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Abstract

In this paper the class of matroidal combinatorial optimization problems with im-
precise weights of elements is considered. The imprecise weights are modeled by
intervals and fuzzy intervals. The concepts of possible and necessary optimality
under imprecision are recalled. Some efficient methods for evaluating the possible
and necessary optimality of elements in the interval-valued problems are proposed.
Some efficient algorithms for computing the exact degrees of possible and necessary
optimality of elements in the fuzzy-valued problems are designed.
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1 Introduction

This paper deals with combinatorial optimization problems, in which a finite
set of elements E = {e1, e2, . . . , en} and a set Φ of subsets of E, called a set of
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feasible solutions, are given. A nonnegative weight we is associated with every
element e ∈ E and we seek a solution X ∈ Φ whose total weight

∑

e∈X we

is maximal or minimal. This formulation permits to model a lot of problems.
Consider for instance the minimum spanning tree problem, in which E is a set
of edges of a given undirected graph G = (V, E) and Φ consists of all subsets of
the edges that form spanning trees of G. We seek a spanning tree whose total
weight is minimal. A wide review of the classical combinatorial optimization
problems can be found for instance in [12,15].

In the deterministic case the weights of all elements are precisely known.
Therefore the elements of E can be divided into two groups: those which
belong to an optimal solution (optimal elements) and those which do not be-
long to an optimal one. In this paper we discuss the case in which the element
weights may be imprecise. One of the simplest forms of the uncertainty rep-
resentations is to assume that the value of a weight may fall within a given
range specified by a closed interval [w−

e , w+
e ]. In this interval-valued case the

elements form three groups: those that are optimal for sure (necessarily op-
timal elements), those that are not optimal for sure and the elements whose
optimality is unknown (possibly optimal elements).

A fuzzy interval is a generalization of a classical one and it allows us to evaluate
the imprecise weights in a more sophisticated way. The membership function
of a fuzzy interval can be viewed as a possibility distribution for the values of a
weight. The interpretation of the possibility distribution as well as some meth-
ods of obtaining it from the possessed knowledge are described in a book [5],
which is entirely devoted to possibility theory. In the fuzzy-valued case the
notions of possible and necessary optimality can be extended and every ele-
ment can be now characterized by two numbers from interval [0,1], called the
degrees of possible and necessary optimality. It turns out that the difficulty of
computing the optimality degrees is in the interval-valued case. If there are
efficient algorithms for deciding whether a given element is possibly (necessar-
ily) optimal in the interval-valued case, then the degrees of optimality can be
efficiently computed as well. A standard tool is the bisection algorithm which
however gives only the approximate values of the optimality degrees.

In this paper, we wish to investigate a special class of combinatorial opti-
mization problems, namely the matroidal problems. For this type of problems
the set of feasible solution Φ is a set of bases of a given matroid. A good in-
troduction to matroids can be found for instance in [14] and some matroidal
problems are addressed in [12,15]. We first investigate the problem with inter-
val weights and we then extend the results to the fuzzy-valued case. It turns
out that the special structure of a matroidal problem allows us to evaluate
the possible and necessary optimality of elements in the interval case and to
compute efficiently the exact values of the degrees of possible and necessary
optimality of a given element in the fuzzy case. It is worth pointing out that
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the problem of evaluating the optimality of elements is not always an easy
one. For instance, asserting whether a given element is possibly optimal in
the longest (shortest) path problem with interval weights is NP-complete [2].
The same holds for the minimum assignment and minimum cut problems [11].
However, all of these problems are not matroidal ones.

This paper is organized as follows. In Section 2, we recall the definition of a
matroid and a matroidal combinatorial optimization problem (that is the one
with precise weights). We introduce the concept of an optimal element and we
present an efficient method of deciding whether a given element is optimal.
Section 3 is devoted to matroidal problems in which weights are specified as
closed intervals. We introduce the notions of possible and necessary optimality
of elements and we show some efficient methods of deciding whether a given
element is possibly (necessarily) optimal. We refine results obtained in [10]. We
then present three particular matroidal problems to which the results obtained
in this section can be applied. The first one is the minimum spanning tree
problem as described previously. The second one is the selecting items problem
which can be viewed as a basic resource allocation problem. The last one
is the scheduling problem in which each job has a due date, and we wish to
minimize the weighted number of late jobs. In Section 4, we discuss the case in
which the weights of elements are given as fuzzy intervals. We use the notion
of gradual numbers [6–8] that permit to express a fuzzy interval as a pair of
gradual numbers. Thus the results from the interval-valued case can be then
naturally extended to the fuzzy-valued one. In consequence, we provide some
efficient algorithms that compute the exact optimality degrees of elements.

2 Matroidal problem with precise weights

Consider a system (E, I), where E = {e1, . . . , en} is a nonempty ground set
and I is a collection of subsets of E closed under inclusion, i.e. if B ∈ I
and A ⊆ B then A ∈ I. The elements of I are called independent sets. The
systemM = (E, I) is called a matroid (see e.g. [14]) if it satisfies the following
growth property : if A ∈ I, B ∈ I and |A| < |B|, then there exists e ∈ B \ A
such that A ∪ {e} ∈ I. The maximal (under inclusion) independent sets in
I are called bases. The minimal (under inclusion) sets not in I are called
circuits. The construction of any base is not a difficult issue. If σ specifies an
order of elements of E, then the corresponding base Bσ can be constructed by
Algorithm 1. We call Bσ the base induced by σ.

The running time of Algorithm 1 is O(nf(n)), where f(n) is the time required
for detecting a circuit in set B ∪ {ei}. This running time depends on the
particular structure of a given matroid.
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Algorithm 1 Constructing a base of a matroid

Require: A matroid (E,I), a sequence σ = (e1, . . . , en) of elements of E.
Ensure: A base Bσ.

Bσ ← ∅
for i← 1 to n do

if Bσ ∪ {ei} ∈ I then Bσ ← Bσ ∪ {ei}
end for

return Bσ

Let us denote by pred(e, σ) the set of elements which precede element e in
sequence σ. The following property expresses that the choice of an element e
by Algorithm 1 does not depend on the order of elements placed before e in
the sequence used by the algorithm.

Proposition 1 ([10]) Let σ and ρ be two sequences of the elements of E. Let
e ∈ E be an element such that pred(e, σ) ⊆ pred(e, ρ). If e /∈ Bσ then e /∈ Bρ.

