt is the per unit inventory 
carrying cost for item k in period t. Fkt is a fixed cost that we incur if we produce 
item k in period t and P kt is the production capacity for item k in period t. The 
constraint (16.9a) ensures that we produce at most one item in each period. Con-
straint (16.9c) states that we allocate the amount we have on hand of item k in period 
t (i.e., the production plus incoming inventory of that item) either to demand in that 
period or to inventory at the end of the period. The "forcing" constraint (16.9d) 
ensures that the quantity Xkt of item k produced in period t is zero if we do not select 
that item for production in that period, that is, if Zkr = 0; this constraint also ensures 
that the production of item k in period t never exceeds the production capacity of 
that item. 

Note that constraints in (16.9b) are the only constraints in this model that link 
various items. Therefore, these constraints would be attractive candidates to relax 
via Lagrange multipliers At. Doing so creates the following objective function 

K T K T K T T 

Minimize L L CktXkt + L L hktht + L L [Fkt + At]Zkt - LAt. 
k= 1 t= 1 k= I t= I k= I t= 1 t=1 

For a fixed value of the Lagrange multipliers, the last term is a constant, so the 
problem separates into a single-item production planning problem for each item k; 
the production and inventory carrying costs in the relaxation are the same as those 
in the original model, and in each period the fixed cost for each item in the relaxation 
is At units more than in the original model. 

The subproblems assume different forms, depending on the nature of the pro-
duction capacities. In Chapter 19 we show that whenever each single-item sub-
problem is uncapacitated (i.e., Pkt is as large as the sum of the demands dkt in periods 
t + 1, t + 2, ... , n, we can solve each single-item subproblem as a shortest path 
problem. If we impose production capacities, the subproblems are NP-complete. In 
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these instances, since the number of time periods is often very small, we might use 
a dynamic programming approach for solving the subproblems. 

To conclude this discussion, we might note that we can enrich this basic multi-
item production planning model in a variety of ways. For example, as shown in 
Chapter 19, we can model multiple stages of production or the backlogging of de-
mand. As another example, we can model situations in which we incur a startup 
cost whenever we initiate the production of a new item. To model this situation, we 
let Ykt be a zero-one variable, indicating whether or not the production system 
switches from not producing item k in period t - 1 to producing the item in period 
t. We then add the following constraints to the basic model (16.9): 

Zkt - Zk,t-I $ Ykt for k = 1,2, ... ,K and t = 1,2, ... , T, 

and for each "turn on" variable Ykt, we add a cost term CXktYkt to the objective function 
(CXkt is the cost for turning on the machine to produce item k in period t). By relaxing 
these constraints as well as the item choice constraints (16.9b), we again obtain 
separate production planning problems for each item. Or, by relaxing only the item 
choice constraints, we obtain a single-item production planning problem in which 
we incur three types of production costs: (1) a cost for turning the machine on, (2) 
a cost for setting up the machine in any period to produce any amount of the item, 
and (3) a per unit production cost. 

This startup cost problem is important in many practical production settings. 
Moreover, this model is illustrative of the enhancements that we can make to the 
basic production planning problem and once again demonstrates the algorithmic 
flexibility of Lagrangian relaxation. 

16.8 SUMMABY 
Lagrangian relaxation is a flexible solution strategy that permits modelers to exploit 
the underlying structure in any optimization problem by relaxing (i.e., removing) 
complicating constraints. This approach permits us to "pull apart" models by re-
moving constraints and instead place them in the objective function with associated 
Lagrange multipliers. In this chapter we have developed the core theory of La-
grangian relaxation, described popular solution approaches, and examined several 
application contexts in which Lagrangian relaxation effectively exploits network 
substructure. 

The starting point for the application and theory of Lagrangian relaxation (as 
applied to a model specified as a minimization problem) is a key bounding principle 
stating that for any value of the Lagrange multiplier, the optimal value of the relaxed 
problem, called the Lagrangian subproblem, is always a lower bound on the objective 
function value of the problem. To obtain the best lower bound, we need to choose 
the Lagrangian multiplier so that the optimal value of the Lagrangian subproblem 
is as large as possible. We call this problem the Lagrangian multiplier problem. We 
can solve the Lagrangian multiplier problem in a variety of ways. The subgradient 
optimization technique is possibly the most popular technique for solving the La-
grangian multiplier problem and we have described this technique in some detail. 
The subgradient optimization technique solves a sequence of Lagrangian subprob-
lems. 
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Usually, we choose the constraints to relax so that the Lagrangian subproblem 
is much easier to solve than the original problem. Consequently, when applying 
Lagrangian relaxation, we solve many "simple" problems instead of one single 
"complicated" problem. Frequently, the complicating constraints that we relax are 
the only constraints that couple otherwise independent subsystems (e.g., shortest 
path problems); in these instances, Lagrangian relaxation permits us to decompose 
a problem into smaller, more tractable subproblems. For this reason, the research 
community often refers to Lagrangian relaxation as a decomposition technique. 

In discussing the theory of Lagrangian relaxation, we showed how to formulate 
the Lagrangian multiplier problem as an associated linear program with a large num-
ber of constraints; we also showed how to interpret the Lagrangian multiplier prob-
lem as a convexification of the original optimization model. That is, instead of re-
stricting our choices to a discrete set of possible alternatives (e.g., spanning tree 
solutions), the multiplier problem produces the same objective function value that 
we would obtain if we solved the original problem, but permitted the use of convex 
combinations of the alternatives. We also showed that when applied to integer pro-
grams, the Lagrangian relaxation always gives at least as large a lower bound as 
does the linear programming relaxation of the problem. Finally, we showed that 
whenever the Lagrangian subproblem satisfies the integrality property (so it has an 
integer solution for all values of the Lagrange multiplier), solving the Lagrange mul-
tiplier problem is equivalent to solving the linear programming relaxation of the 
original optimization model. In these instances, even though the Lagrangian ap-
proach provides the same lower bound as the linear programming relaxation, it does 
have the ability to solve network (or other) subproblems quickly, which is often 
greatly preferred to solving the original problem by general-purpose linear program-
ming codes. 

