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Abstract

In this paper a general bottleneck combinatorial optimization problem with
uncertain element weights modeled by fuzzy intervals is considered. A pos-
sibilistic formalization of the problem and solution concepts in this setting,
which lead to compute robust solutions under fuzzy weights are given. Some
algorithms for finding a solution according to the introduced concepts and
evaluating optimality of solutions and elements are provided. These algo-
rithms are polynomial for bottleneck combinatorial optimization problems
with uncertain element weights, if their deterministic counterparts are poly-
nomially solvable.
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1. Introduction

A combinatorial optimization problem consists in finding an object com-
posed of elements of a given ground set E. In a deterministic case, every
element has a precise weight and in the class of bottleneck combinatorial op-
timization problems, we wish to find an object that minimizes the weight
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of its heaviest element. This object is called an optimal solution and all
the elements, which belong to some optimal solution are also called opti-
mal. Such formulation encompasses a large variety of classical combinatorial
optimization problems, for instance the bottleneck path [1], the bottleneck
assignment [2] and the bottleneck spanning tree [3] (or a more general the
bottleneck matroid base problem [4]). All these problems are polynomially
solvable when the weights of all elements (parameters) are precisely known.
Unfortunately, in real world it is not easy to specify element weights precisely.
In many cases, the exact values of weights are not known in advance and this
uncertainty must be taken into account. One of the most popular settings
of problems for hedging against uncertainty of parameters is stochastic op-
timization, in which uncertain parameters are modeled as random variables.
(see, e.g., [5]). Usually, the goal is to optimize the expected value of a solution
built. Some of the models of stochastic optimization consider other criteria
of choosing a solution: chance constrained model (see, e.g., [6, 7]), threshold
model [8, 9] in which we seek a solution maximizing the probability that
its random value does not exceed a given threshold. This model is perhaps
the closest one in spirit to the model assumed in this paper. Unfortunately,
most of the stochastic optimization problems are inherently intractable (even
if parameters are independent random variables). They are tractable only
when some assumptions are imposed. Another difficulty, not always pointed
out, is the possible lack of statistical data validating the choice of param-
eter distributions. In the overwhelming part of the stochastic optimization
literature (see [10] for a bibliography), it is assumed that probability dis-
tributions describing uncertain parameters are known in advance. Usually,
special classes of distributions such as: the normal, the Poisson, the expo-
nential, the Bernoulli are applied to model the uncertainty of parameters. In
fact, probability distributions permit to model the variability of repetitive
parameters, but this approach becomes debatable when dealing with uncer-
tainty caused by a lack of information [11, 12]. Even if statistical data are
available, they may be partially inadequate because each problem may take
place in a specific environment, and is not the exact replica of the past ones.

A simple approach for handling uncertain parameters is modeling the
uncertainty in the form of intervals. It is natural in practice - a decision
maker just needs to provide a minimal value of a parameter and a maximal
one. Assigning some interval to a parameter means that it will take some
value within the interval, but it is not possible to predict at present which one.
There is no probability distribution in the interval. The interval uncertainty
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representation may also be considered as poorly expressive. So, we do not
propose the use of intervals as the definite answer to modeling uncertain
parameters. A more elaborate approach could be to collect both intervals
and plausible values from decision makers and, in this case, fuzzy intervals
may be useful. Resorting to fuzzy sets and possibility theory [13] for modelling
ill-known parameters, the model considered in this paper may help building
a trade-off between the lack of expressive power of mere intervals and the
computational difficulties of stochastic optimization techniques.

In this paper, we use fuzzy intervals to model uncertain element weights.
Namely, the membership function µfW of a fuzzy interval W̃ is a possibility
distribution describing, for each value w of the element weight, the extent
to which it is a possible value. Equivalently, it means that the value of this
weight belongs to a λ-cut interval W̃ λ = {t : µfW (t) ≥ λ} with confidence
(or degree of necessity) 1 − λ. Now to each solution or element a degree of
possible optimality and a degree of necessary optimality can be assigned. The
notion of the necessary optimality of a solution may be weaken by assigning
a degree of necessary soft optimality. Moreover, all the degrees of optimality
of a solution (an element) can be derived from a fuzzy deviation, that is a
possibility distribution representing the set of plausible values of deviations
of a solution (an element) from optimum. In order to choose a “robust
solution” under fuzzy weights, we adopt two criteria. The first one consists
in choosing a solution of the maximum degree of necessary optimality, called a
best necessarily optimal solution. The second criterion is weaker than the first
one and consists in choosing a solution of the maximum degree of necessary
soft optimality, called a best necessarily soft optimal solution. This criterion
has been originally proposed in [14, 15] for the linear programming problem
with a fuzzy objective function. For a review of various concepts of the
robustness of solutions in optimization and a bibliography we refer the reader
to [16].

In this paper, we provide some methods for the optimality evaluation
and for choosing a solution under fuzzy weights. In Section 3, we investigate
the interval case, that is the class of problems where the element weights
are specified as closed intervals. A closed interval can be viewed as a fuzzy
interval with sharp bounds. We show that it is possible to construct poly-
nomial algorithms for such problems if only their deterministic counterparts
are polynomially solvable. In consequence, the interval bottleneck problems
are easier to solve than the interval problems with a linear sum objective dis-
cussed in [17, 18] (see also [18, 19, 20]). In particular, we obtain polynomial
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algorithms for such classical problems as the bottleneck path, the bottleneck
assignment and the bottleneck matroid base under interval weights. In Sec-
tion 4, we show that the optimality evaluation and the problem of choosing a
solution under fuzzy weights can be reduced to examining a small number of
interval problems. In particular, we prove that a best necessarily soft optimal
solution can be computed in polynomial time for a wide class of problems.
In order to make the presentation more clear we place all technical proofs in
the appendix.

2. Preliminaries

Let E = {e1, . . . , en} be a finite ground set and let Φ ⊆ 2E be a set of
subsets of E called the set of the feasible solutions. A nonnegative weight
we is given for every element e ∈ E. A bottleneck combinatorial optimization
problem BP consists in finding a feasible solution X that minimizes the
weight of its heaviest element, namely:

BP : min
X∈Φ

F (X) = min
X∈Φ

max
e∈X

we. (1)

We call F (X) = maxe∈X we a bottleneck objective function, in contrast to
the more popular in literature linear sum objective, which is of the form
F (X) =

∑
e∈X we. A solution to (1) is called an optimal solution. An

element e ∈ E is said to be optimal if it is a part of an optimal solution.
The formulation (1) encompasses a large variety of problems. In network

problems, E is a set of edges of a given graph G = (V,E) and Φ consists of
all subsets of the edges that form some objects in G such as paths, spanning
trees, matchings, cuts etc. (see e.g. [21, 22, 23]). In general, (1) includes
the problems, which can be stated as 0-1 programming ones. To see this,
we need to associate a binary variable xi ∈ {0, 1} with every element ei ∈ E
and describe Φ using a system of constraints involving the binary variables.
Notice that BP may be polynomially solvable or NP-hard and in this paper,
we assume that it is polynomially solvable. In particular, some polynomial
algorithms for the bottleneck path, the bottleneck assignment, the bottleneck
spanning tree and the bottleneck matroid base problems can be found for
instance in [1, 2, 3, 4].