Assume that for every element e ∈ E there is given a nonnegative weight we.
The set of feasible solutions consists of all bases of a given matroid (E, I). We
will denote this set by B. A matroidal combinatorial optimization problem is
the following one:

M : max
B∈B

∑

e∈B

we. (1)

Hence, we wish to find a solution (base) B ∈ B for which the total weight is
maximal. It is well known, that this problem can be solved by means of a greedy
algorithm, that is Algorithm 1 with sequence σ, in which the elements are
sorted in the nonincreasing order of their weights [15]. The greedy algorithm
constructs an optimal base in O(n log n + nf(n)) time.

A given element f ∈ E is said to be optimal, if f is a part of an optimal base.
Checking whether f is optimal is not a difficult issue. Let σ∗(www, f) denote a
special sequence of elements of E, in which the elements are sorted in the
nonincreasing order of their weights www = (we)e∈E. Moreover, if wf = we,
e 6= f , then element f precedes element e in this sequence. The following
proposition gives a necessary and sufficient condition for establishing whether
a given element is optimal:

Proposition 2 ([10]) A given element f is optimal if and only if f ∈ Bσ∗(www,f)

Proposition 2 suggests an O(n log n + nf(n)) algorithm for evaluating the
optimality of a given element f , where O(n log n) is the time required for
forming the sequence σ∗(www, f). We now show that this running time can be
improved. Let σ(www, f), f ∈ E, denote a sequence, such that pred(f, σ(www, f)) =
{e ∈ E : we > wf}. It is clear that sequence σ(www, f) can be constructed in
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O(n) time since it is not necessary to order the elements (we only require
elements e ∈ E, such that we > wf , to appear before f).

Proposition 3 A given element f is optimal if and only if f ∈ Bσ(www,f).

PROOF. It is clear that pred(f, σ(www, f)) = pred(f, σ∗(www, f)). Thus, by Propo-
sition 1, f ∈ Bσ∗(www,f) if and only if f ∈ Bσ(www,f). Hence, by Proposition 2, f is
optimal if and only if f ∈ Bσ(www,f). 2

From Proposition 3, we immediately obtain a method for evaluating the op-
timality of an element f ∈ E which requires O(n + nf(n)) = O(nf(n)) time.
This can be done by means of Algorithm 1 in which the input sequence σ(www, f)
is formed in O(n) time and base Bσ(www,f) is then constructed in O(nf(n)) time.
According to Proposition 3, element f is optimal if and only if f ∈ Bσ(www,f).

In the case when element f ∈ E is not optimal (i.e. it is not a part of an
optimal base), a natural question arises: how far is f from optimality. In other
words, what is the minimal nonnegative real number δf that added to the
weight of f makes it optimal. Clearly, δf can be calculated as follows:

δf = max
B∈B

∑

e∈B

we − max
B∈Bf

∑

e∈B

we,

where Bf is the set of all bases containing f .

3 Matroidal problem with interval weights

Suppose that the weights of elements are not precisely known, but they are
known to belong to an interval We = [w−

e , w+
e ], e ∈ E. It means that the

actual value of a weight will take some value within this interval, but it is not
possible to predict at present which one.

We define a configuration as a precise instantiation of the weight of each
element e ∈ E, that is www = (we)e∈E, we ∈ We. Thus, every configuration
expresses a realization of the weights which may occur. We denote by Γ the
set of all configurations, i.e. Γ = ×e∈E [w−

e , w+
e ]. We use we(www) to denote the

weight of element e ∈ E in configuration www ∈ Γ. Among the configurations
in Γ, we distinguish two extreme ones. Namely, the configurations www+

{f} and

www−
{f} such that:

we(www
+
{f}) =







w+
e if e = f ,

w−
e otherwise

, we(www
−
{f}) =







w−
e if e = f ,

w+
e otherwise

, e ∈ E. (2)
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A given element f ∈ E is possibly optimal if and only if it is optimal in some
configuration www ∈ Γ. A given element f ∈ E is necessarily optimal if and
only if it is optimal in all configurations www ∈ Γ. Instead of being optimal
or not, like in the deterministic case, the elements now form three groups:
those that are optimal for sure (necessarily optimal elements), those that are
not optimal for sure, and the elements whose optimality is unknown (possibly
optimal elements). Note that, if an element f ∈ E is necessarily optimal, then
it is also possibly optimal but the converse statement is not true.

We can obtain more information about optimality of f ∈ E. Let δf (www), www ∈ Γ,
denote the minimal nonnegative real number such that f with weight wf(www)+
δf (www) becomes optimal in configuration www. Let us define the widest interval
(bounds) of possible values of δf as follows:

∆f = [δ−f , δ+
f ], δ−f = min

www∈Γ
δf (www) and δ+

f = max
www∈Γ

δf(www).

The interval ∆f = [δ−f , δ+
f ] expresses whether f is close to be optimal, that

is δ−f represents how far is f from being possibly optimal and δ+
f how far

is f from being necessarily optimal. We can easily deduce the optimality of
element f from δ−f and δ+

f by the following proposition:

Proposition 4 An element f is possibly (resp. necessarily) optimal if and
only if δ−f = 0 (resp. δ+

f = 0).

In the next section we show that checking whether a given element is possibly
(necessarily) optimal can be efficiently done.

3.1 Evaluating the optimality of elements

It turns out that due to the special matroidal structure of the problem, the
optimality of a given element can be characterized in terms of two extreme
configurations. The following theorem characterizes a possibly optimal ele-
ment.

Theorem 5 Element f ∈ E is possibly optimal if and only if f ∈ Bσ(www+

{f}
,f).

PROOF. (⇒) From the possible optimality of f it follows that there exits
a configuration www ∈ Γ in which element f is optimal. Proposition 3 implies
that f is a part of base Bσ(www,f) induced by σ(www, f). It is easy to observe that
pred(f, σ(www+

{f}, f)) ⊆ pred(f, σ(www, f)). Therefore Proposition 1 now yields f ∈
Bσ(www+

{f}
,f).
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(⇐) If f is a part of base Bσ(www+

{f}
,f), then f is optimal in configuration www+

{f}

(see Proposition 3). Hence f is possibly optimal. 2

The following theorem characterizes a necessarily optimal element.