Our discussion of applications has introduced several important network op-
timization models: networks with side constraints, the traveling salesman problem, 
vehicle routing, network design, personnel scheduling, degree-constrained minimum 
spanning trees, and production planning. As we have seen, these optimization models 
have applications in such diverse settings as machine scheduling, communication 
system design, delivery of consumer goods, telephone coin box collection, telephone 
operator scheduling, logistics, and production. Consequently, our discussion has 
illustrated the broad applicability of Lagrangian relaxation across many practical 
problem contexts. It has also illustrated the versatility of Lagrangian relaxation and 
its ability to exploit the core network substructures-shortest paths, minimum cost 
flows, the assignment problem, and minimum spanning tree problems-that we have 
studied in previous chapters. Our discussion of applications has also highlighted 
several other points: 

1. Need for creative modeling. Formulating Lagrangian relaxations can require 
considerable ingenuity in modeling (as in the variable splitting device that we 
used to study the two-duty operator scheduling problem). 

2. Flexibility of Lagrangian relaxation. In many models, such as the vehicle rout-
ing problem, we can obtain a variety of different Lagrangian subproblems by 
relaxing different constraints. This variety of potential subproblems permits us 
to develop different algorithms for solving the same problem. 
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3. Use of Lagrangian relaxation as a conceptual as well as algorithmic tool. On 
some occasions, as in our discussion of the degree-constrained minimum span-
ning tree problem, we can use the bounding information provided by Lagran-
gian relaxation as a stand-alone tool that is unrelated to any iterative method 
for solving the Lagrangian multiplier problem. For example, we can use the 
bounds to analyze the solutions generated by combinatorial or heuristic al-
gorithms for solving a problem. 

REFERENCE NOTES 
The Lagrange multiplier technique of nonlinear optimization dates to the eighteenth 
century and was suggested by the famous mathematician Lagrange, for whom the 
technique is named. The use of this technique in integer programming and discrete 
optimization is much more recent, originating in the seminal papers by Held and 
Karp [1970, 1971], who studied the traveling salesman problem. Everett's [1963] 
development of Lagrangian mUltiplier methods for general mathematical program-
ming problems was a precursor to this development. Held and Karp's application 
of the Lagrange multiplier method was not only an eye-opening successful appli-
cation, but also set out many key ideas in applying the method to integer program-
ming problems. Fisher [1981, 1985], Geoffrion [1974], and Shapiro [1979] provide 
insightful surveys of Lagrangian relaxation and its uses in integer programming. The 
papers by Fisher contain many citations to successful applications in a wide variety 
of problem settings. For a discussion of the branch-and-bound algorithm, see Win-
ston [1991]. 

Most of the key results of Lagrangian relaxation (e.g., the bounding properties 
and optimality conditions) are special cases of more general results in mathematical 
programming duality theory. Rockafellar [1970] and Stoer and Witzgall [1970] pro-
vide comprehensive treatments of this subject. Magnanti, Shapiro, and Wagner 
[1976] establish the equivalence of the Lagrangian multiplier problem and generalized 
linear programming, whose development by Dantzig and Wolfe [1961] predates the 
formal development of Lagrangian relaxation in integer programming. The integrality 
property is due to Geoffrion [1974]. The subgradient method is an outgrowth of so-
called relaxation methods for solving systems of linear inequalities. Bertsimas and 
Orlin [1991] have developed the most efficient algorithms (in the worst-case sense) 
for solving many classes of Lagrangian relaxation problems. 

Several of the application contexts that we have discussed in Section 16.5 and 
in the exercises have very extensive literatures. The following books and survey 
articles, which contain many references to the literature, serve as good sources of 
information on these topics. 

Traveling salesman problem: the book edited by Lawler, Lenstra, Rinnooy 
Kan, and Shmoys [1985] 
Vehicle routing: surveys by Bodin, Golden, Assad, and Ball [1983], Laporte 
and N obert [1987], and Magnanti [1981] 
Network design: surveys by Magnanti and Wong [1984], Magnanti, Wolsey, 
and Wong [1992], and Minoux [1989] 
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Production planning: the survey paper by Shapiro [1992], the book by Hax 
and Candea [1984], and the paper by Graves [1982] 

Several other of the applications discussed in this chapter are adapted from 
research papers from the literature. For a Lagrangian relaxation-based branch-and-
bound approach to the constrained shortest path problem, see Handler and Zang 
[1980]. Shepardson and Marsten [1980] have used the variable splitting device and 
Lagrangian relaxation for solving the two-duty operator scheduling problem and 
applied this approach to bus operator scheduling. For an algorithmic approach to 
the network design problem, see Balakrishnan, Magnanti, and Wong [1989a]. Vol-
genant [1989] considers the degree-constrained minimum spanning tree problem. 

EXERCISES 
16.1. Lagrangian relaxation and inequality constraints. To develop the Lagrangian mUltiplier 

problem for an inequality constraint problem stated as min{ ex : stlx b, x E X}, 
suppose that we add nonnegative "slack" variables s to model the problem in the 
following equivalent equality form: min{ex : stlx + s = b, x E X and s OJ. 
(a) State the Lagrangian mUltiplier problem for the equality formulation. 
(b) Show that if some J.Li < 0, then L(J.L) = -00. Further, show that if some J.Li> 0, 

then in the optimal solution of the Lagrangian subproblem L(J.L)' the slack variable 
Sj = O. 

