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1. Introduction

The permutation flow shop is one of the most important and most exten-
sively studied scheduling problems. The classical result by Johnson [1] shows
that the problem with two machines is polynomially solvable. However, the
three-machine case becomes strongly NP-hard [2]. The parameters in the
problem are job processing times, which in the classical deterministic case
are assumed to be precisely known.

In the existing literature several methods of dealing with imprecise pa-
rameters have been proposed. One of the most extensively studied is a robust
approach, where a scenario set containing all possible realizations of the pa-
rameters, called scenarios, is specified. No probability distribution in the
scenario set is given. In order to choose a solution several robust criteria
can be applied (see [3] for a survey). The simplest one is the min-max cri-
terion, under which we choose a solution minimizing the largest cost over all
scenarios. A less conservative criterion is the min-max regret, under which
we choose a solution minimizing the largest deviation from optimum over all
scenarios. Both criteria have a long tradition in decision making under un-
certainty (see, e.g., [4]). In the last two decades they were applied to discrete
optimization problems. An extensive description of the robust approach and
some applications of this framework to several discrete optimization problems
can be found in [5].

The scenario set can be specified in several ways. In the discrete scenario
case, which is discussed in this paper, we simply list all the possible scenar-
ios. We then distinguish the bounded case, where the number of scenarios is
bounded by a constant and the unbounded case, where the number of scenar-
ios is a part of the input. In the interval case, for each parameter a closed
interval containing all its possible values is given. Then the scenario set is
the Cartesian product of all these uncertainty intervals. Note that in this
case the scenario set contains infinite number of scenarios. It turns out that
both uncertainty representations may lead to problems having quite different
computational properties (see [6, 7, 8, 9, 10] and a survey [11]).

In this paper we consider the two machine permutation flow shop problem
with uncertain job processing times modeled by a discrete scenario set. This
problem was investigated in [5] and [12], where it was shown that its min-max
regret version with only two scenarios is weakly NP-hard. Then a branch
and bound algorithm and simple heuristics for computing a solution were
proposed. No additional results on this problem have been known up to
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now. The min-max regret permutation flow shop problem with interval job
processing times was discussed in [5, 12, 13]. In [13] an O(m)-algorithm
for the min-max regret permutation flow shop problem with 2 jobs and m
machines was proposed. In [5, 12], a branch and bound method and some
heuristics for the two-machine case were given. Let us point out that the
computational complexity of the problem with interval processing times is
still an unsolved open problem. Other examples of the min-max (regret)
versions of the classical scheduling problems, with both interval and discrete
scenario uncertainty representation, can be found in [14, 15, 16, 17, 18, 19,
20, 21].

Our results. In this paper we first discuss the case in which the scenario set
contains only two scenarios. We show that even such a restricted min-max
(regret) problem is strongly NP-hard. This result excludes the existence of a
fully polynomial-time approximation scheme (FPTAS) for the bounded case,
which is in contrast to the other min-max (regret) combinatorial optimiza-
tion problems such as the shortest path or the minimum spanning tree, whose
min-max (regret) versions for bounded scenario set admit FPTAS’s [22]. Fur-
thermore, we prove that the min-max regret version of the problem is not at
all approximable while the min-max version admits a polynomial-time ap-
proximation scheme (PTAS) when the number of scenarios is constant. We
then consider the min-max version of the problem with unbounded scenario
set. We show that in this case the problem is approximable within 2, but
not approximable within (4/3−ǫ) for any ǫ > 0 unless P=NP. Hence, it does
not admit a PTAS.

2. The problem formulation

We are given a set of jobs J = {1, . . . , n}, which must be processed on
each of the two machines M1 and M2. Each job i ∈ J is processed first on
machine M1 for time pi1 and then on machine M2 for time pi2. Each job
completes its processing on machine M1 before it starts processing on M2.
Moreover, each machine can execute at most one job at a time. A schedule
is a permutation π = (π(1), . . . , π(n)) of jobs and it represents an order in
which the jobs are processed on both machines. We use Π to denote the
set of all the schedules. We denote by σij(π) and Cij(π) the starting time
and the completion time of job i on machine Mj in schedule π, respectively.
The goal is to find a schedule π ∈ Π having the shortest makespan, i.e.
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Cmax(π) = maxi∈J Ci2(π). This problem is denoted as F2||Cmax in Graham’s
notation (see, e.g., [23]) and is polynomially solvable by well known Johnson’s
algorithm [1].

In this paper we consider the case in which the processing times of jobs
are uncertain. We model the uncertainty by specifying a scenario set Γ =
{S1, . . . , SK}, containing all possible realizations of the processing times. A
vector S = (pS11, . . . , p

S
n1, p

S
12, . . . , p

S
n2) ∈ Γ is called a scenario and pSij is the

processing time of job i on machine Mj under scenario S. Now σS
ij(π) and

CS
ij(π) are the starting time and the completion time of job i on machine Mj

in schedule π under a given scenario S ∈ Γ and Cmax(π, S) = maxi∈J CS
i2(π)

is the makespan of π under S. Let C∗
max(S) = minπ∈ΠCmax(π, S), so C∗

max(S)
is the makespan of an optimal schedule under scenario S.