Theorem 6 Element f ∈ E is necessarily optimal if and only if f ∈ Bσ(www−
{f}

,f).

PROOF. (⇒) If f is necessarily optimal, then it is optimal for all configura-
tions, in particular for www−

{f}. Thus by Proposition 3, f ∈ Bσ(www−
{f}

,f).

(⇐) Suppose f ∈ Bσ(www−
{f}

,f). Consider any configuration www ∈ Γ. It is easy to see

that pred(e, σ(www, f)) ⊆ pred(e, σ(www−
{f}, f)). We conclude from Proposition 3

that f ∈ Bσ(www,f) and, by Proposition 1, f is optimal in www. Hence, f is optimal
for all configurations www ∈ Γ and consequently it is necessarily optimal. 2

Making use of Theorems 5 and 6, one can easily evaluate the possible and
necessary optimality of an element f . If we wish to assert whether f is possibly
optimal, we apply Algorithm 1 in which the order of elements is specified by
σ(www+

{f}, f). Element f is then possibly optimal if and only if the obtained base
contains f . In a similar way we assert whether f is necessarily optimal, that is
we apply Algorithm 1 in which the order of elements is specified by σ(www−

{f}, f)
and check if the obtained base contains f . The running time of both methods
is O(nf(n)).

Theorems 5 and 6 also allow us to determine interval ∆f = [δ−f , δ+
f ]. If f /∈

Bσ(www+

{f}
,f) (which indicates that δ−f > 0) then set Bσ(www+

{f}
,f) ∪ {f} contains an

unique circuit C. We can find an element g ∈ C \ {f} of the minimal value
of w−

g . Then, from Theorem 5, it follows that δ−f = w−
g − w+

f . Similarly, if
f /∈ Bσ(www−

{f}
,f) (which indicates that δ+

f > 0) then set Bσ(www−
{f}

,f) ∪ {f} contains

an unique circuit C. We can find an element g ∈ C \ {f} of the minimal value
of w+

g and, by Theorem 6, δ+
f = w+

g − w−
f . It is easily seen that both values

δ−f and δ+
f for a given element f ∈ E can be computed in O(nf(n)) time.

We now focus on the problem of evaluating the optimality of all elements
of E. An obvious method of performing this task is execution of Algorithm 1
for every f ∈ E, with the order of elements specified by σ(www+

{f}, f) (for the

possible optimality) or σ(www−
{f}, f) (for the necessary optimality). This yields

complexity O(n2f(n)). However, the complexity of detecting all the possibly
optimal elements can be additionally reduced.
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Let www− be the configuration where the values of all weights are set to their
lower bounds. Let σ∗(www−) denote the sequence of elements of E, in which the
elements are sorted in the nonincreasing order of their weights in www−. The
base Bσ∗(www−) is induced by sequence σ∗(www−) and it is the optimal base in
configuration www−. The following theorem holds:

Theorem 7 ([10]) An element e /∈ Bσ∗(www−) is possibly optimal if and only if
an element g 6= e in the circuit C ⊆ Bσ∗(www−) ∪ {e} of the minimal value of w−

g

satisfies w+
e ≥ w−

g .

We now describe how to use Theorem 7 to detect all the possibly optimal
elements in E. First, we compute base Bσ∗(www−) by applying Algorithm 1 in
which the order of elements is specified by σ∗(www−). All the elements e ∈ Bσ∗(www−)

are then possibly optimal by definition. Next, for all e ∈ E \ Bσ∗(www−) we
determine the element g from Theorem 7. In a typical situation this requires
O(nf(n)) time, where f(n) is the time required for detecting circuit C in
Bσ∗(www−) ∪ {e}. Thus, all the possibly optimal elements can be detected in
O(n log n+nf(n)) time. Unfortunately, we are not able to prove a counterpart
of Theorem 7 for the necessary optimal elements.

We have assumed that the classical matroidal problem (see (1)) is a maximiza-
tion one. However, all the results apply to a minimization problem as well.
SupposeM is an interval problem in which we seek a minimum weighted base
(that is criterion (1) is replaced with the minimization one). We can replace
the interval weights [w−

e , w+
e ] in M with [M − w+

e , M − w−
e ] for all e ∈ E,

where M = maxe∈E w+
e , obtaining problem M′ in which we seek a maximum

weighted base. Since all the bases of a matroid have the same cardinality it
is easy to check that element f is possibly (necessarily) optimal inM′ if and
only if it is possibly (necessarily) optimal in M.

3.2 Practical examples of matroidal problems

In the next subsections we will analyze in detail three particular interval-
valued matroidal problems. The classical, deterministic versions of these prob-
lems are well-known and they arise in a number of applications.

3.2.1 Minimum spanning tree problem

Let E = {e1, . . . , en} be a set of edges of a given connected and undirected
graph G = (V, E). The set I consists of all the subsets of edges E ′ ⊆ E
such that subgraph G′ = (V, E ′) is acyclic (that is I is the set of all forests
in G). The system (E, I) in this problem is one of the best known examples
of matroids (it is so-called graphic matroid). A base is a spanning tree of G
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and a circuit is a subset of edges that forms a simple cycle in G. In the
classical minimum spanning tree problem, we seek a spanning tree for which
the total weight is minimal. The greedy algorithm which computes the optimal
spanning tree is known in the literature as Kruskal’s algorithm. The complexity
of Kruskal’s algorithm is O(|E| log |E|) [3].

Consider the case in which the weights of edges of G are specified as closed
intervals. The problem of detecting the possibly and the necessarily optimal
edges have been studied in [1] and [13] (in [13] a possibly optimal edge is
called weak and a necessarily optimal one is called strong). This characteri-
zation can be used for preprocessing the problem before calculating a robust
spanning tree. A method for detecting all the possibly and the necessarily
optimal edges adopted in [13] consists in executing |E| times the Kruskal’s
algorithm for configurations www+

{e} and www−
{e}, e ∈ E. Thus its running time

is O(|E|2 log |E|). The complexity of calculation of all the possibly optimal
edges can be significantly reduced. In [1] the following proposition (which is
consequence of the more general Theorem 7) was proven:

Proposition 8 ([1]) Let www+ be a configuration where all the weights are at
their upper bounds and let T be a minimum spanning tree in www+. An edge
e = (u, v) ∈ E \ T is possibly optimal if and only if an edge f of the maximal
weight w+

g on the path from u to v in T satisfies w−
e ≤ w+

g .