(c) Conclude from part (b) that the Lagrangian multiplier problem of the inequality 
constrained problem is maxlJ.2:0 L(J.L) with L(J.L) = min{ex + J.L(stlx - b) : x EX}. 

16.2. Consider the problem 
Minimize - 2x - 3y 

subject to 

x + 4y 5, 

x, y E {O, I}, 

and the corresponding relaxed problem 
Minimize - 2x - 3y + (x + 4y - 5) 

subject to 
x, Y E {O, l}. 

Show that x = 1, y = 0 solves the relaxed problem, is feasible for the original problem, 
and yet does not solve the original problem. (Reconcile this example with Property 
16.4.) 

16.3. Lagrangian relaxation applied to linear programs. Suppose that we apply Lagrangian 
relaxation to the linear program q} defined as min{ ex : stlx = b, x O} by relaxing 
the equality constraints stlx = b. The Lagrangian function is L(J.L) = minx 2:o {ex -
J.L(stlx - b)} = minx 2:o {( e - J.Lstl)x + J.Lb}. (Since the constraints stlx = b are equalities, 
the Lagrange multipliers J.L are unconstrained in sign. For the purpose of this exercise, 
we have chosen a different sign convention than usual, that is, used - J.L in place of 
J.L.) Now, consider the Lagrangian multiplier problem maxIJ.L(J.L). 
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(a) Suppose we choose a value of J.L so that for some}, (e - J.Lstl)j < O. Show that 
L(J.L) = -00. 

(b) Suppose we choose a value of J.L so that for some}, (e - J.Lstl)j> O. Show that in 
the optimal solution of the Lagrangian subproblem, Xj = o. 

(c) Conclude from parts (a) and (b) that the Lagrangian mUltiplier problem is equiv-

Lagrangian Relaxation and Network Optimization Chap. 16 



alent to the linear programming dual of 'lP, that is, the problem max JLb, subject 
to JL.s.4. :s c. 

16.4. Oscillation in Lagrangian relaxation. Suppose that we apply Lagrangian relaxation to 
the constrained shortest path example shown in Figure 16.1 with the time constraint 
of T = 14, starting with value JLo = 0 for the Lagrange multiplier JL. Show that if we 
choose the step size Ok = 1 at each iteration, the subgradient algorithm JLk+ I = JLk + 
Ok(.s.4.Xk - b) oscillates between the values JL = 0 and JL = 4 and the Lagrangian 
subproblem solutions alternate between the paths 1-2-4-6 and 1-3-2-5-6. 

16.5. In Section 16.4 we showed that when T = 14, our constrained shortest path example 
had an optimal objective function value z* = 13 while the Lagrange multiplier problem 
had a value L * = 7. Show that L * equals the optimal objective function value of the 
linear programming relaxation of the problem. Interpret the solution of the linear pro-
gram as the convex hull of shortest path solutions. That is, find a set of paths whose 
convex combination satisfies the timing constraint and whose weighted (i.e., convex 
combination) cost equals L * . 

16.6. Suppose that X is a finite set and that when we solve the Lagrangian multiplier problem 
corresponding to the optimization problem min{cx : .s.4.x = b, x E X} for any value 
of c, we find that the problem has no duality gap, that is, if x* solves the given optimi-
zation problem and JL * is an optimal solution to the Lagrangian multiplier problem, 
then cx* = L(JL *). Show that the polyhedron {x : .s.4.x = b and x E 'af(Xn has integer 
extreme points. (Hint: Use the results given in the proofs of Theorems 16.9 and 16.10.) 

16.7. Lagrangian relaxation interpretation of successive shortest paths. Recall from Section 
9.7 that each intermediate stage of the successive shortest path algorithm for solving 
the minimum cost flow problem maintains a pseudoflow x satisfying the flow bound 
constraints and a vector 71' of node potentials satisfying the conditions cij = cij - 71'(i) 
+ 71'(j) 0 for all arcs (i,}) E G(x). 
(a) Show that the pseudoflow x is optimal for the problem obtained by relaxing the 

mass balance constraints and replacing the objective function cx with the La-
grangian function 

Minimize (cij - 71'(i) + 71'(j»xij. 
U.j)EA 

(b) Interpret the successive shortest path algorithm as a method that proceeds by 
adjusting the Lagrangian mUltipliers. At each stage the method adjusts the mul-
tipliers 71' so that (1) the current pseudoflow x is optimal for the Lagrangian sub-
problem, and (2) some alternate optimal pseudoflow x' for the Lagrangian relax-
ation is "less infeasible" than x. Finally, when the optimal pseudoflow becomes 
a flow, we obtain an optimal solution of the Lagrangian subproblem that is also 
feasible for the original problem; therefore, it must be an optimal solution of the 
original problem. 

16.8. Generalized assignment problem (Ross and Soland [1975]). The generalized assignment 
problem is the optimization model 

subject to 

Xi} = 1 
jEJ 

ai}xij dj 
iEI 

xi} 0 and integer 

Minimize ci}xi} (16. lOa) 
iEI jEJ 

for all i E I, (16. lOb) 

for all} E J, (16.lOc) 

for all (i,}) E A. (16.lOd) 

In this problem we wish to assign III "objects" to I J I "boxes." The variable 
xi} = 1 if we assign object i to box j and Xi} = 0 otherwise. We wish to assign each 
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object to exactly 1 box; if assigned to box j, object i consumes aij units of a given 
"resource" in that box. The total amount of resource available in the jth box is dj • 

This generic model arises in a variety of problem contexts. For example, in machine 
scheduling, the objects are jobs, the boxes are machines; aij is the processing time for 
job i on machine j and dj is the total amount of time available on machine j. 
(a) Outline the steps required for solving the Lagrangian subproblem obtained by (1) 

relaxing the constraint (16. lOb), and (2) by relaxing the constraint (16.lOc). 
(b) Compare the lower bounds obtained by the two relaxations suggested in part (a). 