In theory and practice the class of matroidal problems is of great impor-
tance. Recall that a matroid is a pair (E, I), where E is a nonempty element
set and I is a set of subsets of E such that I is closed under inclusion (if
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A ∈ I and B ⊆ A then B ∈ I) and fulfills the so-called growth property (if
A,B ∈ I and |A| < |B|, then there is e ∈ B \A such that A ∪ {e} ∈ I) (see
e.g. [22]). The maximal (under inclusion) sets in I are called bases and the
minimal (under inclusion) sets not in I are called circuits. We will denote
the set of all bases by B. In a matroidal problem the set of feasible solutions
Φ consists of all bases of a given matroid, that is Φ = B. Perhaps, the best
known example of a bottleneck matroidal problem is the bottleneck spanning
tree, where E is a set of edges of a given undirected graph and I consists
of all subsets of the edges that form acyclic subgraphs of G. Then (E, I)
is called a graphic matroid and its base is a spanning tree of G. Another
example is the bottleneck selecting items problem. In this problem, E is a
set of items and I consists of all subsets of E, whose cardinalities are less
than or equal to a given number p. The system (E, I) is called an uniform
matroid and X ⊆ E is a base if and only if |X| = p. We will see later in this
paper that a particular structure of matroidal problems allows us to design
efficient algorithms under uncertainty.

In the approach presented in this paper a crucial role will be played by
the concept of a deviation. A deviation of solution X ∈ Φ and a deviation
of element f ∈ E are defined in the following way:

δX = F (X)−min
Y ∈Φ

F (Y ), δf = min
Y ∈Φf

F (Y )−min
Y ∈Φ

F (Y ),

where Φf is the set of all feasible solutions that contain element f . The
deviations express a “distance” of a solution or element from optimum and
it is clear that solution X (element f) is optimal if and only if δX = 0
(δf = 0). Thus, the solution (element) deviation gives us an information how
far from optimality a solution (element) is.

3. Bottleneck combinatorial optimization problems with interval-
valued weights

In practice, the precise values of element weights in problem BP may be
not well known. To take this uncertainty into account we first apply one
of the simplest uncertainty representation, where each uncertain weight is
modeled by a closed interval. This representation is based on the fact that
it is often possible to give a minimal and a maximal expected value of an
element weight. In consequence, we know that the value of the weight of
e ∈ E will fall within a closed interval We = [we, we] and We contains all
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possible values of the weight of e. We assume that there is no probability
distribution in We, e ∈ E, and all weights are unrelated, that is the value of
every weight does not depend on the values of the remaining weights.

A vector S = (se)e∈E such that se ∈ We for all e ∈ E is called a scenario
and it represents the state of the world in which we = se for all e ∈ E. Thus,
every scenario is a precise instantiation of the element weights, which may
occur. We denote by Γ the set of all scenarios, i.e. Γ = ×e∈E[we, we] and we
use we(S) to denote the weight of element e ∈ E in a fixed scenario S ∈ Γ,
we(S) ∈ We. Among the scenarios of Γ, we distinguish the extreme ones,
which belong to ×e∈E{we, we}. Let A ⊆ E be a fixed subset of elements.
In scenario S+

A all elements e ∈ A have weights we and all the remaining
elements have weights we. Similarly, in scenario S−A all elements e ∈ A
have weights we and all the remaining elements have weights we. For a
given solution X ∈ Φ, we define its weight under a fixed scenario S ∈ Γ as
F (X,S) = maxe∈X we(S). We will denote by F ∗(S) the value of the weight
of an optimal solution under scenario S ∈ Γ, that is

F ∗(S) = min
X∈Φ

F (X,S) = min
X∈Φ

max
e∈X

we(S).

Therefore, in order to obtain F ∗(S), we have to solve the deterministic prob-
lem BP under the weight realization specified by scenario S. Now solution
and element deviations also depend on scenario S and we will denote them
as δX(S) and δf (S), respectively. Hence δX(S) = F (X,S) − F ∗(S) and
δf (S) = minY ∈Φf

F (Y, S)− F ∗(S).

3.1. Optimality evaluation

Similarly to the deterministic case, where the deviations of a solution
and an element give a full characterization of their optimality, in the interval
case we can give a full characterization of optimality of a solution and an
element in terms of the so-called deviation intervals. Consider the following
optimization problems:

δX = min
S∈Γ

δX(S), δX = max
S∈Γ

δX(S) (2)

δf = min
S∈Γ

δf (S), δf = max
S∈Γ

δf (S). (3)

The solutions to (2) determine a deviation interval ∆X = [δX , δX ] containing
all possible values of deviation for solution X. Similarly ∆f = [δf , δf ] is a
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deviation interval for element f . It is worth pointing out that in literature
(see e.g. [24]) the quantity δX is called the maximal regret or robust deviation
of X and it expresses the maximal possible deviation of X from optimum
(the largest “distance of X from optimality”).

Since intervals ∆X and ∆f contain all values of solution and element
deviations which may occur, they allow us to give the following optimality
characterization in problem BP with interval weights: a solution X (element
f ∈ E) is possibly optimal if δX = 0 (δf = 0) and solution X (element f ∈ E)

is necessarily optimal if δX = 0 (δf = 0). Clearly, a solution X ∈ Φ (element
f ∈ E) is possibly optimal if and only if it is optimal in some scenario S ∈ Γ
and it is necessarily optimal if and only if it is optimal in all scenarios S ∈ Γ.
It is easily seen that every possibly (necessarily) optimal solution is composed
of possibly (necessarily) optimal elements.

We now show how to solve the optimization problems (2) and (3) and,
consequently, how to determine the deviation intervals.

Proposition 1. Let X be a given feasible solution. Then

δX = max{0,max
e∈X

we − F ∗(S+
E )}, (4)

δX = max
e∈X

max{0, we − F ∗(S+
{e})}. (5)

Proof. Equality (5) has been proved in [25]. The proof of equality (4) can
be found in Appendix A. �

Making use of Proposition 1, we can determine ∆X = [δX , δX ] of a given
solution X in polynomial time if only the underlying bottleneck determin-
istic problem BP is polynomially solvable. In order to compute the lower
bound δX , it suffices to compute the value of F ∗(S+

E ), using an algorithm for
the deterministic problem BP , and the value of F (X,S−E ). Therefore, this
can be done in O(|X| + f(|E|)) time, where f(|E|) is the running time of
an algorithm for the deterministic problem BP . Notice that computing the
lower bound of a next solution, say X

′ ∈ Φ, requires only O(|X ′ |) time be-
cause F ∗(S+

E ) does not depend on X
′
. Determining the upper bound δX is a

little more complex, since it requires computing the difference we−F ∗(S+
{e})

for each e ∈ X and, consequently, the overall running time of determining δX
is O(|X|f(|E|)).

The following two corollaries are direct consequences of Proposition 1.
They establish sufficient and necessary conditions for possible and necessary
optimality of a given solution.
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Corollary 1. A solution X ∈ Φ is possibly optimal if and only if maxe∈X we ≤
F ∗(S+

E ).

Corollary 2. A solution X ∈ Φ is necessarily optimal if and only if we ≤
F ∗(S+

{e}) for all e ∈ X.