The idea of algorithm for detecting all the possibly optimal elements, which is
based on Proposition 8, is as follows. We start with computing the minimum
spanning tree T in configuration www+. All the edges e ∈ T are then possibly
optimal by definition. Then, for every edge e ∈ E \ T we can compute in
O(|V |) time the proper edge g and check whether w−

e ≤ w+
g . The overall

complexity becomes then O(|E| log |E| + |E||V |), which can be additionally
reduced to O(|E| log |E| + |V |2) (see [1] for details). Observe that in dense
graphs (|E| ≈ |V |2) this complexity is O(|E| log |E|), which is the same as the
running time of Kruskal’s algorithm.

Unfortunately, we are not able to prove a counterpart of Proposition 8 for
detecting all the necessarily optimal edges. Therefore, all these edges can be
detected in O(|E|2 log |V |) time by executing Algorithm 1, in which the order
of elements is specified by σ(www+

{f}, f), where log |V | is the time required for
deciding whether an edge belongs to a cycle in G.

3.2.2 Selecting items problem

Let E = {e1, . . . , en} be a set of elements (items). The set I consists of all
subsets of E whose cardinalities are less than or equal to a given number p
such that 1 ≤ p < n. It can be easily verified that system (E, I) is a matroid
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(it is so called uniform matroid). A base is a subset A of E such that |A| = p
and a circuit C is a subset of E such that |C| = p + 1. In the selecting
items problem, we seek a subset of E whose cardinality is exactly p, that
maximizes the total weight. The selecting items problem can be viewed as a
basic resource allocation problem with linear cost function [9]. In the classical
case the best solution can be easily obtained by selecting p elements of the
greatest weights. This can be performed in O(n) time in the following way:
first, the p-th greatest weighted element g ∈ E is calculated (this can be done
in O(n) time, see e.g. [3]) and added to A; then p− 1 elements of the weights
greater than or equal to wg are added to A.

Consider now the case in which the weights of elements in the problem are
given as closed intervals. The following two propositions allow us to detect all
the possibly and necessarily optimal elements very efficiently.

Proposition 9 Let www− be a configuration where all the weights are at their
lower bounds. Let g be the p-th greatest weighted element in www−. Then element
e ∈ E is possibly optimal if and only if w+

e ≥ w−
g .

PROOF. (⇒) Suppose by contradiction that e is possibly optimal and w+
e <

w−
g . Condition w+

e < w−
g means that there are at least p elements which

weights are strictly greater than the weight of e in configuration www+
{e}. Thus e

cannot be a part of a base Bσ(www+

{e}
,e) induced by σ(www+

{e}, e). This implies that

e is not possibly optimal (see Theorem 5), which is a contradiction.

(⇐) If w+
e ≥ w−

g the element e is one of the p elements of the greatest weights
in configuration www+

{e}. Thus e is a part of a base Bσ(www+

{e}
,e) induced by σ(www+

{e}, e)

and by Theorem 5, it is possibly optimal. 2

Proposition 10 Let www+ be a configuration where all the weights are at their
upper bounds. Let f be the p-th greatest weighted element and let g be the
(p + 1)-th greatest weighted element in www+. Then element e ∈ E is necessarily
optimal if and only if w+

e ≥ w+
f and w−

e ≥ w+
g .

PROOF. (⇒) Suppose by contradiction that element e is necessarily optimal
and w+

e < w+
f or w−

e < w+
g . In the first case (w+

e < w+
f ) element e cannot be a

part of the optimal base in configuration www+ and in the second case (w−
e < w+

g )
it cannot be a part of the optimal base in configuration www−

{e}. This contradicts
the assumption that e is necessarily optimal.

(⇐) Conditions w+
e ≥ w+

f and w−
e ≥ w+

g assure that element e is one of the
p elements of the greatest weights in configuration www−

{e}. Thus e is a part of
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a base Bσ(www−
{e}

,e) induced by σ(www−
{e}, e) and by Theorem 6, it is necessarily

optimal. 2

Propositions 9 and 10 allow us to detect all the possibly and necessarily op-
timal elements very efficiently. The k-th greatest element in a given configu-
ration can be found in O(n) time (see e.g. [3]). Thus the overall running time
of the algorithm for detecting all the possibly (necessarily) optimal elements
is O(n).

3.2.3 Scheduling problem 1|pi = 1|
∑

wiUi

Let J = {1, . . . , n} be a set of jobs to be processed on a single machine. Every
job i ∈ J has unit processing time pi = 1. For every job i ∈ J there are given:
a due date di and a weight wi. A schedule is a sequence π of jobs. A job i ∈ J
is called late in π if its completion time in π is greater than di, otherwise job i
is called on-time in π. We seek a schedule for which the sum of weights of all
late jobs is minimal. A subset of jobs S ⊆ J belongs to I if and only if all the
jobs in S are on-time in a certain schedule π. It is easy to decide whether a
given set S belongs to I. To do this, it is enough to schedule first all the jobs
in S in order of nondecreasing due dates and then all the remaining jobs in an
arbitrary order. Then S ∈ I if and only if all the jobs in S are on-time in the
resulting schedule [3]. This schedule is said to be in the canonical form. It is
easily seen that the problem consists now in determining a set S ∈ I with the
maximal value of F (S) =

∑

i∈S wi. The optimal solution can be then obtained
by constructing the corresponding canonical schedule for S. It can be proven
that system (J, I) is matroid and the optimal schedule (in the canonical form)
can be found in O(n2) time by greedy algorithm [3,12].

Before we consider the interval case, we show how to detect efficiently a circuit
in the considered problem. Let S = {j1, . . . , jk}, k ≤ n, be a given base.
Assume that dj1 ≤ · · · ≤ djk

. Let i ∈ J be a job such that i /∈ S. Then set
S ∪ {i} contains a circuit C. The circuit C is the minimal subset of jobs in
S∪{i} which cannot be all scheduled on-time. The circuit C can be detected in
the following way: find the smallest number r ∈ {1, . . . , k} such that djr ≥ di

and r + 1 > djr ; set C = {j1, . . . , jr, i}. It is not difficult to check that such
a number r must exist, since otherwise we could create a canonical schedule
in which all the jobs in S ∪ {i} are on-time (this would contradict the fact
that S is a base). To see that C is a circuit schedule jobs in C in order of
nondecreasing due dates (note that we try to construct a canonical schedule)
and denote the resulting schedule by σ. From the definition of r we conclude
that only the last job in σ (either i or jr) is late. Since all the processing times
are equal to 1, we can remove any job from σ and we get a schedule in which
all the jobs are on-time. This implies that all the subsets of C with cardinality

11



|C| − 1 are independent and C is the minimal dependent subset.