Which provides the sharper lower bound? Why? (Hint: Use Theorems 16.9 and 
16.10.) 

(c) Compare the optimal objective function value of the Lagrangian multiplier problem 
for each relaxation suggested in part (a) with the bound obtained by the linear 
programming relaxation of the generalized assignment model. 

16.9. FacUity location (Erlenkotter [1978]). Consider the following facility location model: 

Minimize cijxij + FjYj (16. 11 a) 
iEI jEJ jEJ 

subject to 

xij = 1 for all i = 1, 2, ... , I, (16.11b) 
jEJ 

dixij S KjYj for allj = 1,2, ... , J, (16. 11 c) 
iEI 

Os xij S 1 for all i E I and j E J, (16. 11 d) 

Yj = 0 or 1 for allj E J. (16. 11 e) 
In this model, I denotes a set of customers and J denotes a set of potential facility 
(e.g., warehouse) locations used to supply to the customers. The zero-one variable 
Yj indicates whether or not we choose to locate a facility at location j and Xij is the 
fraction of the demand of customer i that we satisfy from facility j. The constant d; 
is the demand of customer i. The cost coefficient Cij is the cost (e.g., the transportation 
cost) of satisfying all of the ith customer's demand from facility j, and the cost coef-
ficient Fj is the fixed cost of opening (e.g., leasing) a facility of size Kj at location j. 
The constraints (16. 11 b) state that we need to satisfy all of the demand for each cus-
tomer, and the constraints (16.11c) state that (1) we cannot meet any of the demand 
of any customer if we do not locate a facility at locationj (i.e., Xij = 0 if Yj = 0), and 
(2) if we do locate a facility at location j (Le., Yj = 1), the total demand met by the 
facility cannot exceed the facility's capacity Kj • 

(a) Show how you would solve the Lagrangian subproblem obtained by relaxing the 
constraints (16.11b). (Hint: Note that the Lagrangian subproblem decomposes into 
a separate subproblem for each location.) 

(b) Show next how you would solve the Lagrangian subproblem if we relax the con-
straints (16.llc). (Hint: Note that the Lagrangian subproblem decomposes into a 
separate subproblem for each customer.) 

(c) Show that if III = I J I = 1, K, = 10, d, = 5, and C'I = 0, the relaxation suggested 
in part (a) gives a sharper lower bound than the relaxation in part (b). Next prove 
the general result that the relaxation in part (a) gives at least as good a bound as 
given by the relaxation in part (b). 

16.10. Modified facUity location. Suppose that in the model considered in Exercise 16.9, we 
impose the additional constraint that the demand for each customer should be "sole 
sourced"; that is, each variable xij has value zero or I. 
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(a) Show how to use the solution of a single knapsack problem for each facility j to 
solve the Lagrangian relaxation obtained by relaxing the constraints (16.11b). 

(b) Show that the bound obtained from the Lagrangian multiplier problem by relaxing 
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the constraints (16.11 b) is always at least as strong as the bound obtained by 
relaxing the constraints (16.11c). 

16.11 Tightening the facility location relaxation. Suppose that we add the redundant con-
straints Xij s min{Yb KJ to the facility location model described in Exercise 16.9 and 
then we apply Lagrangian relaxation by relaxing the constraints (16.11b) or (l6.11c). 
(a) Show that the bound obtained from the Lagrangian multiplier problem is always 

as strong or stronger than the bound obtained by relaxing the corresponding con-
straints in the original model without the additional constraints Xij :s.:; min{yj, Kid;}. 

(b) How would you solve the Lagrangian subproblem with the added constraints 
Xij s min{yj, K)d;}? 

(c) How would your answers to parts (a) and (b) change if we considered the sole-
sourcing-facility location model described in Exercise 16.1O? 

16.12. Local access capacity expansion (Balakrishnan, Magnanti, and Wong [1991]). The lowest 
level of national telephone networks are trees that connect individual customers to 
the rest of the national network through special nodes known as switching centers, 
which route telephone calls to their final destination. Each local access network (tree) 
T has its own switching center. As demand for service increases, telephone companies 
have two basic options for increasing the capacity of a local access network: (1) they 
can install more copper cables on the arcs of the networks; or (2) they can install 
devices, called multiplexers (or concentrators), at the nodes. The multiplexers com-
press calls so that they use less downstream cable capacity. We assume that once a 
call reaches a mUltiplexer, it requires negligible cable capacity to send it to the switch-
ing center. Every call must be routed through the tree T either to the switching center 
or to one of the multiplexers. Suppose that the existing capacity of arc (i, j) is Uij and 
increasing the capacity by Yij units incurs an arc-dependent cost Ci.JYij. Let d; denote 
the numbers of calls originating at node i that must be routed to the switching center 
or to a multiplexer. Each multiplexer has two associated costs: (1) a fixed cost F, and 
(2) a variable throughput cost (l incurred for each unit of call compressed by that 
multiplexer. The optimization problem is to meet the demand for service by incurring 
minimum total cost. 
(a) Let Zi be a zero-one variable indicating whether or not we place a multiplexer at 

node i. Further, let Xij be a zero-one variable indicating whether or not we assign 
node i to the multiplexer j. In the local access network T, for any pair (i, j] of 
nodes, we let Pij denote the unique path between these two nodes, and for any 
arc (k, I) in T, we let Qkl be the set of all node pairs [i, j] from which Pij contains 
the arc (k, I). We assume that node 1 is the switching center. Let node S denote 
the remaining nodes in the network. Using this notation, give an integer program-
ming formulation of the local access network design problem. 