In order to choose a solution, two optimization criteria, called the min-
max and the min-max regret, can be adopted. In the Min-Max F2||Cmax

problem, we seek a schedule minimizing the largest makespan over all sce-
narios. Thus, we would like to solve:

min
π∈Π

max
S∈Γ

Cmax(π, S).

Let us define Z(π) = maxS∈Γ{Cmax(π, S)−C∗
max(S)}. The value of Z(π)

is called the maximal regret of a schedule π, i.e. the largest deviation from the
optimum over all scenarios. In the Min-Max Regret F2||Cmax problem,
we wish to find a schedule that minimizes the maximal regret, that is

min
π∈Π

Z(π).

The optimal solutions to the min-max and min-max regret versions of F2||Cmax

are called an optimal min-max schedule and an optimal min-max regret sched-
ule, respectively.

The aim of this paper is to investigate the complexity and approximability
of both robust problems. Up to now, we only know that the min-max regret
version of the problem with two scenarios is NP-hard [12]. The reduction
shown in [12] proceeds from the partition problem, which is not strongly
NP-complete. So, it is possible that the min-max (regret) problem with 2
scenarios (or any fixed number of scenarios) is solvable in pseudopolynomial
time and even admits an FPTAS. In Section 3 we will show that this is not
possible unless P=NP.
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Γ Machine Times
Jobs i = 1, . . . , 4q + 1

1 . . . 3q 3q + 1 3q + 2 . . . 4q 4q + 1

S1
M1 p

S1

i1 0 . . . 0 0 2B . . . 2B 2B

M2 p
S1

i2 a1 . . . a3q B B . . . B B

S2
M1 p

S2

i1 a1 . . . a3q B B . . . B B

M2 p
S2

i2 0 . . . 0 2B 2B . . . 2B 0

Figure 1: An instance of Min-Max F2||Cmax.

3. Hardness results

In this section, we study the complexity and hardness of approximation
of Min-Max (Regret) F2||Cmax. We first consider the restricted bounded
case in which the number of scenarios equals 2. We then investigate the
unbounded case.

3.1. The bounded case

We prove the following result:

Theorem 1. Min-Max F2||Cmax is strongly NP-hard if Γ contains only two
scenarios.

Proof. We show a reduction from the following 3-Partition problem,
which is known to be strongly NP-complete [24]:

3-Partition: Input: Positive integers q, B and a set of integers A =
{a1, . . . , a3q} such that

∑3q
k=1 ak = qB and B/4 < ak < B/2 for

k = 1, . . . , 3q.

Question: Is there a partition of A into sets A1, . . . , Aq, such that
∑

a∈Ak
a = B for each k = 1, . . . , q?

Given an instance of 3-Partition, we construct an instance of Min-Max
F2||Cmax with 4q+1 jobs and two scenarios Γ = {S1, S2}. The job processing
times under both scenarios are shown in Figure 1.

We prove that the answer to 3-partition is “yes” if and only if there
exists a schedule π such that maxS∈ΓCmax(π, S) ≤ (2q + 1)B.
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pS1
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pS1
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pS1

3q+1 2
pS1
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pS1
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pS1
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pS1

4q 2
pS1
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pS2

3q+1 1
pS2

3q+2 1
pS2

3q+3 1

pS2

3q+1 2
pS2

3q+2 2

pS2

4q−1 1
pS2

4q 1
pS2

4q+1 1

pS2

4q−1 2
pS2

4q 2

Figure 2: A partial schedule π with makespans of (2q + 1)B under scenarios S1 and S2.

Suppose that there is a partition A1, . . . , Aq of A such that
∑

a∈Ak
a = B,

for each k = 1, . . . q. In Figure 2, a partial schedule π′ = (3q + 1, . . . , 4q + 1)
consisting of q + 1 jobs is shown. The makespan of π′ under both scenar-
ios S1, S2 is equal to (2q+1)B. Observe that there are exactly q time intervals
of length B on M2 under S1 and on M1 under S2. We form schedule π by
inserting (in any order) 3 jobs corresponding to each set Ak between two
consecutive jobs 3q + k and 3q + k + 1, k = 1, . . . , q. Since the elements
of each set Ak sum up to B, the processing times of the jobs correspond-
ing to the sets Ak fill q time intervals on M2 under S1 and M1 under S2.
Thus, the resulting schedule π has the makespan equal to (2q + 1)B under
scenarios S1, S2 and maxS∈Γ C(π, S) ≤ (2q + 1)B.