Assume now that the weights of jobs are uncertain and they are given as
closed intervals. A possibly optimal job is on-time job in an optimal schedule
for some configuration of the weights and a necessarily optimal job is on-
time in some optimal schedule for all configurations of the weights. Such a
characterization under the uncertain weights may be useful. For example, the
necessarily optimal jobs should be always processed first, while non-possibly
optimal ones should be processed last.

Now we can use Theorem 7 to detect efficiently all the possibly optimal jobs.
We compute first in O(n2) time the optimal schedule π in configuration of
weights www−. The schedule π is in the canonical form, thus we can easily de-
termine the set S = {π(1), . . . , π(k)} of jobs which are on-time in π. The set
S is the optimal base in configuration www−, thus all the jobs i ∈ S are possi-
bly optimal. Suppose that i /∈ S. Then, we can determine in O(n) time the
smallest number r such that dπ(r) ≥ di and r + 1 > dπ(r) and check whether
w+

i ≥ min{w−
π(1), . . . , w

−
π(r)} (see Theorem 7). Therefore, all the possibly opti-

mal jobs can be detected in O(n2) time. Unfortunately, it is a difficult issue to
give an O(n2) algorithm for detecting all the necessarily optimal jobs. Thus,
one has to run n times Algorithm 1 in which the order of elements is specified
by σ(www+

{f}, f), where O(n) is time required for checking independence, which

gives O(n3) time.

4 Matroidal problem with fuzzy weights

In this section we discuss the case in which the imprecise weights are modeled
by means of fuzzy intervals. We introduce degrees of possible and necessary
optimality of a given element f ∈ E, which are numbers from interval [0,1]
that characterize the optimality of f . We describe a recent concept of a gradual
number [7,8] and its connections with the concept of a fuzzy interval. Basing on
the notion of a gradual number we construct some efficient and exact methods
of computing the values of degrees of optimality of a given element.

4.1 Degrees of possible and necessary optimality of elements

A fuzzy interval is a generalization of the classical one and it allows us to
express the uncertainty connected with ill-known parameters in a more so-
phisticated manner. A fuzzy interval W̃ is a fuzzy set defined in the space of
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real numbers, whose membership function µW̃ (x) is normal, quasi-concave
and upper semi-continuous. A fuzzy interval of the L-R type, denoted as
(w−, w+, α, β)L−R, is very popular and convenient in applications (see, e.g. [5]).
Its membership function is of the following form:

µW̃ (x) =



























1 for x ∈ [w−, w+],

L
(

w−−x
α

)

for x ≤ w−,

R
(

x−w+

β

)

for x ≥ w+,

where L and R are continuous and nonincreasing functions, defined on [0, +∞),
strictly decreasing to zero in those subintervals of the interval [0, +∞) in which
they are positive, and fulfilling condition L(0) = R(0) = 1. The parameters
α and β are nonnegative real numbers. If L(x) = R(x) = max{0, 1− x} and
w− = w+, then we obtain a triangular fuzzy interval, which is shortly denoted
by triple (w, α, β).

Every fuzzy interval W̃ can be decomposed into its λ-cuts, λ ∈ (0, 1], i.e the
sets W̃ λ = {x : µW̃ (x) ≥ λ}. It can be easily verified [5] that every λ-cut of
W̃ is a closed interval.

We now generalize the concept of interval-valued matroidal problem to the
fuzzy-valued one and provide a possibilistic formulation of the problem. As-
sume that for every element e ∈ E a fuzzy interval W̃e is given. This fuzzy
interval expresses the uncertainty connected with the ill-known weight we of
element e ∈ E. The membership function µW̃e

(x) is a possibility distribution
for the values of we with respect to the following formula (see [5,16]):

Π(we = we) = µW̃e
(we).

Let www = (we)e∈E, we ∈ R, be a configuration of weights that represents a state
of the world. Assuming that the weights are unrelated the joint possibility
distribution over configurations, induced by W̃e, e ∈ E, is as follows:

π(www) = Π(∧e∈E(we = we)) = min
e∈E

Π(we = we) = min
e∈E

µW̃e
(we).

Hence, the degrees of possible and necessary optimality of an element f ∈ E
are defined as follows:

Π(f is optimal) = sup
{www: f is optimal in www}

π(www), (3)

N(f is optimal) = inf
{www: f is not optimal in www}

(1− π(www)). (4)

The degrees of optimality can be generalized by fuzzyfying the quantity δf in
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the following way:

µ∆̃f
(x) = Π(δf = x) = sup

{www: x=δf (www)}
π(www).

The following relations hold:

Π(f is optimal) = Π(δf = 0) = µ∆̃f
(0),

N(f is optimal) = N(δf = 0) = 1− sup
x>0

µ∆̃f
(x).

The methods used to evaluate the optimality in interval-valued matroidal
problems are based on the study of some particular configurations of weights.
A natural way of extending these methods to solve the fuzzy counterparts of
the problems should be the use of some “fuzzy configurations”. When one deals
with the classical intervals, a configuration assigns a real number to the weight
of each element. This is due to the fact that an interval is a set of real numbers.
The recent advances of possibility theory permit to see a fuzzy interval as a
classical interval of what is called “gradual numbers”. These gradual numbers
can lead to define a gradual configuration and allow us to extend the classical
interval computation methods to their fuzzy counterparts. The next section is
describes the gradual numbers and their relationships with fuzzy intervals.

4.2 Gradual numbers

A fuzzy interval models incomplete knowledge (we know that some parameter
lies between two bounds), not the fuzziness per se. The classical intervals
model uncertainty in a Boolean way: a value in the interval is possible and a
value outside is impossible. The idea of fuzziness is to move from the Boolean
way to a gradual one. Hence fuzziness makes the boundaries of the interval
softer and thus making uncertainty gradual. In order to model the essence
of graduality without uncertainty the concept of a gradual number has been
recently proposed. Following the notation of [8], a gradual number is defined
as follows:

Definition 11 ([8]) A gradual real number (a gradual number for short) r̃ is
defined by an assignment function Ar̃ from (0, 1] to R.