Let us consider the problem of computing the element deviation interval
∆f = [δf , δf ] of a specified element f ∈ E. The following proposition gives a
formula for computing the lower bound of ∆f :

Proposition 2. Let f ∈ E be a specified element. Then

δf = max{0, min
X∈Φf

F (X,S−X)− F ∗(S+
E )}. (6)

Proof. See Appendix A. �

From Proposition 2 we immediately get the following corollary:

Corollary 3. An element f ∈ E is possibly optimal if and only if the in-
equality minX∈Φf

F (X,S−X) ≤ F ∗(S+
E ) holds.

Proposition 2 and Corollary 3 show a significant difference between the
problems with bottleneck objective, studied here, and the problems with lin-
ear sum objective discussed for instance in [17, 18]. For the latter problems,
deciding whether δf = 0 may be NP-hard even if a deterministic counter-
part is polynomially solvable [18]. For the bottleneck problems the situation
is much better. Also, for the problems with linear sum objective, there
are nonpossibly optimal solutions entirely composed of possibly optimal ele-
ments [26]. The following proposition shows that this does not hold true for
the problems with bottleneck objective.

Proposition 3. A solution X is possibly optimal if and only if it is composed
of possibly optimal elements.

Proof. See Appendix A. �

From Proposition 2, it follows that if problem BP is solvable in f(|E|)
time, then the bound δf for a given element f can be determined in O(f(|E|))
time. Namely, we need to compute the value of F ∗(S+

E ) by an algorithm for
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the deterministic problem BP and the value of minX∈Φf
F (X,S−X) by a slight

modification of the algorithm for problem BP .
We are unable here to provide a general formula for computing the upper

bound of an element deviation δf . Also, the complexity status of the problem
of checking whether a specified element f is necessarily optimal is unknown.
This is an interesting subject of further research.

We now show how to compute efficiently the quantities δf and δf when BP
has matroidal structure.

Proposition 4. Let f be a specified element. If BP is a matroidal problem,
then

δf = max{0, wf − F ∗(S+
E )}, (7)

δf = max{0, wf − F ∗(S+
{f})}. (8)

Proof. See Appendix A. �

Proposition 4 leads to the following two corollaries:

Corollary 4. Suppose that BP is a matroidal problem. Then element f ∈ E
is possibly optimal if and only if wf ≤ F ∗(S+

E ).

Corollary 5. Suppose that BP is a matroidal problem. Then element f ∈ E
is necessarily optimal if and only if wf ≤ F ∗(S+

{f}).

Proposition 4 allows us to determine efficiently the bounds δf and δf of
a specified element f ∈ E in all matroidal problems. Computing the val-
ues of F ∗(S+

E ) and F ∗(S+
{f}) in (7) and (8) can be done in O(|E| log∗(|E|))

time [4], where log∗ |E| is the iterated logarithm of |E|. Note also that us-
ing formula (7), we can compute the lower bounds of all elements of E in
O(|E| log∗(|E|)) because we need to execute an algorithm for the determin-
istic problem only once. On the other hand, formula (8) does not allow us to
determine the upper bounds of all elements without extra effort. Evaluating
the possible and necessary optimality of f costs the same time as computing
the deviation interval ∆f (see Corollaries 4 and 5).

Consider an example of an interval-valued bottleneck spanning tree shown
in Figure 1. Using Propositions 1 and 4, we get deviation intervals of span-
ning trees: ∆{a,c} = [0, 1], ∆{b,c} = [0, 1] and edges: ∆a = [0, 1], ∆b = [0, 1],
∆c = [0, 0]. Hence all the spanning trees and the edges are possibly optimal.
There is no necessary optimal spanning tree, although there is one isolated
necessarily optimal edge c.
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Wa = [1, 2]

Wb = [1, 2]

Wc = [1, 2]

Figure 1: An example of an interval-valued bottleneck spanning tree with isolated neces-
sarily optimal edge c (in bold).

3.2. Choosing a robust solution

An important task in the interval-valued problem is to choose a robust
solution, that is the one which performs reasonably well under any possible
scenario. It is clear that if one finds a necessarily optimal solution, then it
is the ideal choice because it is optimal regardless of the scenario that will
occur. Unfortunately, such a solution rarely exists. On the other hand, a
possibly optimal solution always exists. It is enough to choose any scenario
and compute an optimal solution under this scenario. But such a possibly
optimal solution will be chosen by an optimistic decision maker, because it
may be poor if some bad scenario will occur. Hence the possible optimality
is too weak criterion while the necessary optimality seems to be too strong
and a compromise between the possible and necessary optimality is required.
A solution that minimizes the maximal regret δX seems to be a compro-
mise choice. In literature [24] it is called an optimal minmax regret solution.
So, under the interval uncertainty representation we focus on the following
optimization problem:

min
X∈Φ

δX . (9)

Notice that every necessarily optimal solution is an optimal min-max regret
one with zero maximal regret. Moreover, due to the following proposition,
every optimal minmax regret solution is possibly optimal:

Proposition 5. Every optimal minmax regret solution X is possibly optimal
and it is composed of possibly optimal elements.

Proof. See Appendix A. �

So, the deviation interval of an optimal minmax regret solution is of the form
∆X = [0, δX ] where δX is the smallest among all X ∈ Φ. Consequently, X
minimizes the distance to the necessary optimality.
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The problem (9) has been studied in [25]. It turns out that if the deter-
ministic BP problem is polynomially solvable, then its minmax regret version
is polynomially solvable as well. The crucial fact is equality (5) proved in [25].
Indeed, combining (5) with (9) we obtain

min
X∈Φ

δX = min
X∈Φ

max
e∈X

ŵe, (10)

where weights ŵe = max{0, we−F ∗(S+
{e})}, e ∈ E, are deterministic. So, the

minmax regret problem (9) can be reduced to problem BP with deterministic
weights ŵe, e ∈ E. It can be shown [25] that the minmax regret problem (9)
can be solved in O(|E|+|X∗|f(|E|)) time, where X∗ is such that F (X∗, S−E ) =
F ∗(S−E ) and f(|E|) is the running time of an algorithm for problem BP .

It is worth pointing out that replacing the bottleneck objective function
with the linear sum one radically changes the complexity of the minmax
regret problem (9). In this case the minmax regret problem turns out to
be NP-hard for such classical combinatorial optimization problems as: the
shortest path [19], the minimum spanning tree [19] and the minimum assign-
ment [20], which are polynomially solvable with deterministic weights (see
also [27] for a survey). A weaker criterion for choosing a robust solution in
combinatorial optimization problems with interval weights has been proposed
in [28]. In this approach, the robust counterparts of polynomially solvable
(α-approximable) combinatorial optimization problems remain polynomially
solvable (α-approximable).

4. Bottleneck combinatorial optimization problems with fuzzy-valued
weights

In this section, we study problem BP with uncertain element weights,
where the uncertainty is modeled by fuzzy intervals. We first recall some no-
tions from possibility theory, which we will use later in this paper (a detailed
description of this theory can be found for instance in [13]). We then give
a rigorous possibilistic interpretation of the fuzzy problem and provide some
solution concepts and algorithms in this setting.

4.1. Selected notions of possibility theory

A fuzzy set allows us to express the uncertainty connected with an ill-
known quantity in a more sophisticated manner than a closed interval. A
fuzzy set Ã is defined by means of a reference set V together with a mapping
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µ eA from V into [0, 1], called a membership function. The value of µ eA(v),

v ∈ V , is a degree of membership of v in the fuzzy set Ã. The λ-cut, λ ∈ (0, 1],

of Ã is a classical set defined as Ãλ = {v ∈ V : µ eA(v) ≥ λ}. The λ-cuts of Ã

form a family of nested sets, i.e if λ1 ≥ λ2, then Ãλ1 ⊆ Ãλ2 . The support of
Ã is the set {v : µ eA(v) > 0}.

