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Abstract This paper deals with two Recoverable Robust (RR) models forcombi-
natorial optimization problems with uncertain costs. These models were originally
proposed by Büsing (2012) for the shortest path problem with uncertain costs. In
this paper, we generalize the RR models to a class of combinatorial optimization
problems with uncertain costs and provide new positive and negative complexity
results in this area.

1 Introduction

Let E = {e1, . . . ,en} be a finite ground set and letΦ ⊆ 2E be a set of subsets ofE
called the set of thefeasible solutions. A nonnegative costce is given for each ele-
mente∈ E. A combinatorial optimization problemP with a linear objective func-
tion consists in finding a feasible solutionX whose total cost,C(X) = ∑e∈X ce, is
minimal, namely:

P : min
X∈Φ

C(X). (1)

Formulation (1) encompasses a large variety of the classical combinatorial opti-
mization problems. In practice, the precise values of the element costsce, e∈ E,
in (1) may be ill-known. This uncertainty can be modeled by specifying a set of all
possible realizations of the element costs (states of the world) calledscenarios. We
denote byS the set of all scenarios. Formally, a scenario is a vectorS= (cS

e)e∈E,
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that represents an assignment of costs to the elements ofE. Let CS(A) = ∑e∈AcS
e,

whereA ⊆ E. A popular approach to combinatorial optimization problems P for
hedging against the uncertainty of the element costs, modeled by scenarios, is aro-
bust approach, in which we seek a solution minimizing a worst case performance
over all scenarios (see, e.g. [9]):

ROB P : OPTRob= min
X∈Φ

CRob(X) = min
X∈Φ

max
S∈S

CS(X). (2)

In this paper, we investigate twoRecoverable Robust(RR) models for combina-
torial optimization problems with uncertain element costsunder the scenario uncer-
tainty representation. These models were originally proposed in [4] for the shortest
path problem. Here, we generalize them to the combinatorialoptimization prob-
lem (1).

In the Rent-Recoverable Robustmodel, we are given arental factorα ∈ (0,1)
and aninflation factor β ≥ 0. Let CS

R(X) = αCS(X) be therent costof solution
X ∈ Φ under scenarioSandCS

I (X) = minY∈Φ{(1−α)CS(Y)+ (α +β )CS(Y \X)}
be theimplementation costof solutionX ∈ Φ under scenarioS. DefineCRent(X) =
maxS∈S {CS

R(X)+CS
I (X)}. In the RENT-RR P problem we wish to find a solu-

tion X ∈ Φ minimizingCRent(X), namely:

RENT-RR P : OPTRent= min
X∈Φ

CRent(X) = min
X∈Φ

max
S∈S

{CS
R(X)+CS

I (X)}. (3)

In thek-Distance-Recoverable Robustmodel, we are given thefirst stage element
costs c1e, e∈ E, and arecovery parameter k∈ IN. For a givenX ∈ Φ andk, we
will denote byΦk

X the set of feasible solutionsY such that|Y\X| ≤ k. LetC1(X) =

∑e∈X c1
e andCRec(X) =maxS∈S minY∈Φk

X
CS(Y) be the first stage and recovery costs,

respectively. DefineCDist(X) =C1(X)+CRec(X). In thek-DIST-RRP problem we
seek a solutionX ∈ Φ minimizingCDist(X), namely:

k-DIST-RR P : OPTDist = min
X∈Φ

CDist(X) = min
X∈Φ

{C1(X)+CRec(X)}. (4)

In this paper we consider two methods of describing the set ofscenariosS . In
the discrete scenario uncertainty representation, the scenario set, denoted bySD,
is defined by explicitly listing all possible scenarios. So,SD = {S1, . . . ,SK} is finite
and contains exactlyK ≥ 1 scenarios. We distinguish thebounded case, where the
number of scenariosK is bounded by a constant and theunbounded case, where the
number of scenariosK is a part of the input. In theinterval uncertainty represen-
tation the element costs are only known to belong to closed intervals [ce,ce]. Thus,
the set of scenarios, denoted bySI , is the Cartesian product of these intervals, i.e.
SI =×e∈E[ce,ce].
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2 Rent-RR combinatorial optimization problems

In this section we discuss the RENT-RR P problem. We provide some new com-
plexity and approximation results for various problemsP. We now focus on the
discrete scenario uncertainty representation. Consider first the case whenP is the
M INIMUM SPANNING TREE. ThenE is the set of edges of a given undirected graph
G = (V,E) andΦ contains all spanning trees ofG (a spanning tree is a subset of
exactly|V|−1 edges that form an acyclic subgraph ofG).

Proposition 1. There is a polynomial time approximation preserving reduction from
ROB M INIMUM SPANNING TREE to RENT-RR MINIMUM SPANNING TREE.