A gradual number can be seen as a number parametrized by the value of
λ ∈ (0, 1]. The arithmetic operations on gradual numbers are defined by oper-
ations on their assignment functions. For instance, if r̃ and s̃ are two gradual
numbers, then the sum of r̃ and s̃ is defined by summing their assignment
functions, that is ∀λ∈(0,1] Ar̃+s̃(λ) = Ar̃(λ) + As̃(λ). The subtraction, prod-
uct, quotient, maximum and minimum of gradual numbers can be defined in
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a similar manner. It is worth pointing out that most algebraic properties of
real numbers are preserved for gradual numbers, contrary to the case of fuzzy
intervals.

Making use of the notion of gradual number, one can describe a fuzzy interval
W̃ by an ordered pair of two gradual numbers [w̃−, w̃+], where w̃− is a gradual
lower bound of W̃ and w̃+ is a gradual upper bound of W̃ . In order to ensure
the well known shape of a fuzzy interval, w̃− and w̃+ must satisfy the following
properties:

(a) Aw̃− is increasing function,
(b) Aw̃+ is decreasing function,
(c) Aw̃− ≤ Aw̃+, i.e Aw̃−(1) ≤ Aw̃+(1).

Therefore a fuzzy interval is an interval of gradual numbers bounded by w̃−

and w̃+ (see Fig. 1). Selecting a gradual number from this interval boils down
to picking an element at each λ-cut.

1

µW̃ (x)

w̃− w̃+

x

Fig. 1. The left and right bounds of fuzzy interval W̃ (in bold).

Pair [w̃−, w̃+] describes a fuzzy interval with membership function:

µW̃ (x) =



























sup{λ | Aw̃−(λ) ≤ x} if x ∈ Aw̃−((0, 1])

1 if Aw̃−(1) ≤ x ≤ Aw̃+(1)

sup{λ | Aw̃+(λ) ≥ x} if x ∈ Aw̃+((0, 1])

0 otherwise

Conversely, an upper semi continuous membership function µW̃ (x) of a fuzzy
interval can be described by the pair of gradual numbers [w̃−, w̃+] defined as
follows:

Aw̃− : (0, 1]→R

λ 7→Aw̃−(λ) = inf{x | µW̃ (x) ≥ λ},

Aw̃+ : (0, 1]→R

λ 7→Aw̃+(λ) = sup{x | µW̃ (x) ≥ λ}.

In particular, every fuzzy interval of the L-R type W̃ = (w−, w+, α, β)L−R

can be described by a pair of gradual numbers [w̃−, w̃+] with the following
assignment functions:

Aw̃−(λ) = w− − L−1(λ)α and Aw̃+(λ) = w+ + R−1(λ)β. (5)
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For a deeper discussion on gradual numbers, we refer the reader to [6–8]. In
the next section we show how to calculate efficiently the degrees of possible
and necessary optimality using the concept of gradual numbers.

4.3 Exact methods for computing the optimality degrees of elements

Denote by M(λ), λ ∈ (0, 1], the interval-valued matroidal problem with
weights W̃ λ

e , e ∈ E, being the λ-cuts of the fuzzy weights. A link between
the interval case and the fuzzy one, resulting from formulae (3) and (4) and
the fact that if α < β then W̃ β

e ⊆ W̃ α
e , e ∈ E, is as follows:

Π(f is optimal) = sup{λ : f is possibly optimal in M(λ)}, (6)

N(f is optimal) = 1− inf{λ : f is necessarily optimal in M(λ)}. (7)

If f is not possibly optimal inM(0), then Π(f is optimal) = 0 and if f is not
necessarily optimal in M(1), then N(f is optimal) = 0.

Equations (6) and (7) form the theoretical basis for calculating the values of
the optimality degrees. They suggest a standard bisection method for deter-
mining the optimality degrees (3) and (4) of a fixed element with a given accu-
racy ǫ ∈ (0, 1) via the use of λ-cuts. At each iteration the possible (necessary)
optimality of the element is evaluated in the interval-valued matroid M(λ)
according to Theorem 5 (Theorem 6). The calculations take O(| log ǫ−1|nf(n))
time. Unfortunately, this method gives only approximate values of the opti-
mality degrees.

Further in this section, we propose some efficient algorithms for computing the
exact values of the degrees of optimality. Moreover, if f(n) is a polynomial,
then the algorithms will be strongly polynomial. These algorithms will exploit
the notion of gradual number described in Section 4.2. We will show that
expressing a fuzzy interval as a pair of two gradual numbers makes it possible
to apply the interval methods (see Section 3.1) to the fuzzy counterpart of the
problem.

Suppose that the weights are given by means of fuzzy intervals W̃e = [w̃−
e , w̃+

e ],
where w̃−

e is a gradual lower bound and w̃+
e is a gradual upper bound of W̃e.

We assume that the support of W̃e is compact. To be consistent with this
assumption, we have to extend the domains of assignment functions Aw̃−

e
and

Aw̃+
e

to interval [0, 1]. Moreover, we will also assume that function Aw̃−
e

is
continuous and increasing and function Aw̃+

e
is continuous and decreasing. It

is easy to check that these assumptions hold for a wide class of fuzzy intervals
of the L-R type (see [5]), which are typically used in applications.
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In order to apply the interval methods given in Section 3.1 to the fuzzy interval
computations, we need to extend two extreme configurations www+

{f} and www−
{f}

(see (2)) to the fuzzy case. Now the fuzzy extreme configurations w̃ww+
{f} and w̃ww−

{f}

are the vectors of gradual lower and gradual upper bounds of fuzzy weights
defined as follows:

w̃e(w̃ww
+
{f}) =







w̃+
e if e = f ,

w̃−
e otherwise

, w̃e(w̃ww
−
{f}) =







w̃−
e if e = f ,

w̃+
e otherwise

, e ∈ E. (8)

Hence w̃e(w̃ww
+
{f}) and w̃e(w̃ww

−
{f}) are gradual weights of e ∈ E in fuzzy extreme

configurations w̃ww+
{f} and w̃ww−

{f}, respectively.