A fuzzy set Ã in R with a compact support, whose membership function
µ eA : R→ [0, 1] is normal, quasi-concave and upper semi-continuous is called

a fuzzy interval. We will denote by Ã0 the smallest closed set containing
the support of Ã. Now, it can be easily verified (see e.g. [13]) that Ãλ is a

closed interval for every λ ∈ [0, 1]. So, we can represent a fuzzy interval Ã

as a nested family of closed intervals Ãλ = [aλ, aλ] parametrized by values

of λ ∈ [0, 1]. Functions aλ and aλ of λ are called left and right profiles of Ã
(see [29]). The membership function µ eA can be retrieved from the family of
λ-cuts in the following way:

µ eA(v) = sup{λ ∈ [0, 1] : v ∈ Ãλ = [aλ, aλ]}, (11)

and µ eA(v) = 0 if v /∈ Ã0; aλ = inf{v ∈ R : µ eA(v) ≥ λ}, aλ = sup{v ∈
R : µ eA(v) ≥ λ}. A classical closed interval A = [a, a] is a special case of
a fuzzy one with membership function µA(v) = 1 if v ∈ A and µA(v) = 0
otherwise. In this case we have Aλ = [a, a] for all λ ∈ [0, 1]. A fuzzy interval
of the L-R type, denoted as (a, a, α, β)L−R is very popular and convenient in
applications. Its membership function is of the following form:

µ eA(v) =





1 for v ∈ [a, a],
L
(
a−v
α

)
for v ≤ a,

R
(
v−a
β

)
for v ≥ a,

where L andR are continuous and nonincreasing functions, defined on [0,+∞),
called shape functions. The parameters α and β are nonnegative real num-
bers. Every fuzzy interval of the L-R type (a, a, α, β)L−R with a compact
support can be described by the following family of λ-cuts, λ ∈ [0, 1]:

Aλ = [aλ, aλ] = [a− L−1(λ)α, a+R−1(λ)β]. (12)

If L(v) = R(v) = max{0, 1− v}, then we obtain a trapezoidal fuzzy interval,
which is shortly denoted by quadruple (a, a, α, β). If additionally a = a, then
we get a triangular fuzzy interval denoted by triple (a, α, β).
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Let us now recall the possibilistic interpretation of a fuzzy set. Possibility
theory [13] is an approach to handle incomplete information and it relies on
two dual measures: possibility and necessity, which express plausibility and
certainty of events. Both measures are built from a possibility distribution.
Let a fuzzy set Ã be attached with a single-valued variable a. The member-
ship function µ eA is understood as a possibility distribution, πa = µ eA, which
describes the set of more or less plausible, mutually exclusive values of the
variable a. It plays a role similar to a probability density, while it can encode
a family of probability functions [30]. In particular, a degree of possibility
can be viewed as the upper bound of a degree of probability [30]. The value
of πa(v) represents the possibility degree of the assignment a = v, i.e.

Π(a = v) = πa(v) = µ eA(v),

where Π(a = v) is the possibility of the event that a will take the value of v.
In particular, πa(v) = 0 means that a = v is impossible and πa(v) > 0 means
that a = v is plausible, that is, not surprising. Equivalently, it means that the
value of a belongs to a λ-cut Ãλ with confidence (or degree of necessity) 1−λ.
A detailed interpretation of the possibility distribution and some methods of
obtaining it from the possessed knowledge are described in [13, 31].

Let G̃ be a fuzzy set in R. Then “a ∈ G̃” is a fuzzy event. The possibility
of “a ∈ G̃”, denoted by Π(a ∈ G̃), is as follows [32]:

Π(a ∈ G̃) = sup
v∈R

min{πa(v), µ eG(v)}. (13)

Π(a ∈ G̃) evaluates the extent to which “a ∈ G̃” is possibly true. The

necessity of event “a ∈ G̃”, denoted by N(a ∈ G̃), is as follows:

N(a ∈ G̃) = 1− Π(a 6∈ G̃) = 1− sup
v∈R

min{πa(v), 1− µ eG(v)} (14)

= inf
v∈R

max{1− πa(v), µ eG(v)},

where 1 − µ eG is the membership function of the complement of the fuzzy

set G̃. N(a ∈ G̃) evaluates the extent to which “a ∈ G̃” is certainly true.
Observe that if G is a classical set, then Π(a ∈ G) = supv∈G πa(v) and
N(a ∈ G) = 1− supv/∈G πa(v).
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4.2. A possibilistic formalization of the problem

We now give a possibilistic formalization of problem BP , in which the
weights of elements are modeled by fuzzy intervals W̃e, e ∈ E. Here, a
membership function of W̃e is regarded as a possibility distribution for the
values of the unknown weight we (see the previous section). The possibility
degree of the assignment we = s is Π(we = s) = πwe(s) = µfWe

(s). Let
S = (se)e∈E be a scenario that represents a state of the world where we = se,
for all e ∈ E. It is assumed that the weights are unrelated one to each other.
This assumption makes the fuzzy valued problem BP very tractable (a review
of some attempts to handle related fuzzy parameters can be found in [33]).
Hence, the possibility distributions associated with the weights induce the
following possibility distribution over all scenarios in S ∈ Rn (see [34]):

π(S) = Π

(∧

e∈E
[we = se]

)
= min

e∈E
Π(we = se) = min

e∈E
µfWe

(se). (15)

The value of π(S) stands for the possibility of the event that scenario S ∈
Rn will occur. We have thus generalized scenario set Γ, defined in Section 3
and now Γ̃ is a fuzzy set of scenarios with membership function µeΓ(S) = π(S),
S ∈ Rn. Making use of (15) and the definition of λ-cut it is easy to check

that the λ-cuts of Γ̃ for every λ ∈ (0, 1] fulfill the following equality:

Γ̃λ = {S : π(S) ≥ λ} = ×e∈E[wλe , w
λ
e ]. (16)

We also define Γ̃0 = ×e∈E[w0
e, w

0
e]. Notice that Γ̃λ, λ ∈ [0, 1], is the classical

scenario set containing all scenarios whose possibility of occurrence is not
less than λ. This property allows us to decompose the fuzzy problem into a
family of interval problems. We will make use of this fact later in this paper.

As in the deterministic and interval cases (see Sections 2 and 3.1) we
can characterize the optimality of a solution X and an element f using the
concept of deviation. In the fuzzy problem the solution and element devi-
ations are unknown quantities that fall within fuzzy intervals ∆̃X and ∆̃f ,
fuzzy deviations, whose membership functions µe∆X

and µe∆f
are possibility

distributions for values of δX and δf , respectively, defined as follows:

µe∆X
(v) = Π(δX = v) = sup

{S: δX(S)=v}
π(S), (17)

µe∆f
(v) = Π(δf = v) = sup

{S: δf (S)=v}
π(S). (18)

14



Fuzzy deviations (17) and (18) allow us to characterize possible and neces-
sary optimality of solutions and elements. Recall that the statement “X is
optimal” is equivalent to the condition δX = 0, so we can define the degrees
of possible and necessary optimality of solution X, as the possibility and
necessity of the event “X is optimal” (see (13) and (14)):

Π(X is optimal) = Π(δX = 0) = µe∆X
(0), (19)

N(X is optimal) = N(δX = 0) = 1− Π(δX > 0) (20)

= 1− sup
v>0

µe∆X
(v).