(b) Suggest two relaxations of the formulation in part (a) that produce a relaxed prob-
lem with a structure that we have treated in this book. 

16.13. Contiguous local access capacity expansion problem (Balakrishnan, Magnanti, and Wong 
[1991]). In most practical settings of the local access capacity expansion problems, 
the set of nodes assigned to the switching center or to any multiplexer must be con-
tiguous. That is, if we assign node i to a multiplexer at node j and node k lies on the 
path in T from node i to node j, we must also assign node k to the multiplexer at node 
j. Therefore, the final configuration of the local access network will be a subdivision 
of the tree T into subtrees, with each subtree containing either the switching center 
or one multiplexer and the nodes it serves. 
(a) Show that we can incorporate the contiguity condition in the formulation of Ex-

ercise 16.12 by adding the following constraints for every pair [i, j] of nodes: if 
the path Pij contains node k, then Xkj 2: Xij. 

(b) Consider the integer programming formulation of the contiguous local access ca-
pacity expansion problem from part (a). Suppose that we relax the capacity con-
straints imposed on the arcs. Show that we can solve the Lagrangian subproblem 
in polynomial time using a dynamic programming technique. 
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16.14. Design of telecommunication networks (Leung, Magnanti, and Singhal [1990] and Mag-
nanti, Mirchandani, and Vachani [1991]). In designing telecommunications networks, 
we would like to install sufficient capacity to carry required traffic (telephone calls, 
data transmissions) simultaneously between various source-sink locations. Suppose 
that (Sk, t k ) for 1 s k s K denote K pairs of source-sink locations, and rk denotes 
the number of messages sent from the source Sk to the sink tk. We can install either 
of two different types of facilities on each link of the transmission network, so-called 
TO lines and TI lines. Each TO line can carry 1 unit of message and each TI line can 
carry 24 units of messages; installing a TO line on arc (i, j) incurs a cost of ai) and 
installing a TI line on arc (i, j) incurs a cost of bi)' Once we have installed the lines, 
we incur no additional costs in sending flow on them. This problem arises in practice 
because companies with large telecommunication requirements might be able to lease 
lines more cost-effectively than paying public tariffs. The same type of problem arises 
in trucking of freight; in this setting, the facilities to be "installed" on any arc are the 
trucks of a particular type (e.g., 36-foot trailers or 48-foot trailers) to be dispatched 
on that arc. 
(a) Show how to formulate this telecommunication network design problem with two 

types of constraints: (1) a set of network flow constraints modeling the required 
flow between every pair of source-sink locations, and (2) capacity constraints 
restricting the total flow on each arc to be no more than the capacity that we install 
on that arc. (Hint: Use the following integer decision variables: (1) Yu : the number 
of TO lines for arc (i, j), (2) Zu : the number of TI lines for arc (i, j), and (3) the 
number of messages xi sent from the source Sk to the sink t k that pass through 
the arc (i, j).) 

(b) How would you solve the linear programming relaxation of this model? (Hint: 
Consider two cases: when 24 aij < bij and when 24 au bij.) 

(c) Show how to solve the Lagrangian subproblem obtained by relaxing constraints 
of type 1 in the model formulation. (Hint: Consider the two cases as in part (b).) 

(d) Show how to solve the Lagrangian subproblem obtained by relaxing constraints 
of type 2 in the model formulation. 

16.15. Steiner tree problem. The Steiner tree problem is an variant of the minimum 
spanning tree problem. In this problem we are given a subset S N of nodes, called 
customer nodes, and we wish to determine a minimum cost tree (not necessarily a 
spanning tree) that must contain all the nodes in S and, optionally, some nodes in 
N - S. This problem arises in many application settings, such as the design of rural 
road networks, pipeline networks, or communication networks. Formulate this prob-
lem as a special case of the network design problem discussed in Application 16.4 and 
show how to apply Lagrangian relaxation to the resulting formulation. (Hint: Designate 
any customer node as a source node and send 1 unit of flow to every other customer 
node.) 

16.16. In this exercise we show how to formulate a directed traveling salesman problem as 
a network design problem. Consider a network design problem with the following data: 
(1) unit commodity flow requirements between every pair of nodes, (2) the cost of 
flow on every arc is zero, and (3) the fixed cost of the arc (i, j) is Ci} + M for some 
sufficiently large number M. Show that the optimal network will be an optimal traveling 
salesman tour with cij as arc lengths. (Hint: The optimal network must be strongly 
connected and must contain the fewest possible number of arcs.) 

16.17. Uncapacitated undirected network design problem. In the formulation of the directed 
uncapacitated network design problem in Application 16.4, the zero-one vector Yij 
indicated whether we would include the directed arc (i, j) in the underlying network. 
Suppose, instead, that the arcs are undirected, so if we introduce arc (i, j) in the 
network, we can send flow in either direction on the arc. 
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(a) How would you formulate this problem and apply Lagrangian relaxation to obtain 
lower bounds? 
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(b) Show that in the uncapacitated undirected network design problem, if all flow 
costs ct are zero, all the fixed costs f ij are nonnegative, and the problem has a 
commodity for each pair of nodes, the problem reduces to the minimum spanning 
tree problem. 

16.18. (a) Show that if the un capacitated network design problem has a single commodity 
(i.e., K = 1), we can solve the problem by solving a single shortest path problem. 

(b) Show how to formulate the production planning problems that we described in 
Application 16.7 as capacitated or uncapacitated network design problems. 