4.3.1 Computing the degree of possible optimality

Assume that we intend to calculate the value of Π(f is optimal) for a given
element f ∈ E. The key observation is that in order to do this, it is enough to
analyze only the fuzzy configuration w̃ww+

{f}. This is similar to the interval case

in which the extreme configuration www+
f was explored (see Theorem 5). More-

over, it is sufficient to take into account only the intersection points of gradual
weight w̃+

f with gradual weights w̃−
e , e 6= f , in configuration w̃ww+

{f} (more pre-
cisely the intersection points of their corresponding assignment functions). For
simplicity of the notation we will write w̃+

e (λ) instead of Aw̃+
e

(λ) and w̃−
e (λ)

instead of Aw̃−
e

(λ) for λ ∈ [0, 1].

Let e1, . . . , em be the elements in E, whose gradual lower bounds intersect
with the gradual upper bound of the element f in w̃ww+

{f}. Let the real numbers

λ1, . . . , λm ∈ [0, 1] denote the cuts such that w̃−
ei

(λi) = w̃+
f (λi), i = 1, . . . , m.

We assume that λ1 ≤ · · · ≤ λm, thus w̃−
e1

(λ1) ≥ · · · ≥ w̃−
em

(λm). Let us
also distinguish the elements v1, . . . , vr in E whose gradual lower bounds are
strictly lower than the gradual upper bound w̃+

f and the elements u1, . . . , uq

whose gradual lower bounds are strictly greater than the gradual upper bound
w̃+

f . The partition of elements is of the form E = {u1, . . . , uq}∪{e1, . . . , em}∪
{v1, . . . , vr} ∪ {f} and it is shown in Fig. 2.

1

λ1

λ2

λm

e1e2 em fff u1u2uqv1v2vr x

Fig. 2. The partition of E with respect to the intersection points of the gradual
upper bound w̃+

f with the gradual lower bounds w̃−
e , e 6= f , in configuration w̃ww+

{f}.
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Let us now define the following sequences of elements:

σ0 = (u1, . . . , uq, fff, e1, . . . , em, v1, . . . , vr),

σi = (u1, . . . , uq, e1, . . . , ei, fff , ei+1 . . . , em, v1, . . . , vr), i = 1, . . . , m− 1,

σm = (u1, . . . , uq, e1, . . . , em, fff, v1, · · · , vr).

Note that the sequences differ from each other only in the position of the
element f , which depends on the cut λi. Let us define λ0 = 0.

Observation 1 If f ∈ Bσi−1
, i = 1, . . . , m, then f is possibly optimal in the

interval-valued matroidal problem M(λ) for all λ ∈ [0, λi].

PROOF. Observe, that it is sufficient to show that f is possibly optimal in
M(λi). It is easy to see that the extreme configuration www+

{f} in M(λi) is as

follows: wf(www+
{f}) = w̃+

f (λi) and we(www
+
{f}) = w̃−

e (λi) if e 6= f . From the con-

struction of the sequence σi, it follows that pred(σ(www+
{f}, f), f) ⊆ pred(σi−1, f).

Thus, from Proposition 1 and the assumption f ∈ Bσi−1
, we see that f is a

part of base Bσ(www+

{f}
,f) in M(λi) and, by Theorem 5, it is possibly optimal in

M(λi). 2

Observation 2 If f /∈ Bσi
, i = 0, . . . , m, then f is not possibly optimal in

the interval-valued matroidal problem M(λ), λ ∈ (λi, 1].

PROOF. From the definition of sequence σi it follows that w̃−
e (λi) ≥ w̃+

f (λi)
for all e ∈ pred(f, σi) (see also Fig. 2). Let λ > λi. From the strict monotonicity
of the assignment functions Aw̃−

e
and Aw̃+

e
of the gradual lower and upper

bounds of W̃e, we obtain w̃−
e (λ) > w̃+

f (λ) for all e ∈ pred(f, σi). Thus in
the interval weighted matroid M(λ) all the elements e ∈ pred(f, σi) must
also precede f in the corresponding sequence σ(www+

{f}, f) in matroid M(λ).
Therefore, according to Proposition 1 and Theorem 5, element f is not possibly
optimal in M(λ). 2

Observations 1 and 2, together with formula (6) yield:

Proposition 12 If f ∈ Bσm then Π(f is optimal) = 1. Otherwise, let k be the
smallest index in {0, 1, . . . , m} such that f /∈ Bσk

. Then Π(f is optimal) = λk.

Proposition 12 allows us to construct an efficient algorithm (Algorithm 2) for
computing the value of Π(f is optimal) of a given element f ∈ E.
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Algorithm 2 Computing Π(f is optimal).

Require: A fuzzy weighted matroid (E,I), a distinguished element f ∈ E.
Ensure: Π(f is optimal).

Find all elements e1, . . . , em and numbers λ1, . . . λm so that λ1 ≤ · · · ≤ λm

Form σ0 = (u1, . . . , uq, f, e1, . . . , em, v1, . . . , vr)
B ← ∅
for i← 1 to q do

if B ∪ {ui} ∈ I then B ← B ∪ {ui}
end for

if B ∪ {f} /∈ I then return 0 /* f /∈ Bσ0
*/

for i← 1 to m do

if B ∪ {ei} ∈ I then B ← B ∪ {ei}
if B ∪ {f} /∈ I then return λi /* f /∈ Bσi*/

end for

return 1 /* f ∈ Bσm*/

The key of Algorithm 2 is that there is no need to apply Algorithm 1 to
every sequence σ0, . . . , σm for checking whether f is a part of base Bσi

. Using
the fact that the sequences differ from each other only in the position of
the element f , we only need to test whether f can be added to the base
constructed in Algorithm 2 after choosing element ei. It is easily seen that
Algorithm 2 implicitly checks whether f ∈ Bσi

for all i = 0, . . . , m, deciding
in this way if f is possibly optimal in the corresponding interval problem.
Hence, Algorithm 2 is equivalent to one course of Algorithm 1. Since, in a
typical situation, finding all the intersection points requires O(n) time (for
instance if all the fuzzy intervals are of the L-L type [5]), it is easily seen that
Algorithm 2 runs in O(n log n+nf(n)) time, where O(n log n) is time required
for sorting e1, . . . , em with respect to the values of λi.