In the same manner, we can define the degrees of possible and necessary
optimality of element f as the possibility and necessity of the event “f is
optimal”. It suffices to replace X with f in (19) and (20).

4.3. Computing the optimality degrees and fuzzy deviations

Let us first consider the problem of computing the degrees of possible

and necessary optimality of a given solution X. Denote by ∆̃λ
X = [δλX , δ

λ

X ], a
λ-cut of the fuzzy deviation of X. From (19) and (11), it follows easily that

Π(X is optimal) = sup{λ ∈ [0, 1] : 0 ∈ ∆̃λ
X = [δλX , δ

λ

X ]}
= sup{λ ∈ [0, 1] : δλX = 0} (21)

and Π(X is optimal) = 0 if δ0
X > 0. A similar reasoning leads to the following

equality:

N(X is optimal) = 1− inf{λ ∈ [0, 1] : δ
λ

X = 0} (22)

and N(X is optimal) = 0 if δ
1

X > 0. Note that the interval ∆̃λ
X = [δλX , δ

λ

X ] is

the deviation interval of X in problem BP under scenario set Γ̃λ, that is the
one with interval weights W̃ λ

e = [wλe , w
λ
e ] for all e ∈ E.

Equations (21) and (22) form a theoretical basis for calculating the val-
ues of the optimality degrees. They are links between the interval and fuzzy
problems. So, in order to compute the degree of possible optimality of X,
we need to find the largest value of λ such that X is possibly optimal un-
der scenario set Γ̃λ (which is equivalent to the condition δλX = 0). Since
δλX is nondecreasing function of λ, we can apply a binary search technique
on λ ∈ [0, 1]. At each iteration the possible optimality of X under scenario

set Γ̃λ is checked, which can be done by using Proposition 1 or Corollary 1.
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Similarly, in order to compute the degree of necessary optimality of X, we
need to find the smallest value of λ such that X is necessarily optimal under

scenario set Γ̃λ (which is equivalent to the condition δ
λ

X = 0). Function δ
λ

X is
nonincreasing of λ and hence the degree of necessary optimality can also be
computed by using a binary search. At each iteration the necessary optimal-
ity of X under scenario set Γ̃λ is tested using Proposition 1 or Corollary 2.
If I(|E|) is the time required to assert whether a given solution is possibly
(necessarily) optimal in the corresponding interval problem, then its degree
of possible (necessary) optimality can be calculated in O(I(|E|) log ε−1) time,
where ε > 0 is a given error tolerance.

The possibility distribution for solution deviation can be determined ap-
proximately via the use of λ-cuts. That is, we compute intervals ∆̃λ

X =

[δλX , δ
λ

X ] for suitably chosen λ-cuts using Proposition 1. Then the fuzzy in-

terval ∆̃X can be reconstructed from the obtained λ-cuts by using equal-
ity (11). This method gives an approximation of ∆̃X . Its overall running
time is O(rI(|E|)), where r is the number of computed λ-cuts and I(|E|) is

time required to determine ∆̃λ
X .

In order to obtain an analytical and exact representation of possibility
distribution ∆̃X a parametric technique can be applied. Proposition 1 yields:

δλX = max{0,max
e∈X

wλe − F ∗(S+λ
E )}, λ ∈ [0, 1], (23)

δ
λ

X = max
e∈X

max{0, wλe − F ∗(S+λ
{e})}, λ ∈ [0, 1], (24)

where wλe and wλe e ∈ E, are parametric weights (functions of the param-
eter λ), S+λ

{e} is the scenario in which we fix the weight of element e to wλe
and the weights of elements g ∈ E \ {e} to wλg and S+λ

E is the scenario in
which all the weights are at wλe . The main difficulty in determining bounds

δλX and δ
λ

X is the computation of F ∗(S+λ
E ) and F ∗(S+λ

{e}), which are functions

of parameter λ, λ ∈ [0, 1]. Note that for any fixed λ
′ ∈ [0, 1], F ∗(S+λ

′

E )

(resp. F ∗(S+λ
′

{e} )) is the value of the weight of an optimal solution under

scenario S+λ
′

E (resp. S+λ
′

{e} ). Hence, in order to describe analytically func-

tion F ∗(S+λ
E ) (resp. F ∗(S+λ

{e})) for λ ∈ [0, 1], we have to determine sequences
0 = λ0 < λ1 < · · · < λk = 1 and X0, . . . , Xk−1 such that Xi is an optimal so-
lution under S+λ

E (resp. S+λ
{e}) for λ ∈ [λi, λi+1], λi and λi+1 are two adjacent

points. At points λ1 < λ2 < · · · < λk−1 optimal solutions change. Therefore,
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Xi is optimal over the entire closed interval [λi, λi+1] and nowhere else with
the parametric weight F (Xi, S

+λ
E ) = F ∗(S+λ

E ) (resp. F (Xi, S
+λ
{e}) = F ∗(S+λ

{e})).

Having computed λ1 < λ2 < · · · < λk−1 and parametric weights F (Xi, S
+λ
E )

(resp. F (Xi, S
+λ
{e}) for every e ∈ X), λ ∈ [λi, λi+1], i = 0, . . . , k − 1, it is

easy to describe analytically F ∗(S+λ
E ) (resp. F ∗(S+λ

{e}) for every e ∈ X) for

λ ∈ [0, 1] and, in consequence, δλX (resp. δ
λ

X) in (23) (resp. (24)). It turns
out that if wλe and wλe are linear functions of λ for each e ∈ E, then for some
particular bottleneck problems their parametric counterparts can be solved
by algorithms proposed in [35, 36] and by algorithms being some adaptations
to the bottleneck case of the ones given in [37, 38, 39].

The functions F (Xi, S
+λ
E ) (resp. F (Xi, S

+λ
{e})), λ ∈ [λi, λi+1], i = 0, . . . , k−

1, are piecewise linear and thus F ∗(S+λ
E ) (resp. F ∗(S+λ

{e})) are piecewise linear

for λ ∈ [0, 1]. In consequence, F ∗(S+λ
E ), F ∗(S+λ

{e}) and also the family of

intervals ∆̃λ
X , λ ∈ [0, 1], can be computed if the uncertain weights are modeled

by trapezoidal or triangular fuzzy intervals or by more general fuzzy intervals
of the L-L type (see (12), where R = L) since the bounds can be then easily
linearized. Namely, it is sufficient to substitute L−1(λ) with parameter Θ
in (12). The parametric approach requires performing operations on linear
functions. Some methods for handling piecewise linear qualities and some
operations that preserve piecewise linearity (maximum, minimum, addition
and subtraction) can be found in [40].