Assume that there exists a schedule π such that maxS∈Γ Cmax(π, S) ≤
(2q+1)B. It is easily seen that the makespans of π under the two scenarios are
equal to (2q+1)B. Furthermore, the jobs on M2 under S1 must be processed
without any idle time, which follows from equality

∑

i∈J pS1

i2 = (2q + 1)B.
Notice that we have exactly qB free time on machine M2 under S1 and on
machine M1 under S2 for scheduling the jobs 1, . . . , 3q. From the definition
of scenarios S1 and S2 it follows that a free time interval on M2 under S1

must correspond to exactly the same free interval on M1 under S2 and vice
versa (in particular, job 3q+1 must be processed first and job 4q+1 must be
processed last). Otherwise we could not fill the free time intervals without
increasing the makespan (2q + 1)B under S1 or S2. We thus conclude that
the partial schedule π′ must have the form presented in Figure 2. Of course,
the order of jobs 3q + 2, . . . , 4q can be arbitrary because they have the same
processing times under both scenarios. Hence, the jobs placed in q free time
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intervals of length B define a partition of A into subsets A1, . . . , Aq whose
elements sum up to B. �

From Theorem 1, it follows that the Min-Max F2||Cmax problem does
not admit an FPTAS even for two scenarios, unless P=NP. The following
theorem strengthens the previous result obtained in [12], where Min-Max
Regret F2||Cmax has been proved to be weakly NP-hard:

Theorem 2. Min-Max Regret F2||Cmax is strongly NP-hard and not at
all approximable, even for two scenarios, unless P=NP.

Proof. The reduction from 3-Partition is the same as in the proof of
Theorem 1. It is easy to verify that each schedule has a makespan with
the length at least (2q + 1)B under both scenarios. Furthermore, schedule
π

′

= (1, . . . , 3q, 3q + 1, . . . , 4q + 1) is such that Cmax(π
′

, S1) = C∗
max(S1) =

(2q + 1)B and schedule π
′′

= (3q + 1, . . . , 4q + 1, 1, . . . , 3q) is such that
Cmax(π

′′

, S2) = C∗
max(S2) = (2q + 1)B and thus they are optimal under S1

and S2, respectively.
Assume that the answer for 3-partition is “yes”. Then there exists a

schedule π such that maxS∈ΓCmax(π, S) = (2q + 1)B (see the proof of Theo-
rem 1). According to the above remark, we have Z(π) = max{Cmax(π, S1)−
C∗

max(S1), Cmax(π, S2) − C∗
max(S2)} = 0. If the answer for 3-Partition is

“no”, then every schedule π is such that maxS∈ΓCmax(π, S) > (2q+1)B and,
consequently, its maximal regret Z(π) is positive. So, the problem of assert-
ing whether there exists a schedule π such that Z(π) = maxS∈Γ{Cmax(π, S)−
C∗

max(S)} ≤ 0 is strongly NP-complete and thus Min-Max Regret F2||Cmax

is strongly NP-hard. Also, Min-Max Regret F2||Cmax is not at all ap-
proximable, unless P=NP. Otherwise, any polynomial time approximation
algorithm applied to the constructed instance would solve in polynomial time
the 3-Partition problem. �

3.2. The unbounded case

We now consider the unbounded version of Min-Max F2||Cmax. We
prove the following result:

Theorem 3. For the unbounded case Min-Max F2||Cmax is not (4/3 − ǫ)-
approximable for any ǫ > 0, unless P=NP.
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Clause scenarios Contradictory literal scenarios
C1 C2 C3 l11 ⌢ l12 l21 ⌢ l22 l31 ⌢ l13 l32 ⌢ l13 l12 ⌢ l33

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
J1
1 2 0 0 2 0 0 0 0 0 0 0 0 3 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

J2
1 2 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0

J3
1 2 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 3 0 0 0 0 0 0 0 0

J1
2 0 0 0 0 2 0 0 2 0 0 0 0 3 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 3

J2
2 0 0 0 0 2 0 0 2 0 0 0 0 0 0 0 0 3 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0

J3
2 0 0 0 0 2 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 3 0 0 0 0

J1
3 0 0 0 0 0 0 0 0 2 0 0 2 0 0 0 0 0 0 0 0 3 0 0 3 3 0 0 3 0 0 0 0

J2
3 0 0 0 0 0 0 0 0 2 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

J3
3 0 0 0 0 0 0 0 0 2 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 3

J4 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0

Figure 3: A scenario set for three clauses C1 = (x1 ∨ x2 ∨ x3), C2 = (x1 ∨ x2 ∨ x3) and
C3 = (x3 ∨ x3 ∨ x1).

Proof. We show a gap-introducing reduction from a special case of Nae
3-SAT. The Nae 3-SAT problem is known to be strongly NP-complete [24]
and is defined as follows:

Nae 3-SAT: Input: A set U = {x1, . . . , xn} of Boolean variables and a
collection C = {C1, . . . , Cm} of clauses, where each clause in C has
exactly three distinct literals.

Question: Is there a truth assignment for U such that each clause in C

has at least one true literal and at least one false literal?

We can assume that for each variable xk ∈ U both xk and xk appear in
C . If not, then we add two new clauses (xk∨xk∨x

′
k) and (xk∨xk∨x

′
k), where

x′
k is a new Boolean variable. Clearly, this modification does not change the

complexity of the problem.
Given an instance of Nae 3-SAT, we construct the corresponding in-

stance of Min-Max F2||Cmax as follows. We associate with each clause
Ck = (l1k ∨ l2k ∨ l3k) three clause jobs J1

k , J2
k , J3

k corresponding to three literals
in Ck, k = 1, . . .m. We also add an additional job Jm+1. So, the number of
jobs is 3m + 1. Next, we form scenario set Γ.