16.19. (a) Suppose that we relax the mass balance constraint Xx = b in the formulation 
(16.3) of the traveling salesman problem described in Application 16.2. Show how 
to solve the Lagrangian subproblem as an assignment problem. (Hint: Show that 
some optimal solution of the Lagrangian subproblem satisfies the conditions 
xij = 0 or xij = (n - l)Yii for each arc (i, j) E A. Use this fact to eliminate the 
variables xij from the subproblem.) 

(b) Suppose that we relax the assignment constraints (l6.3b) and (16.3c) in the for-
mulation (16.3) of the traveling salesman problem. Show how to solve the La-
grangian subproblem as an uncapacitated network design problem. 

(c) What is the relationship between the optimal solutions of the Lagrangian multiplier 
problems obtained by the relaxations considered in parts (a) and (b), the relaxation 
described in the text (obtained by relaxing the forcing constraints xij S (n - 1)Yij) , 
and the optimal objective function value of the linear programming relaxation of 
the problem? 

16.20. Assignment-based formulation of the traveling salesman problem 
(a) Consider the integer program (16.3) with the constraints (16.3d) and (16.3e) re-

placed by the subtour breaking constraints (l6.4h). Show that the resulting model 
is an integer programming formulation of the traveling salesman problem. 

(b) Show that the solution of the Lagrangian subproblem formed by relaxing the sub-
tour breaking constraints will be a set of directed cycles satisfying the property 
that each node is contained in exactly one cycle. Describe a heuristic method for 
modifying the Lagrangian subproblem solution so that it becomes a feasible trav-
eling salesman tour. 

16.21. Undirected traveling salesman problem. In the undirected (or symmetric) traveling 
salesman problem, we can traverse any arc (i, j) in either direction at the same cost 
cij' Let Yij indicate whether or not we include arc (i, j) in a feasible tour. 
(a) Give a formulation of this problem as an integer program containing three sets of 

constraints: (1) degree 2 constraints, indicating that each node should have degree 
at most 2 in any feasible tour; (2) sub tour breaking constraints on the nodes 
2, 3, ... , n; and (3) a cardinality constraint indicating that the tour contains 
exactly n arcs. (Hint: Modify the assignment based formulation of the directed 
traveling salesman problem described in Exercise 16.20.) 

(b) Show how to apply Lagrangian relaxation in two ways: (1) by relaxing the degree 
2 constraints; and (2) by relaxing the subtour breaking constraints and the car-
dinality constraint. In case 1 show how to solve the Lagrangian subproblem as a 
I-tree (see Exercise 13.38). In case 2 show how to solve the Lagrangian subproblem 
as a matching problem. (Hint: In case 2, first show that any network with narcs 
and degree at most 2 on each node, must have a degree of exactly 2 at each node.) 

16.22. Multlcommodlty now-based formulation of the traveling salesman problem. In Appli-
cation 16.2 we examined a single-commodity flow-based formulation of the traveling 
salesman problem with n - 1 units available at a source node (which we arbitrarily 
took to be node 1) and 1 unit of demand required at each other node. Suppose that, 
instead, we formulated a multicommodity flow model with 2(n - 1) commodities, with 
two commodities k defined for each node k # 1, an "outgoing" commodity and an 
"incoming" commodity. The incoming commodity for node k has 1 unit of supply at 
node 1 and 1 unit of demand at node k, and the outgoing commodity for node k has 
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1 unit of supply at node k and 1 unit of demand at node 1 (i.e., we wish to send 1 unit 
from node 1 to node k and 1 unit from node k to node 1). We can state this formulation 
of the traveling salesman problem as the following integer program: 

Minimize L cijYij, 
(i,j)EA 

subject to 

L Yij = 1 for all i = 1,2, ... , n, 
Isjsn 

L Yij = 1 for all j = 1,2, ... , n, 
Isisn 

Nx k = bk for all k = 2, ... , n, 

Nz k = d k for all k = 2, ... , n, 

xt :5 Yij and zt :5 Yij for all (i, j) and all k, 
Yij and xt = 0 or 1 for all (i, j) and all k. 

Note that the supply/demand vectors bk and d k in this formulation have a special 
form: d k = - bk and b7 is 1 if i = 1, is - 1 if i = k, and is 0 if i =1= 1 and i =1= k. 
(a) Suppose that we apply Lagrangian relaxation to the multicommodity flow-based 

model by relaxing the forcing constraints [Le., the constraints xt :5 Yij and 
zt :5 Yij, for all (i,j) and all k]. How would you solve the Lagrangian subproblem? 

(b) Show that the lower bound L * determined by the Lagrangian mUltiplier problem 
for the Lagrangian relaxation in part (a) is always as strong or stronger than the 
lower bound determined by relaxing the forcing constraints in the single-com-
modity flow-based formulation. (Hint: Compare the set of feasible solutions of 
both problems.) 

(c) What is the relationship between the optimal objective function values ofthe linear 
programming relaxations of the single and multicommodity flow-based formula-
tions? (Hint: Same as that in part (b).) 

16.23. Alternate formulations of the traveling salesman problem (Wong [1980]). In this chapter 
we have considered three different formulations of the traveling salesman problem: 
(1) a single-commodity flow-based formulation in Application 16.2, (2) an assignment-
based formulation discussed in Exercise 16.20, and (3) a multicommodity flow-based 
formulation in Exercise 16.22, where we showed that from the perspective of linear 
programming or Lagrangian relaxations, the multicommodity flow-based formulation 
is stronger than the single commodity flow-based formulation. 
(a) Show that we can replace the subtour breaking constraints in the assignment-

based formulation, or in its linear programming relaxation, by the constraints LiES 
kEN-S Yij 2: 1 for all sets S of nodes satisfying the cardinality condition 1 :s 
I S I :5 n - 1, and in both cases obtain an equivalent model (i.e., one with the 
same feasible solutions). 