The same reasoning applies to elements because it is enough to replace
X with f in formulae (21) and (22). However, the computational complexity
for an element depends now on the structure of problem BP . For instance,
if BP has matroidal structure, then the reasoning is exactly the same. We
only need to use Corollaries 4, 5 and Proposition 4. Otherwise (if problem BP
is not matroidal one) we can only compute the degree of possible optimality
of an element f (Corollary 3) or determine the left profile δλf , λ ∈ [0, 1], of

the possibility distribution ∆̃f (Proposition 2).
Let us illustrate the above approach using a simple example of the bot-

tleneck path problem with fuzzy weights shown in Figure 2. The arc weights
are specified as triangular fuzzy intervals W̃f = (wf , αf , βf ), f ∈ A =
{a, b, c, d, e}, so the bounds wλf = wf − αf (1 − λ) and wλf = wf + βf (1 − λ)
are linear functions of λ ∈ [0, 1]. Let us examine path X = {b, e}. We

wish to determine its fuzzy deviation ∆{b,e}, i.e. functions δλ{b,e} and δ
λ

{b,e},

λ ∈ [0, 1]. In order to determine analytical representation of F ∗(S+λ
A ), we
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W̃aW̃b W̃cW̃d W̃e

0 1

1

2 3 4 6 7 8 9

a

b

c

d

e

W̃a = (3, 3, 6)

W̃b = (2, 1, 2)

W̃c = (4, 3, 4)

W̃d = (1, 1, 1)

W̃e = (6, 2, 1)

Figure 2: An example of a fuzzy-valued bottleneck path problem – a network with fuzzy
weights (triangular fuzzy intervals).

need to compute a sequence of λ’s and corresponding optimal paths under
scenario S+λ

A . The resulting sequence is 0 < 1
3
< 1

2
< 1, path {b, e} is opti-

mal with weight F ({b, e}, S+λ
A ) = 6 + (1 − λ) for λ ∈ [0, 1

3
], path {b, c, d} is

optimal with weight F ({b, c, d}, S+λ
A ) = 4 + 4(1− λ) for λ ∈ [1

3
, 1

2
] and path

{a, d} is optimal with weight F ({a, d}, S+λ
A ) = 3 + 6(1 − λ) for λ ∈ [1

2
, 1].

Accordingly, F ∗(S+λ
A ) is a piecewise linear function whose value is 6+(1−λ)

for λ ∈ [0, 1
3
]; 4 + 4(1 − λ) for λ ∈ [1

3
, 1

2
]; and 3 + 6(1 − λ) for λ ∈ [1

2
, 1].

Moreover, maxf∈{b,e}wλf = 6− 2(1−λ), λ ∈ [0, 1]. Applying (23) yields δλ{b,e}
whose value is 0 for λ ∈ [0, 5

8
]; 3− 8(1− λ) for λ ∈ [5

8
, 1] (see Figure 3).

Let us pass on to determining δ
λ

{b,e}. Path {a, d} is optimal under scenarios

S+λ
{b} and S+λ

{e} for every λ ∈ [0, 1]. Thus F ∗(S+λ
{b}) = F ∗(S+λ

{e}) = 3−3(1−λ) for

λ ∈ [0, 1]. Function max{0, wλb −F ∗(S+λ
{b})} is piecewise linear and its value is

−1+5(1−λ) for λ ∈ [0, 4
5
]; 0 for λ ∈ [4

5
, 1]. It holds max{0, wλe −F ∗(S+λ

{e})} =

3 + 4(1 − λ) for λ ∈ [0, 1]. Applying (24) gives δ
λ

{b,e} = 3 + 4(1 − λ) for

λ ∈ [0, 1]. Having δλ{b,e} and δ
λ

{b,e} for λ ∈ [0, 1], we can form possibility
distribution µe∆{b,e}

for the deviations of {b, e} (see Figure 3).

Having the possibility distribution we can get some information about
path {b, e}. For example, we can compute Π({b, e} is optimal) = Π(δ{b,e} =
0) = 5/8 and N({b, e} is optimal) = 0. In fact, we can compute the pos-
sibility and necessity of any event of the form δ{b,e} ∈ [u, v]. In particular,
the interval [0, 7] contains all possible values of δ{b,e}, so N(δ{b,e} ∈ [0, 7]) =
1− Π(δ{b,e} /∈ [0, 7]) = 1
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Figure 3: Bounds δλ{b,e} and δ
λ

{b,e} for path {b, e} and possibility distribution µe∆{b,e}
(v) =

Π(δ{b,e} = v) for values of δ{b,e}.

4.4. Choosing a robust solution

We now propose some concepts of choosing a robust solution in the fuzzy-
valued problem BP . The first idea is to choose a solution with the highest
degree of certainty that it will be optimal, i.e. an optimal solution to the
following problem:

max
X∈Φ

N(X is optimal) = max
X∈Φ

N(δX = 0). (25)

A solution to (25) is called a best necessarily optimal solution. Unfortunately,
this concept has a drawback, since the criterion used in (25) is very strong.
Namely, a solution X such that N(X is optimal) > 0 may not exist or even
if it exists, its necessary optimality degree may be very small. On the other
hand, maximizing the degree of possible optimality is trivial, since there is
always at least one solution X ∈ Φ for which the degree of possible optimality
attains its maximal value equal to 1. We thus meet the same problem as in
the interval uncertainty representation - the possible optimality is too weak
criterion of choosing a solution and the necessary optimality is too strong (see
Section 3.2). To overcome this drawback, we replace the strong optimality
requirement with a weaker one.

Suppose that a decision maker knows her/his preferences about δX and

expresses it by a fuzzy goal G̃, a fuzzy set in R with a compact support.
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The membership function of the fuzzy goal µ eG is a nonincreasing mapping
from [0,∞) into [0, 1] such that µ eG(0) = 1. The value of µ eG(δX) expresses
the degree to which deviation δX satisfies the decision maker. We can now
replace the strong requirement “X is optimal” (δX = 0) with the weaker

“δX ∈ G̃”. Recall that δX is an unknown quantity characterized by possibility
distribution πδX = µe∆X

(see (17)). So, “δX ∈ G̃” is a fuzzy event and we can
compute the necessity that this event holds using (14):

N(δX ∈ G̃) = 1− Π(δX 6∈ G̃) = 1− sup
v∈R

min{πδX (v), 1− µ eG(v)}.

Using (17) we get an equivalent formula:

N(δX ∈ G̃) = inf
S

max{1− π(S), µ eG(δX(S))}.

One can check that N(δX ∈ G̃) = 1 means that for all scenarios S such
that π(S) > 0 the deviation of X in scenario S, δX(S), is totally accepted

or equivalently the degree of possibility of event “δX 6∈ G̃” equals zero. If
N(δX ∈ G̃) = 0, then Π(δX 6∈ G̃) = 1 and, with possibility equal to 1 a
scenario may occur, in which the deviation of X is not at all accepted. More
generally, N(δX ∈ G̃) = 1−λ, means that for all scenarios S such that π(S) >
λ, the degree of satisfaction is not less than 1 − λ, i.e. µ eG(δX(S)) ≥ 1 − λ,

or equivalently, by (11), δX(S) ∈ G̃1−λ = [0, g1−λ]. The above three cases
are illustrated in Figure 4. We use the possibility distribution from Figure 3
and three different goals. The right profile of ∆̃{b,e}, representing the largest
deviation of {b, e}, is shown in bold.

There is an obvious connection between N(X is optimal) and N(δX ∈ G̃),
that is

N(X is optimal) ≤ N(δX ∈ G̃). (26)

Hence, we have generalized and weakened the notion of the necessary opti-
mality.