We first create the clause scenarios. Namely, we associate with each
clause Ck, k = 1, . . . , m, two scenarios. Under the first scenario the jobs
J1
k , J2

k , J3
k have processing times equal to 2 on M1 and all the remaining
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processing times of clause jobs are set to 0. The job Jm+1 has zero processing
time on M1 and its processing time on M2 equals 2. The second scenario is
symmetric, that is the jobs J1

k , J2
k , J3

k have processing times equal to 2 on M2

and all the remaining processing times of the clause jobs are set to 0. The job
Jm+1 has processing time equal to 2 on M1 and zero processing time on M2

(see Figure 3). In the next step we add the contradictory literal scenarios as
follows. For each pair of jobs Ju

v and Jr
q which correspond to contradictory

literals luv and lrq from different clauses, i.e. luv = l
r

q, v 6= q, we create two
scenarios. Under the first scenario the processing times of Ju

v and Jr
q on M1

are set to 3 and all the remaining processing times of the clause jobs are set
to 0. The job Jm+1 has zero processing time on M1 and its processing time
equals 2 on M2. The second scenario is symmetric, that is the processing
times of Ju

v and Jr
q on M2 are set to 3 and all the remaining processing times

of the clause jobs are set to 0. The job Jm+1 has processing time equal to 2
on M1 and zero processing time on M2 (see Figure 3). Note that in the
constructed instance each schedule has makespan of length at least 6 under
each scenario, so maxS∈ΓCmax(π, S) ≥ 6. The cardinality of Γ is bounded by
a polynomial in the size of Nae 3-SAT and thus the instance of Min-Max
F2||Cmax can be constructed in a time bounded by a polynomial in the size
of Nae 3-SAT.

If the answer to Nae 3-SAT is “yes”, then basing on a satisfying truth
assignment, one can construct a schedule π, in which all the jobs correspond-
ing to true literals are executed before Jm+1 and all the jobs corresponding
to false literals are executed after Jm+1 in π. Notice that the three jobs cor-
responding to the literals of the same clause are placed in π as follows: either
one of these jobs precedes Jm+1 and the remaining two jobs follow it or two
of them precede Jm+1 and the remaining one job follows it. This is due to the
fact that the assignment is true and each clause in C under this assignment
has at least one true literal and at least one false literal. An easy verification
shows that maxS∈Γ Cmax(π, S) = 6 (see Figure 4). In the example shown
in Figure 3, a satisfying truth assignment is x1 = 1, x2 = 1, x3 = 1 and
a corresponding optimal schedule is π = (J1

1 , J
2
2 , J

1
3 , J

3
3 , J4, J

2
1 , J

3
1 , J

1
2 , J

3
2 , J

2
3 )

with makespans of length 6 under each scenario.
On the other hand, if the answer is “no”, then for all schedules π at

least two jobs corresponding to contradictory literals either precede the dis-
tinguished job Jm+1 or follow it, or for at least one clause all three jobs
corresponding to this clause either precede Jm+1 or follow it (because all the
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Ju
v

Ju
v Jr

q

Jr
q

Jm+1 Jm+1

Jm+1Jm+1

π

π

π

π

S1 S1

S2 S2

M1

M1

M1

M1

M2

M2

M2

M2

Cmax(π, S1) = 6 Cmax(π, S1) = 6

Cmax(π, S2) = 6Cmax(π, S2) = 6

2

2

2

2

2

22

2

2233

3 3

J1
k

J1
k

J2
k

J2
k

J3
k

J3
k

(a) (b)

Figure 4: (a) The makespans of schedule π = (. . . , Jv
u , . . . , Jm+1, . . . , J

r
q , . . .) un-

der two contradictory literal scenarios S1, S2. (b) The makespans of schedule π =
(. . . , J1

k , . . . , J
2
k , . . . , Jm+1, . . . , J

3
k , . . .) under two clause scenarios S1, S2. Schedule π =

(. . . , J1
k , . . . , Jm+1, . . . , J

2
k , . . . , J

3
k , . . .) has the same makespans.

literals in this clause have the same value). So, maxS∈Γ F (π, S) ≥ 8 (see
Figure 5).

This yields a gap of 4/3 and Min-Max F2||Cmax for the unbounded case
is not approximable within (4/3 − ǫ) for any ǫ > 0 unless P=NP. �

Theorem 3 implies that Min-Max F2||Cmax for the unbounded case does
not admit a PTAS, unless P=NP.