Let us now illustrate the computation of the degree of possible optimality by
an example. Consider the maximum spanning tree problem shown in Fig. 3a.
In this problem the element weights are specified as triangular fuzzy intervals.
Recall that a triangular fuzzy interval (w, α, β) can be represented as a pair of
gradual numbers of the form [w−α(1−λ), w+β(1−λ)], λ ∈ [0, 1]. For instance
W̃e1

= (8, 3, 1) can be represented as [8− 3(1− λ), 8 + (1− λ)], λ ∈ [0, 1]. In
Fig. 3b the fuzzy configuration w̃ww+

{f} is shown. The partition of the edges is
{e1, e2, e3, e4}∪{u1}∪{v1}∪{f}. The gradual lower bounds of the weights of
e1, . . . , e4 intersect with the gradual upper bound of the weight of f and the
corresponding sequence of cuts is 1/3 ≤ 1/2 ≤ 3/5 ≤ 5/7.

We can now form the following sequences of the elements:
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0 2 3 4 5 8

1

9

e1

e2

e3

e4

v1

u1
fff

a) b)

w̃−
e4

w̃−
e3

w̃−
e2

w̃−
e1

w̃−
u1

w̃−
v1 w̃+

f

1/3

5/7

3/5

1/2

Fig. 3. a) The maximum spanning tree problem, where W̃v1
= (1, 1, 1),

W̃f = (2, 2, 6), W̃e1
= (8, 3, 1), W̃e2

= (6, 2, 1), W̃e3
= (6, 4, 5), W̃e4

= (4, 1, 2),
W̃u1

= (10, 1, 3). b) The fuzzy extreme configuration w̃ww+
{f}.

σ0 = (u1, fff, e1, e2, e3, e4, v1),

σ1 = (u1, e1, fff , e2, e3, e4, v1),

σ2 = (u1, e1, e2, fff , e3, e4, v1),

σ3 = (u1, e1, e2, e3, fff, e4, v1),

σ4 = (u1, e1, e2, e3, e4, fff , v1).

Algorithm 2 starts with forming the sequence σ0. It verifies then that {u1, f} ∈
Φ, {u1, e1, f} ∈ Φ and {u1, e1, e2, f} /∈ Φ because {e1, e2, f} is a cycle. Hence
σ2 is the sequence with the smallest index such that f /∈ Bσ2

. We thus conclude
that Π(f is optimal) = λ2 = 1/2.

4.3.2 Computing the degree of necessary optimality

An approach to compute N(f is optimal) for a given element f ∈ E is sym-
metric. In this case one need to consider the fuzzy configuration w̃ww−

{f} (see
Theorem 6) and take into account the intersection points of gradual weight
w̃−

f with gradual weights w̃+
e , e 6= f , in configuration w̃ww−

{f}. Let e1, . . . , em

be the elements in E, whose gradual upper bounds intersect with the gradual
lower bound of the element f in w̃ww−

{f}. The numbers λ1, . . . , λm denote the cuts

such that w̃+
ei

(λi) = w̃−
f (λi), i = 1, . . . , m. We assume that λ1 ≤ · · · ≤ λm,

hence w̃+
e1

(λ1) ≤ · · · ≤ w̃+
em

(λm). The partition of the elements is shown in
Fig. 4.

We define the sequences of elements σ1, . . . , σm+1 in the following way:

σ1 = (u1, . . . , uq, em, . . . , e1, fff, v1, . . . , vr),

σi = (u1, . . . , uq, em, . . . , ei, fff , ei−1 . . . , e1, v1, . . . , vr), i = 2, . . . , m,

σm+1 = (u1, . . . , uq, fff, em, . . . , e1, v1, · · · , vr).

Let us define λm+1 = 1. The following proposition is symmetric to Proposi-
tion 12 (the proof goes in the similar manner).
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1

λ1

λ2

λm

e1 e2emfff u1u2uqv1v2vr x

Fig. 4. The partition of E with respect to the intersection points of gradual weight
w̃−

f with gradual weights w̃+
e , e 6= f , in configuration w̃ww−

{f}.

Proposition 13 If f ∈ Bσ1
then N(f is optimal) = 1. Otherwise, let k be the

largest index in {1, . . . , m + 1} such that f /∈ Bσk
. Then N(f is optimal) =

1− λk.

Algorithm 3 Computing N(f is optimal).

Require: A fuzzy weighted matroid (E,I), a distinguished element f ∈ E.
Ensure: N(f is optimal).

Find all elements e1, . . . , em and numbers λ1, . . . λm so that λ1 ≤ · · · ≤ λm

Form σm+1 = (u1, . . . , uq, f, em, . . . , e1, v1, . . . , vr)
B ← ∅
for i← 1 to q do

if B ∪ {ui} ∈ I then B ← B ∪ {ui}
end for

if B ∪ {f} /∈ I then return 0 /* f /∈ Bσm+1
*/

for i← m downto 1 do

if B ∪ {ei} ∈ I then B ← B ∪ {ei}
if B ∪ {f} /∈ I then return 1− λi /* f /∈ Bσi*/

end for

return 1 /* f ∈ Bσ1
*/

Algorithm 3 is similar in a spirit to Algorithm 2. Here, there is also no need
to apply Algorithm 1 to every sequence σm+1, . . . , σ1 for checking whether f
is a part of base Bσi

, i = m + 1, . . . , 1. Algorithm 3 implicitly checks whether
f ∈ Bσi

for i = m + 1, . . . , 1, evaluating in this way the necessary optimality
of f . This is due to the fact that sequences σm+1, . . . , σ1 differ from each other
only in the position of element f . Obviously, computing N(f is optimal) also
requires O(n log n + nf(n)) time.

5 Conclusions

In this paper we have discussed the problem of evaluating the optimality of
elements in a matroidal problem with ill-known weights. We have proposed
some efficient methods for evaluating the possible and necessary optimality of
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a given element in the interval-valued case. We have also considered the prob-
lem of evaluating the optimality of all elements for three particular interval-
valued matroidal problems. We have then extended the obtained results to the
fuzzy-valued matroidal problems exploiting the very recent notion of gradual
number. The gradual numbers provide a new outlook on fuzzy intervals as
the classical intervals of gradual numbers. This allows us to apply the interval
methods to the problems with fuzzy weights. In consequence, we have de-
signed two algorithms for computing efficiently the exact values of degrees of
possible and necessary optimality of elements in the fuzzy-valued matroidal
combinatorial optimization problems.
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