Accordingly, it is reasonable to choose a solution whose deviation belongs
to G̃ with the highest confidence. This leads to the following optimization
problem:

max
X∈Φ

N(δX ∈ G̃). (27)

An optimal solution to (27) is called a best necessarily soft optimal solution.
We recall that the criterion of choosing a solution in (27) has been originally
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Figure 4: Three different cases depending on the choice of fuzzy goal G̃: a) N(δ{b,e} ∈
G̃) = 1, b) N(δ{b,e} ∈ G̃) = 0, c) N(δ{b,e} ∈ G̃) = 1− λ.

proposed in [14, 15] and applied to determining a robust solution for fuzzy

linear programming problems. Obviously, if G̃ is zero fuzzy interval, then we
arrive to the problem of finding a best necessarily optimal solution (25).

It is not difficult to show that problem (27) is equivalent to the following
one:

min λ

s.t. δ
λ

X ≤ g1−λ,
λ ∈ [0, 1],
X ∈ Φ.

(28)

If λ∗ is the optimal objective value of (28) and X∗ is a best necessarily soft
optimal solution, then N(X∗ is soft optimal) = 1 − λ∗. If (28) is infeasible

then N(δX ∈ G̃) = 0 for all solutions X ∈ Φ. In the next two sections we
show two methods of solving (27).

4.4.1. Binary search algorithm

Since δ
λ

X is nonincreasing and g1−λ is nondecreasing function of λ, prob-
lem (28) can also be solved by binary search technique on λ ∈ [0, 1] (see
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Algorithm 1). In order to find the optimal value of λ∗ in [0, 1], we seek
at each iteration, for a fixed λ, a solution X ∈ Φ that satisfies inequality

δ
λ

X ≤ g1−λ. Observe that δ
λ

X is the maximal regret of X under scenario

set Γ̃λ (see Section 3.2). Thus, inequality δ
λ

X ≤ g1−λ is satisfied for some
X ∈ Φ if and only if it is satisfied by an optimal min-max regret solution
under Γ̃λ.

Algorithm 1: Finding a best necessarily soft optimal solution

Input: Problem BP with fuzzy weights W̃e, e ∈ E, error tolerance ε,
fuzzy goal G̃.

Output: A best necessarily soft optimal solution.
Find an optimal minmax regret solution X under scenario set Γ̃1

if δ
1

X > g0 then

return X /* N(δX ∈ G̃) = 0 for all X ∈ Φ */

λ1 ← 1
2
; λ2 ← 0; k ← 1

while |λ1 − λ2| ≥ ε do
λ2 ← λ1

Find an optimal minmax regret solution Y under scenario set Γ̃λ1

if δY (λ1) ≤ g1−λ1 then X ← Y , λ1 ← λ1 − 1
2k+1

else λ1 ← λ1 + 1
2k+1

k ← k + 1

return X /* N(δX ∈ G̃) = 1− λ1 */

The running time of Algorithm 1 is O(I(|E|) log ε−1) time, where ε > 0
is a given error tolerance and I(|E|) is the time required for seeking an

optimal minmax regret solution under scenario set Γ̃λ. Note that I(|E|) =
O(|E| + |E|f(|E|)) (see Section 3.2), where f(|E|) is the running time of
an algorithm for problem BP with deterministic weights. Thus, the overall
running time is O((|E| + |E|f(|E|)) log ε−1). Consequently, Algorithm 1 is
polynomial if the running time f(|E|) is polynomial. In [1, 2, 3, 4] some
polynomial algorithms for the bottleneck path, the bottleneck assignment,
the bottleneck spanning tree, and the bottleneck matroid base problems with
deterministic weights can be found. Therefore, Algorithm 1 is polynomial for
a wide class of bottleneck combinatorial optimization problems.

22



4.4.2. Parametric technique

We now present a parametric approach to finding a best necessary optimal
solution. The problem (28) can be rewritten as follows (see also (10)):

min{λ ∈ [0, 1] : min
X∈Φ

max
e∈X

ŵλe ≤ g1−λ}, (29)

where ŵλe = max{0, wλe − F ∗(S+λ
{e})}, e ∈ E, are parametric weights. Deter-

mining these weights requires computing functions F ∗(S+λ
{e}) for each e ∈ E.

This can be done by applying the parametric approach for finding the possi-
bility distribution of a solution (see Section 4.3 for details). As the result we
obtain a parametric bottleneck problem with weights ŵλe , e ∈ E:

δ
λ

= min
X∈Φ

max
e∈X

ŵλe , λ ∈ [0, 1], (30)

Solving (30) we get sequence 0 = λ0 < λ1 < · · · < λk = 1 and the

optimal minmax regret solutions X0, . . . , Xk−1 with maximal regrets δ
λ

Xi
,

λ ∈ [λi, λi+1], i = 0, . . . , k− 1, which provide an analytical description of the

function δ
λ

for λ ∈ [0, 1] (see Section 4.3 for references to algorithms for some

particular parametric bottleneck problem). The function δ
λ

is nonincreasing
and, by (29), we conclude that in order to obtain a best necessarily soft op-

timal solution we have to find the intersection point λ∗ of δ
λ

with g1−λ. If
λ∗ ∈ [λi, λi+1], then Xi is a best necessarily soft optimal solution. If such an

intersection point does not exist, then two cases are possible: either δ
1
> g0

or δ
0
< g1. In the former case N(δX ∈ G̃) = 0 for all feasible solutions X ∈ Φ

and, in the latter one, N(δX0 ∈ G̃) = 1 and X0 is a best necessarily soft
optimal solution.

The above solution procedure is more complex than binary search. It
has, however, two advantages. It gives an exact best necessarily soft optimal
solution. Furthermore, it provides some additional information in the fuzzy
problem. Observe that, regardless of fuzzy goal, a best necessarily soft op-
timal solution is always among X0, . . . , Xk−1. One can easily check how the
solution changes when the fuzzy goal G̃ is changed. So, we can perform a
sensitivity analysis of the obtained solution.

In the absence of fuzzy goal, we can treat the set of solutions XXX =
{X0, . . . , Xk−1} as a solution of the fuzzy problem with the following inter-
pretation. The first solution X0 is the most conservative one. It minimizes
the maximal regret over all possible scenarios S such that π(S) > 0. It
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should be chosen by very pessimistic or very risk-averse decision maker. On
the other hand, the last solution Xk−1 minimizes the maximal regret only
over the most plausible scenarios S such that π(S) = 1 and it may be cho-
sen by an optimistic decision maker, who considers only the most possible
states of the world. So, XXX contains solutions of different degree of risk or
conservatism. After introducing a fuzzy goal, which expresses the decision
maker’s preferences (or averse to risk), exactly one of the sequences of XXX will
be chosen.

5. Conclusions

In this paper, we have studied a general bottleneck combinatorial opti-
mization problem with uncertain element weights modeled by fuzzy intervals.
The membership functions of theses fuzzy intervals are regarded as possibil-
ity distributions for the values of the unknown weights. We have described,
in this setting, the notions of possible and necessary optimality of a solu-
tion and an element and the necessary soft optimality of a solution. These
notions are natural generalizations of the ones introduced in the interval-
valued case. In order to choose a robust solution, we have determined a best
necessary soft optimal solution. This concept of choosing a solution is also
a generalization of the minmax regret criterion to the fuzzy case. We have
thus shown that there exists a link between interval and possibilistic un-
certainty representation. Hence, we have discussed first the interval-valued
case and then we have extended the notions and the methods introduced for
the interval-valued problem to the fuzzy-valued one. Indeed, the optimality
evaluation and choosing a robust solution in the fuzzy problem boil down to
solving a number of problems BP with interval weights. Both problems can
be solved in polynomial time if the corresponding deterministic counterparts
(problems BP with precise weights) are polynomially solvable. This holds
true for a wide class of classical bottleneck combinatorial problems. This is
in contrast to the problems with a linear sum objective, where the optimality
evaluation and computing a robust solution is mostly NP-hard.