4. Approximating Min-Max F2||Cmax

In this section, we investigate the approximation of Min-Max F2||Cmax.
We start by introducing some additional notation:

– Crob
max = minπ∈Π maxS∈Γ Cmax(π, S) is the value of an optimal min-max

schedule,

– LS
j =

∑

i∈J pSij is the total load of machine Mj , j = 1, 2, under sce-
nario S ∈ Γ,

– LS
max = max{LS

1 , L
S
2 } stands for the maximum machine load in S,

– Lmax = maxS∈Γ L
S
max denotes the maximum machine load over the set

of scenarios,
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Ju
v

Ju
v

Jr
q

Jr
q Jm+1

Jm+1

Jm+1

Jm+1

π

π

π

π

S1 S1

S2 S2

M1

M1

M1

M1

M2

M2

M2

M2

Cmax(π, S1) = 8 Cmax(π, S1) = 8

Cmax(π, S2) = 6 Cmax(π, S2) = 6

2

2

2

2

2

222

22

3

33

3

J1
k

J1
k

J2
k

J2
k

J3
k

J3
k

(a) (b)

Figure 5: (a) The makespans of schedule π = (. . . , Jv
u , . . . , J

r
q , . . . , Jm+1, . . .) under two

contradictory literal scenarios S1, S2. Schedule π = (. . . , Jm+1, . . . , J
v
u , . . . , J

r
q , . . .) has

makespans Cmax(π, S1) = 6 and Cmax(π, S2) = 8. (b) The makespans of schedule π =
(. . . , J1

k , . . . , J
2
k , . . . , J

3
k , . . . , Jm+1, . . .) under two clause scenarios S1, S2. Schedule π =

(. . . , Jm+1, . . . , J
1
k , . . . , J

2
k , . . . , J

3
k , . . .) has makespans Cmax(π, S1) = 6 and Cmax(π, S2) =

8.

– lSi = pSi1 + pSi2 is the length of job i ∈ J in scenario S,

– lmax
i = maxS∈Γ l

S
i denotes the maximum job length i ∈ J over the set

of scenarios,

– pmax = maxS∈Γ,i∈J ,j∈{1,2} p
S
ij is the maximal job processing time in an

input instance.

We prove the following simple observation for the unbounded version of
the problem:

Observation 1. The unbounded version of Min-Max F2||Cmax is approx-
imable within 2.

Proof. It is clear that Crob
max ≥ Lmax. On the other hand, for any sched-

ule π and scenario S, Cmax(π, S) ≤ 2LS
max. Therefore, maxS∈ΓCmax(π, S) ≤

2Lmax ≤ 2Crob
max. Hence a trivial algorithm that outputs any schedule yields

the approximation bound of 2 for Min-Max F2||Cmax. �

We now construct a polynomial time approximation scheme (PTAS) for
the bounded version of the problem, i.e. when the number of scenarios K is
a fixed constant. Our PTAS will be based on the idea of the PTAS for the
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deterministic job shop problem with a fixed number of machines proposed
in [25] (we also use some ideas from [26] and [27]). However, the details of
our algorithm will be different. Let us fix ǫ ∈ (0, 1) and let α > 0 be a fixed
number fulfilling the following inequality

ǫ⌈2/ǫ⌉ ≤ α ≤ ǫ. (1)

The precise value of α will be specified later (in Step 2). A job i ∈ J is big
if lmax

i ≥ αLmax, small if αǫLmax < lmax
i < αLmax and tiny if lmax

i ≤ αǫLmax.
Accordingly, we partition the set of jobs J into the three disjoint sets: big
jobs, small jobs and tiny jobs, denoted by B, S and T , respectively. We will
build our PTAS in three steps.

Step 1. Let UB = 2Lmax be the upper bound on Crob
max. Define δ = αǫLmax

and let us assign the time interval [0, UB + 2δ|B|] to machines M1 and M2

under each scenario S ∈ Γ. We will refer to the interval on Mj under S as
〈Mj, S〉. Each interval 〈Mj , S〉 is partitioned into UB/δ + 2|B| intervals of
the same length equal to δ and these intervals will be called the intervals of
the first type. Consider a permutation π of the big jobs. We place each big
job i ∈ B in each 〈Mj , S〉 so that i starts at the beginning of some interval of
the first type and the order of the big jobs in all 〈Mj , S〉 is the same as in π.
Following the notation of [27], the resulting partial schedule will be called an
outline and we will denote it by O (our outline is, however, different than that
in [27]). An outline is feasible if under any scenario: the jobs do not overlap
on any machine, the precedence constraints between the jobs on machines
M1 and M2 are not violated, and no job is completed after UB + 2δ|B|. A
sample feasible outline is shown in Figure 6. This outline corresponds to
the permutation of big jobs π = (1, 2, . . . , |B|). Notice that many feasible
outlines may correspond to the permutation π, but the number of all such
outlines is finite and we can easily enumerate all of them. Now the key
observation is that we can generate all the feasible outlines corresponding to
all the permutations of big jobs in constant time, provided that the number
of scenarios K is constant. This follows from the fact that the number of
big jobs, |B|, is bounded by K · UB/(αLmax) = 2K/α and the number of
intervals of the first type is bounded by 2/αǫ+4K/α. Therefore, the number
of all possible allocations of the big jobs to the beginning of intervals of the
first type depends only on K, ǫ and α which are constant.
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Figure 6: A sample outline for two scenarios corresponding to the sequence of big jobs
(1, 2, . . . , |B|). One sample interval of the second type indexed by 2 is also shown.