(b) Using the max-flow min-cut theorem and part (a), show that the linear program-
ming relaxation of the assignment-based formulation of the traveling salesman 
problem and the linear programming relaxation of the multicommodity flow-based 
formulation are equivalent in the sense that Y is feasible in the linear programming 
relaxation of the assignment-based formulations if and only if for some flow vector 
x, (x, y) is feasible in the multicommodity flow-based formulation. (Note that the 
number of subtour breaking constraints in the assignment-based formulation is 
exponential in n. The number of constraints in the multicommodity flow-based 
formulation is polynomial in n, so this formulation is a so-called compact for-
mulation.) 

16.24. Consider the undirected traveling salesman problem shown in Figure 16.11. 
(a) What is the optimal tour length for this problem? 
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Figure 16.11 Traveling salesman problem: (a) network data; (b) solution to the linear pro-
gramming relaxation. 

(b) Show that the arc weights shown in Figure 16.II(b) solve the linear programming 
relaxation of the formulation developed in Exercise 16.21. Interpret this solution 
as the convex hull of I-tree solutions to the Lagrangian subproblem that we obtain 
by relaxing the degree two constraints in this formulation. That is, show how to 
represent this solution as a convex combination of I-tree solutions. 

(c) Show the network corresponding to the equivalent directed traveling salesman 
problem and specify the optimal solution to the linear programming relaxation of 
the assignment-based formulation and both the single and multicommodity flow-
based formulations. 

(d) Interpret the solution to each linear programming relaxation as the convex hull of 
solutions to Lagrangian subproblems. 

16.25. K-traveling salesman problem. Suppose that we wish to find a set of K 
directed cycles in a directed graph satisfying the property that node I is contained in 
exactly K cycles and every other node is contained in exactly one cycle. In this model 
each arc has an associated cost cij and we wish to find a feasible solution with the 
smallest possible sum of arc costs. We refer to this problem as the K -traveling salesman 
problem since it corresponds to a situation in which K salesmen, all domiciled at the 
same node 1, need to visit all the other nodes of a graph. 
(a) Formulate this problem as an optimization model and show how to apply La-

grangian relaxation to the formulation. (Hint: Modify the single-commodity flow-
based formulation given in Application 16.2 or the assignment-based formulation 
given in Exercise 16.20.) 

(b) By forming K copies of node I and assigning a large cost with all of the arcs joining 
the copies of node 1, show how to formulate the problem as an equivalent (single) 
traveling salesman problem. 

16.U. Consider the K-traveling salesman problem described in Exercise 16.25. Show how 
to formulate this problem as a special case of the vehicle routing problem described 
in Application 16.3. The resulting formulation will be considerably simpler than the 
general vehicle routing problem. (Hint: First show that we can eliminate the con-
straints (l6.4g). Next show how to use the constraints (16.4b) to eliminate the variables 
xt·) 

16.27. Vehicle routing with nonhomogeneous Deets and with time restrictions. This exercise 
studies a generalization of the vehicle routing problem discussed in Application 16.3. 
Show how to formulate a vehicle routing problem with each of the following problem 
ingredients: (1) each vehicle k in a fleet of K vehicles can have different capacity Uk, 
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or (2) each vehicle must make its deliveries within T hours, given that it takes tij hours 
to traverse any arc (i, j). 

16.28. Suppose that we add the redundant constraint Yij = n +" K'to the formulation 
(16.4) of the vehicle routing problem. Consider the additional set of constraints 
kES Ylj + Yij :s I S I for all subsets S of {2, 3, ... , n}. 
(a) Are these constraints valid? 
(b) Are these constraints implied by the other constraints in the integer programming 

formulation ofthe problem? Are they implied by the other constraints in the linear 
programming relaxation of the problem? 

(c) Suppose that we add the additional constraints to the formulation of the vehicle 
routing problem. Show that by relaxing the capacity constraints (16.4g) and the 
assignment constraints (16.2c) and (16.2d) for nodes 2, 3, ... , n, the resulting 
Lagrangian subproblem decomposes into two subproblems: (i) a degree-con-
strained minimum spanning tree problem with degree K imposed on node 1, and 
(ii) a problem of choosing the K cheapest (with respect to the Lagrangian sub-
problem coefficients) arcs of the form Yjl. (Hint: First eliminate the variables xt and then note that the Lagrangian subproblem decomposes into two subprob-
lems, one containing the variables Yjl and one containing all the other variables.) 

16.29. Solve the degree-constrained minimum spanning tree problem shown in Figure 16.12 
assuming that the degree of node 1 must be 8. Solve it if the degree of node 1 must 
be 5. 

e------ Length=O.8 

Length = 1 

Length = 2.5 

Figure 16.12 Constrained minimum spanning tree problem. 

16.30. Suppose that X is a finite set and that when we solve the Lagrangian multiplier problem 
corresponding to the optimization problem min{cx : sIlx = b, x E X} for any value of 
c, we find that the problem has no relaxation gap; that is, if x* solves the given 
optimization problem and f.!. * is an optimal solution to the Lagrangian multiplier prob-
lem, then cx* = L(f.!. *). Show that the polyhedron {x E '3£(X) : sIlx = b} has integer 
extreme points. (Hint: Use the equivalence between convexification and Lagrangian 
relaxation (Theorem 16.10) and the fact that every extreme point to a polyhedron CfP 
is the unique optimal solution to the linear program min{cx : x E CfP} for some choice 
of the objective coefficients c.) 