Appendix A.

Proof (Proposition 1). Let S ∈ Γ be a scenario that minimizes the de-
viation, that is δX = δX(S) = F (X,S)−F ∗(S) (see (2)). Since maxe∈X we ≤
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F (X,S), F ∗(S+
E ) ≥ F ∗(S) and δX ≥ 0, we conclude that

δX ≥ max{0,max
e∈X

we − F ∗(S+
E )}. (A.1)

It remains to show that the inequality ≤ also holds in (A.1). Let Y be an
optimal solution under S+

E and let g = arg maxe∈Y we. We consider two
cases. (i) maxe∈X we > wg. Denote h = arg maxe∈X we. Consider scenario
S such that we(S) = min{wh, we} for all e ∈ X and we(S) = we for all
e ∈ E \ X. Since wh ≥ we for all e ∈ X, S ∈ Γ. It is easy to check that
F (X,S) = wh and F ∗(S) = F ∗(S+

E ). Hence δX ≤ δX(S) = maxe∈X we −
F ∗(S+

E ) ≤ max{0,maxe∈X we−F ∗(S+
E )}, which together with (A.1) yield (4).

(ii) maxe∈X we ≤ wg. Consider scenario S such that under this scenario all
elements e ∈ E \X have weights we and all the elements e ∈ X have weights
min{we, wg}. Since we ≤ wg for all e ∈ X, S ∈ Γ. One can easily verify
that X is optimal under S, which means that δX = 0 ≤ max{0,maxe∈X we−
F ∗(S+

E )}. This, together with (A.1), give (4). �

Proof (Proposition 2). It is easy to see that δf = minX∈Φf
δX . So, by

Proposition 1, δf = minX∈Φf
max{0, F (X,S−E )−F ∗(S+

E )}, which immediately
leads to (6). �

Proof (Proposition 3). (⇒) Obvious. (⇐) Suppose, by contradiction,
that X is composed of possibly optimal elements and X is not possibly op-
timal. According to Corollary 1, we get wf = maxe∈X we > F ∗(S+

E ). But
minX∈Φf

F (X,S−E ) ≥ wf and minX∈Φf
F (X,S−E ) > F ∗(S+

E ), which contra-
dicts the assumption that f ∈ X is possibly optimal (see Corollary 3). �

Proof (Proposition 4). We will use the following well known property
of matroids: if B ∈ B is a base and f is an element such that f /∈ B, then
B ∪ {f} contains the unique circuit C. Furthermore, for every e ∈ C, set
(B∪{f})\{e} is a base. We first prove equality (7). Let S ∈ Γ be a scenario
that minimizes δf (S) (see (3)), δf = δf (S) = minB∈Bf

F (B, S) − F ∗(S).
Therefore, we have the following inequality

δf ≥ max{0, wf − F ∗(S+
E )}, (A.2)

because wf ≤ minB∈Bf
F (B, S), F ∗(S) ≤ F ∗(S+

E ) and δf ≥ 0. We now need
to show that inequality ≤ holds in (A.2). Let B∗ be an optimal base under
S+
E , F (B∗, S+

E ) = F ∗(S+
E ), and set g = arg maxe∈B∗ we. (i) Assume that wf >
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wg. Consider scenario S ∈ Γ such that wf (S) = wf and we(S) = we for all
E\{f}. Since wf > F ∗(S+

E ), F (B∗, S) = F ∗(S) = F ∗(S+
E ). Observe, B∗∪{f}

contains an unique circuit C. Set B
′
= (B∗\{e})∪{f}, e ∈ C \{f}, is a base

and B
′ ∈ Bf , where Bf stands for the set all bases that contain element f .

From the above and wf > wg, we obtain minB∈Bf
F (B, S) ≤ F (B

′
, S) = wf .

Therefore, δf ≤ δf (S) = minB∈Bf
F (B, S) − F ∗(S) ≤ max{0, wf − F ∗(S+

E )}
which together with (A.2) imply equality (7). (ii) Assume that wf ≤ wg.
We will show that in this case δf = 0, which together with (A.2) yields (7).
Consider scenario S ∈ Γ such that wf (S) = min{wf , wg} and we(S) = we
for all E \{f}. It is easily seen that F (B∗, S) = F ∗(S) = F ∗(S+

E ). If f ∈ B∗,
then δf = 0 and we are done. Otherwise, B∗∪{f} contains an unique circuit

C. Set B
′
= (B∗\{e})∪{f}, e ∈ C \{f}, is a base and F (B

′
, S) ≤ F (B∗, S).

In consequence B
′

is optimal under S and δf = 0.
We now show equality (8). Let S ∈ Γ be a scenario that maximizes δ(S),

that is δf = δf (S). Since δf (S) ≥ δf (S
+
{f}) = minB∈Bf

F (B, S+
{f})−F ∗(S

+
{f}),

minB∈Bf
F (B, S+

{f}) ≥ wf and δf ≥ 0, we see that

δf ≥ max{0, wf − F ∗(S+
{f})}. (A.3)

It remains to show that inequality ≤ holds in (A.3). It is obviously true
if δf = 0. So, suppose that δf = δf (S) > 0. Thus, minB∈Bf

F (B, S) >
F ∗(S) = F (B∗, S). Obviously, f 6∈ B∗ and wf (S) > F ∗(S). Moreover,
wf (S) ≥ minB∈Bf

F (B, S). Otherwise, base B
′

= (B∗ \ {e}) ∪ {f}, e ∈
C \ {f}, where C is an unique circuit in B∗ ∪ {f}, is such that F (B

′
, S) <

minB∈Bf
F (B, S), B

′ ∈ Bf , a contradiction. Therefore, wf ≥ wf (S) ≥
minB∈Bf

F (B, S) > F ∗(S). Since f 6∈ B∗, F ∗(S) ≥ F ∗(S+
{f}). Hence,

δf = δf (S) = minB∈Bf
F (B, S) − F ∗(S) ≤ max{0, wf − F ∗(S+

{f})}, which

together with (A.3) give equality (8). �

Proof (Proposition 5). We use a proof by contraposition. Assume that
X is not possibly optimal. From Corollary 1, we have maxe∈X we > F ∗(S+

E ).
Let Y ∗ be an optimal solution in scenario S+

E . Define g = arg maxe∈Y ∗ we
and h = arg maxe∈X we. Thus wh(S) > wg for all scenarios S ∈ Γ. But
wg ≥ we(S) for all e ∈ Y ∗ in every scenario S, which yields wh(S) > we(S)
for e ∈ Y ∗. From this we conclude that F (X,S) > F (Y ∗, S) for all S ∈ Γ,
which implies δX > δY . In consequence, X cannot be an optimal minmax
regret solution. It is obvious that every possibly optimal solution is composed
of possibly optimal elements. �
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