Step 2. Consider now the small jobs. The parameter α can be chosen so that
the following inequality holds:

∑

i∈S

lmax
i ≤ ǫKLmax. (2)

The reasoning is similar to that in [28, 25]. Consider a sequence of real
numbers (α1, α2, . . . , α⌈2/ǫ⌉), where αk = ǫk. Each αk defines a set of small
jobs Sk = {i ∈ J | αkǫLmax < lmax

i < αkLmax}. Clearly Sj∩Sk = ∅ for j 6= k.
If the inequality (2) would be violated for all Sk, k = 1, . . . , ⌈2/ǫ⌉, then

∑

i∈J

∑

S∈Γ

(pSi1 + pSi2) ≥
∑

i∈J

max
S

(pSi1 + pSi2) =
∑

i∈J

lmax
i ≥

⌈2/ǫ⌉
∑

k=1

∑

i∈Sk

lmax
i > 2KLmax,

which is a contradiction. Hence, inequality (2) must hold for at least one
Sk and we can fix α = αk. Inequality (2) shows that the total length of the
small jobs is upper bounded by ǫKLmax and the total contribution of them
to the makespan is at most ǫKLmax. Thus, we can simply append the small
jobs at the end of the schedule constructed below.

Step 3. In the third and most involved step we add to each feasible outline
O all the tiny jobs from the set T . Let us number the big jobs with respect
to their positions in O, i.e. the first big job is indexed by 1 and the last
one by |B|. We denote by σS

kj(O) and CS
kj(O) the starting and completion

time, respectively, of the big job k on machine Mj under scenario S. For
ease of notation, we will also define CS

0j(O) = 0 and σS
|B|+1 j(O) = UB+2|B|δ

for each S and j = 1, 2. Making use of these starting and completion times
we create in each 〈Mj , S〉 additional intervals [CS

k−1 j(O), σS
kj(O)] indexed by

k = 1, . . . , |B|+1 , called the intervals of the second type. One sample interval
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of the second type, labeled by 2, is shown in Figure 6. The time contained in
an interval of the second type in 〈Mj, S〉 will be used for processing tiny jobs
in this interval on machine Mj under S. In order to determine an assignment
of the tiny jobs from T to the intervals of the second type, corresponding
to the outline O, we use a linear programming formulation. We define the
following decision variables: xik, i ∈ T , k = 1, . . . , |B| + 1 and C, where
xik = f , 0 ≤ f ≤ 1, means that the same fraction f of a tiny job i is processed
in the interval k of the second type on each machine under each scenario and
the value of C is the maximal length of an assignment (a schedule) of the big
and tiny jobs over all scenarios. The linear programming formulation is the
following:

Cmin(O) = minC (3)

|B|+1
∑

k=1

xik =1, i ∈ T , (4)

CS
k−1 j(O) +

∑

i∈T

pSijxik ≤σS
kj(O), k = 1, . . . , |B|, (5)

j = 1, 2, S ∈ Γ,

CS
|B| j(O) +

∑

i∈T

pSijxi |B|+1 ≤C, j = 1, 2, S ∈ Γ, (6)

C ≤UB + 2|B|δ, (7)

C, xik ≥0, i ∈ T , k = 1, . . . , |B| + 1. (8)

Constraints (4) assure that each tiny job i is fully assigned. Constraints (5)
and (6) assure that the total sums of the processing times of tiny jobs assigned
to the intervals of the second type do not exceed the lengths of these intervals.
Constraints (6) together with the objective function minimize the maximal
length, over all scenarios, of the assignment computed. Constraint (7) assures
that this length is not too large, i.e. it does not exceed UB + 2|B|δ. It is not
clear that the linear program (3)-(8) is feasible. We will provide a feasible
solution for (3)-(8) in the following observation.

Observation 2. There is a feasible outline O∗ such that

Cmin(O
∗) ≤ Crob

max + 2|B|δ. (9)

Proof. Let π∗ be an optimal min-max schedule with the value Crob
max. We

transform π∗ into π̃∗ using the method which is illustrated in Figure 7. Con-
sider intervals 〈M1, S〉 and 〈M2, S〉 for some scenario S. In Figure 7, the first
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Figure 7: A sample transformation of the schedule π∗ into π̃∗.

big job 1 is placed properly (i.e. at the beginning of some interval of the first
type) on M1 but not properly on M2. So, we delay the starting times of all
the jobs on M2 by a, so that job 1 starts processing at time δ on M2. The
next big job is 2. It is not placed properly on M1, so we delay the starting
times of 2 and all the jobs succeeding 2 on M1 and M2 by b. Then job 2 is
still not placed properly on M2, so we delay the starting times of 2 and all
the jobs succeeding 2 by c on M2. It is easy to see that delaying the starting
times of these two big jobs increases the makespan under S by at most 4δ.
We proceed in this way for all the subsequent big jobs and, as the result, we
get the schedule π̃∗ in which all the big jobs start processing at the beginning
of some intervals of the first type and the makespan under S increases by at
most 2δ|B|.