16.31. Let X denote the set of incidence vectors of spanning trees of a given network. 
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(a) Using Exercise 16.30 and the results in Section 16.4, show that for any value of 
k, the polyhedron {x : x E and Lj#l Xij = k} has integer extreme points. 
Note that if we view the set of solutions to x E and Lj#l Xlj = k as we 
vary k as "parallel slices" through the polyhedron x E this result says that 
extreme points of every slice are integer valued. 

(b) For any subset S of nodes, let A(S) = {(i, j) E A : i E S andj E S}. Using the 
result of part (a) and the development in Section 13.8, show that for any value of 
k, the following polyhedron has integer extreme points: 

L xlj = k, 
j#l 

L Xij = n - 1, 
(i,j)EA 

L xij I S I - 1 
(i,j)EA(S) 

Xij O. 

for any set S of nodes, 

(Hint: In Section 13.8 we showed that without the cardinality constraint L#l xlj = k, the extreme points in the polyhedron defined by the remaining con-
straints are incident vectors of spanning tree solutions (and so are integer valued).) 

16.32. Suppose that we wish to find a minimum spanning tree of an undirected graph G 
satisfying the additional conditions that the degree of node 1 is k and the degree of 
node n is I. Suggest a Lagrangian relaxation bounding procedure for this problem. 
(Hint: Consider relaxing just one of the two degree constraints.) 

16.33. Capacitated minimum spanning tree problem (Gavish [1985]). In some applications of 
the minimum spanning tree problem, we want to construct a capacitated tree T rooted 
at a specially designated node, say node 1. In this problem we wish to identify a 
minimum cost spanning tree subject to the additional condition that no subtree of T 
formed by eliminating all the arcs incident to node 1 contains more than a prescribed 
number u of nodes. This model arises, for example, in computer networking when 
node 1 is a central processor and for reasons of reliability we wish to limit the number 
of nodes (terminals) attached to this node through any of its ports (incident arcs). Let 
Yij be a zero-one variable, indicating whether or not we include arc (i,j) in the optimal 
capacitated tree. 
(a) Explain how the capacitated minimum spanning tree problem differs from the 

degree-constrained minimum spanning tree problem. 
(b) By introducing additional constraints in the integer programming formulation 

(13.2) of the minimum spanning tree problem, obtain an integer programming for-
mulation of the capacitated minimum spanning tree problem. 

(c) Suggest a Lagrangian-based method for obtaining a lower bound on the optimal 
solution by solving a sequence of minimum spanning tree problems. 

16.34. Identical customer vehicle routing problem. In the identical customer vehicle routing 
problem, each customer has the same demand. Formulate this problem as a capacitated 
minimum spanning tree problem with additional constraints. Show how to obtain 
bounds on the objective values by applying Lagrangian relaxation to this problem 
using the capacitated minimum spanning tree problem as a subproblem. 

16.35. Note that every solution to a vehicle routing problem is a degree constrained minimum 
spanning tree (with degree K for node 1) together with K additional arcs incident to 
node 1 as well as another set of constraints modeling vehicle capacities. Use this 
observation to give a formulation of the vehicle routing problem and an associated 
Lagrangian relaxation that contains the degree-constrained minimum spanning tree 
problem as a subproblem. 

16.36. Lagrangian decomposition (Guignard and Kim [1987a,b]). Consider the optimization 
problem PI defined as min{cx : sIlx = b, qnx = d, x 0 and integer}. Suppose that 
by using a variable splitting technique described in Application 16.5, we restate this 
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problem in the following equivalent form P2: minHcx + icy : dlx = b, qny = d, x -
Y = 0, x, Y 2:: 0 and integer}. We might form three different Lagrangian relaxations 
for this problem, one by relaxing the constraint dlx = b "in'-J>2, one by relaxing the 
constraint qnx = d in P2, and one by relaxing the constraint x - y in P2. Let L I , L 2, 
and L 3 denote the optimal values of the Lagrangian multiplier problems for each of 
these relaxations. The approach via problem L3 is known as a Lagrangian decom-
position since it permits us to decompose the problem into two separate subproblems, 
one corresponding to each set of equality constraints. Using Theorems 16.8 and Theo-
rem 16.9, show that L3 2:: LI and L3 2:: L2. (Hint: Let HI and HZ, respectively, denote 
the convex hulls of the sets {qnx = d, x 2:: 0 and integer} and {dlx = b, x 2:: 0 and 
integer}. Consider the sets HI n {x : dlx = b}, HZ n {x : qnx = d}, and HI n fl2, 
and consider the minimization of the objective function cx over each of these sets. 
Which of these problems has the smallest objective function value? What is the re-
lationship between these optimal objective function values and the values L I , L 2 , and 
L3?) 

16.37. Example of Lagrangian decomposition. Suppose that we apply the Lagrangian decom-
position procedure to the following integer programming example: 
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subject to 

9xI + lOx2 :s 63, 

4xI + 9x2 :s 36, 

Minimize -2x1 - 3X2 

xI. X2 2:: 0 and integer. 
In this case, the reformulated problem is: 

subject to 

9xI + lOx2 :s 63, 

4YI + 9y2 :s 36, 

XI - YI = 0, 

X2 - Y2 = 0, 

Minimize - XI - - YI -

XI. Xz, YI, Y2 2:: 0 and integer. 
Give a geometrical interpretation of the Lagrangian relaxation obtained by relaxing 
each of the following constraints: (1) 4xI + 9X2 :s 36; (2) 4YI + 9Y2 :s 36; and (3) 
XI - YI = 0 and X2 - Y2 = O. From these geometrical considerations, interpret the 
fact that in the notation of Exercise 16.36, L 3, 2:: L I and that L3 2:: L 2. 
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