We can repeat this independently for each scenario S ∈ Γ and the
makespan of the resulting schedule π̃∗ increases under each scenario by at
most 2δ|B|. Now, if we remove all the small and tiny jobs from π̃∗, then we
obtain a feasible outline O∗ with the corresponding intervals of the second
type. Observe that in π̃∗ each tiny job is fully assigned to some interval
of the second type with respect to O∗. Consider the set of constraints (4)-
(8) built with respect to O∗. Let us fix C = Crob

max + 2δ|B|. Note that
Crob

max ≤ UB = 2Lmax and C ≤ UB + 2δ|B|. Making use of the starting
times of the tiny jobs in π̃∗, we accommodate them in the intervals of the
second type in O∗ and set xik = 1 if and only if job i ∈ T is located in the
k-th interval of the second type, k = 1, . . . , |B| + 1. It is easily seen that
the binary assignment to variables xik satisfies all the constraints (4)-(8). In
consequence, there is at least one feasible solution for C = Crob

max + 2δ|B|,
which implies (9). �

We now make an observation on basic feasible solutions of the linear
program (3)-(8).
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Observation 3. In an optimal solution to the linear program (3)-(8) at most
2K(|B| + 1) + 1 tiny jobs receive fractional assignment.

Proof. The linear program has |T | + 2K(|B| + 1) + 1 constraints and
|T |(|B| + 1) + 1 variables. Thus a basic feasible solution has at most |T | +
2K(|B| + 1) + 1 positive variables. Let T1 and T2 be the sets of tiny jobs
that receive a unique assignment and a fractional assignment in this solution,
respectively. Hence, and from the fact that each job has at least one positive
variable associated to it, which is due to (4), we have:

|T1| + |T2| = |T |,

|T1| + 2|T2| ≤ |T | + 2K(|B| + 1) + 1.

Combining these inequalities yields |T2| ≤ 2K(|B| + 1) + 1. �

Observation 3 implies the tiny jobs T2, receiving fractional assignment, are
such that:

∑

i∈T2

lmax
i ≤ (2K(|B| + 1) + 1)αǫLmax. (10)

We will treat the jobs from T2 similarly to the small jobs and append them
at the end of the schedule constructed.

Now let us focus on the remaining tiny jobs T1 that receive an integral
assignment to the intervals of the second type in an optimal solution to (3)-
(8). Notice that this assignment says nothing about the order of the tiny
jobs within the intervals of the second type. Hence, we must establish a
permutation schedule for the tiny jobs in each interval of the second type. In
order to do this we use Sevastianov’s algorithm [29] for the Compact Vector
Summation problem. We recall the following result on this problem:

Lemma 1 ([29, 30]). Consider a set of vectors vvv1, . . . , vvvn ∈ R
d such that

∑n
k=1 vvvk = 000. Then it is possible to find, in polynomial time (in O(n2d2)

time), a permutation ̺ of 1, . . . , n such that, for all i = 1, . . . , n,

∥

∥

∥

∥

∥

i
∑

k=1

vvv̺(k)

∥

∥

∥

∥

∥

∞

≤ d max
1≤k≤n

‖vvvk‖∞.
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We now prove the following lemma that will be used to construct a per-
mutation schedule of the tiny jobs T1 in each interval of the second type.
Later pmax will be replaced by pTmax, where pTmax is the maximal processing
time among all the processing times of the tiny jobs.

Lemma 2. For any instance of the Min-Max F2||Cmax problem, there is
an O(n2K2)-time algorithm which outputs a permutation schedule ̺ ∈ Π such
that

Cmax(̺, S) ≤ LS
max + (K + 1)pmax for all S ∈ Γ. (11)

Proof. The proof is adapted from [30, Sect. 1.5.2], where the use of Sevas-
tianov’s algorithm to produce an algorithm for F ||Cmax was presented. We
first transform the instance of the problem so that the loads of the two ma-
chines under each scenario S are equal, i.e. LS

max = LS
1 = LS

2 . We do this by
increasing the processing times of jobs of the less loaded machine, stopping
the increase of a processing time as soon as it reaches pmax, until both ma-
chines are equally loaded. It is clear that if there is a permutation schedule
ρ satisfying (11) for the modified instance, then ρ also satisfies (11) for the
original one. The following equality holds for any permutation schedule π:

Cmax(π, S) = IS2 +

n
∑

i=1

pSπ(i)2 = IS2 + LS
2 for all S ∈ Γ, (12)

where IS2 is the total idle time on machine M2 under scenario S in π. The
amount of the idle time on machine M2 under scenario S, before it starts
processing job π(i) can be determined by the following formula:

ISπ(i)2 =











pSπ(1)1 if i = 1,

ISπ(i−1)2 if CS
π(i)2(π) = CS

π(i−1)2(π) + pSπ(i)2,
∑i

k=1 p
S
π(k)1 −

∑i−1
k=1 p

S
π(k)2 if CS

π(i)2(π) = CS
π(i)1(π) + pSπ(i)2.

(13)
We can rewrite the third case of (13) as pSπ(i)2 +

∑i
k=1(p

S
π(k)1 − pSπ(k)2). Now,

if we can find a permutation ̺ such that

i
∑

k=1

(pS̺(k)1 − pS̺(k)2) ≤ Kpmax, i = 1, . . . , n, for all S ∈ Γ (14)
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then we conclude from (13) that IS̺(i)2 ≤ max{IS̺(i−1)2, (K+1)pmax} and, since

IS̺(1)2 ≤ pmax, I
S
2 = IS̺(n)2 ≤ (K + 1)pmax. Because

∑n
i=1 p

S
̺(i)2 = LS

2 = LS
max,

equality (12) implies (11).
It remains to show that a permutation ρ fulfilling (14) can be constructed

in O(n2K2) time. In order to do this we apply Lemma 2. Let us define a set of
K-dimensional vectors vvv1, . . . , vvvn, where vvvk = (pS1

k1 −pS1

k2, p
S2

k1 −pS2

k2, . . . , p
SK

k1 −
pSK

k2 ), k = 1, . . . , n. This set satisfies the assumptions of Lemma 1. Indeed,
∑n

k=1 vvvk = (LS1

1 − LS1

2 , LS2

1 − LS2

2 , . . . , LSK

1 − LSK

2 ) = 000 by equality LS
max =

LS
1 = LS

2 . Furthermore ‖vvvk‖∞ ≤ pmax for all k. Lemma 1 now shows that
the required permutation ̺ can be determined in O(n2K2) time. �

Consider any interval of the second type, say the k-th. There is a subset of
the tiny jobs T1 assigned integrally to k by the linear program. We construct
a permutation schedule for these tiny jobs using the algorithm from Lemma 2.
This algorithm produces a permutation schedule with the length under each
scenario S at most max{σS

k1(O) − CS
k−1 1(O), σS

k2(O) − CS
k−1 2(O)} + (K +

1)pTmax, see (11). Hence, in order to accommodate the tiny jobs according
to the computed permutation schedule to the intervals [CS

k−1 1(O), σS
k1(O)]

and [CS
k−1 2(O), σS

k2(O)], CS
k−1 1(O) ≤ CS

k−1 2(O), σS
k1(O) ≤ σS

k2(O), for all S
without violating its feasibility, it suffices to increase the length of the kth
interval of the second type on machine M2 under each scenario S by at most
(K + 1)pTmax, i.e. we shift the big job k and all the jobs starting after this big
job to the right on machine M2 under each scenario S by at most (K+1)pTmax.
We can apply the algorithm from Lemma 2 to each interval of the second
type and the total increase of the length of the intervals of the second type
is at most (|B| + 1)(K + 1)pTmax.

We are now ready to provide our PTAS which works as follows. First, we
generate all the feasible outlines. According to Observation 2, there must be a
feasible outline O∗ which satisfies inequality (9). The linear program applied
to O∗ gives us the partition of the set of the tiny jobs into T1 and T2. Then,
we apply the algorithm from Lemma 2 to schedule the jobs from T1 in each
interval of the second type. Finally, we create any permutation schedule for
T2∪S and append it to the end of the schedule constructed. As the result we
get a permutation schedule for all the jobs in J with the maximal makespan
over all scenarios C̃rob

max. According to (9) and the construction described this
makespan can be upper bounded as follows:

C̃rob
max ≤ Crob

max + 2δ|B| +
∑

i∈T2

lmax
i +

∑

i∈S

lmax
i + (|B| + 1)(K + 1)pTmax.
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Now using (1), (2), (10) and the conditions: δ = αǫLmax, |B| ≤ 2K/α,
Crob

max ≥ Lmax and pTmax ≤ αǫLmax, we get after easy computations:

C̃rob
max ≤ (1 + O(K2)ǫ)Crob

max.

For the constant values of K and ǫ, our algorithm is polynomial with respect
to the number of jobs n. Thus it is a PTAS for the problem considered.

5. Conclusions

In this paper we have investigated the two-machine flow shop problem
under the discrete scenario uncertainty representation with bounded and
unbounded scenario sets. For the bounded case, we have proved that the
min-max version of the problem is strongly NP-hard even for two scenarios.
This result excludes the existence of an FPTAS for the problem but admits
the existence of a PTAS. In this paper, we have constructed a PTAS for
the bounded min-max version of the problem. For the bounded min-max
regret version we have shown that the situation is much worse, namely, in
this case the problem has turned out to be strongly NP-hard and not at all
approximable even for two scenarios. For the unbounded scenario set we have
proved that the min-max version is approximable within 2 and not (4/3− ǫ)-
approximable for any ǫ > 0. There is still an unresolved gap between the
positive and negative approximation results for the unbounded case. The 2-
approximation algorithm shown in this paper is trivial and further research
should involve the development of efficient approximation algorithms with
better than 2 worst case ratio for the unbounded min-max version of the
problem.
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