Proof. Let (G = (V,E),SD = {S1, . . . ,SK}) be an instance of ROB M INIMUM

SPANNING TREE. We build a graphG′ = (V ′,E′) by adding an additional nodev′ to
V and additional parallel edgese1

v, . . . ,e
K
v of the form{v′,v} for each nodev∈V. We

form the scenario setS
′

D = {S
′

1, . . . ,S
′

K} as follows. Ife∈E, then the cost ofeunder
S
′

k is the same as underSk. The cost of additional edgeej
v, v∈V, j ∈ [K], underS

′

k
equals 0 if j = k andM otherwise, whereM = |E|maxe∈E maxS∈SD cS

e. Finally, we
add thedistinguished edge, denoted byf , that connectsv′ with any node ofV. The
edgef has zero costs under all scenariosS∈ S

′

D. Now it is easy to check that every
solutionX

′
, to the RENT-RR MINIMUM SPANNING TREE in graphG′ and with

scenario setS
′

D, whose cost isCRent(X
′
) < α M (at least one such solution always

exists) is of the formX
′
= X∪{ f}, whereX is a spanning tree inG (X is a solution

to ROB M INIMUM SPANNING TREE). FurthermoreCS
I (X

′
) = 0 for all S∈ S

′

D. So,
CRent(X

′
) =α maxS∈S ′

D
CS(X∪{ f}) =α maxS∈SD CS(X) =αCRob(X). Therefore,

it is evident that the reduction becomes approximation preserving one. ⊓⊔

We now examine the case whenP is MINIMUM S -T CUT. We are given a graph
G= (V,E) with distinguished two nodessandt andΦ consists of alls-t-cuts inG,
that is the subset of the edges whose removal disconnectssandt.

Proposition 2. There is a polynomial time approximation preserving reduction from
ROB M INIMUM S -T CUT to RENT-RR MINIMUM S -T CUT.

Proof. Let (G = (V,E),SD = {S1, . . . ,SK},s, t) be an instance of ROB M INIMUM

S-T CUT. We form graphG′ = (V ′,E′) by adding toV additional nodesv1, . . . ,vK

and edgese1 = {t,v1},e2 = {v1,v2}, . . . ,eK = {vK−1,vK}. Furthermores′ = s and
t ′ = vK . We form the scenario setS

′

D = {S
′

1, . . . ,S
′

K} in the following way. Ife∈ E,
then the cost ofeunderS

′

k is the same as underSk. The cost of additional edgeej , j ∈
[K], underS

′

k equals 0 ifj = k andM otherwise, whereM = |E|maxe∈E maxS∈SD cS
e.

The rest of the proof runs similarly as the one of Proposition1. ⊓⊔

Assume now thatP is MINIMUM SELECTING ITEMS, whereE is a set ofn items
andΦ = {X ⊆ E : |X|= p}, wherep is a given integer between 1 andn.

Proposition 3. There is a polynomial time approximation preserving reduction from
ROB M INIMUM SELECTING ITEMS to RENT-RR MINIMUM SELECTING ITEMS.
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Proof. Given an instance(E,SD = {S1, . . . ,SK}, p) of ROB M INIMUM SELECTING

ITEMS, we formE′ by adding toE additional itemsej
1, . . . ,e

j
p for eachj ∈ [K]. We

form the scenario setS
′

D = {S
′

1, . . . ,S
′

K} in the following way. Ife∈E, then the cost
of eunderS

′

k is the same as underSk. The cost of additional itemej
i , i ∈ [p], j ∈ [K],

underS
′

k equals 0 ifj = k andM otherwise, whereM = |E|maxe∈E maxS∈SD cS
e. The

reasoning is then similar to that in the proof of Proposition1. ⊓⊔

Assume now thatP is MINIMUM ASSIGNMENT, so we are given a bipartite graph
G= (V,E) andΦ consists of all perfect matchings inG.

Proposition 4. There is a polynomial time approximation preserving reduction from
RENT-RR SHORTEST PATH with a discrete scenario set toRENT-RR MINIMUM

ASSIGNMENTwith a discrete scenario set.

Proof. In [1] it has been proposed an approximation preserving reduction from
ROB SHORTESTPATH with SD to ROB M INIMUM ASSIGNMENT with SD. A re-
duction from RENT-RR SHORTESTPATH to RENT-RR MINIMUM ASSIGNMENT

is almost the same.⊓⊔

From some complexity results for the robust versions of the problems under con-
sideration with a discrete scenario set [2, 3, 6–9] and Propositions 1-4, we obtain
the following two theorems:

Theorem 1. For the bounded case,RENT-RR MINIMUM SPANNING TREE, RENT-
RR MINIMUM ASSIGNMENT and RENT-RR MINIMUM SELECTING ITEMS are
weakly NP-hard,RENT-RR MINIMUM S -T CUT is strongly NP-hard even for two
scenarios.

Theorem 2. For the unbounded case,RENT-RR MINIMUM S -T CUT and RENT-
RR MINIMUM ASSIGNMENTare not approximable withinlog1−ε K for anyε > 0,
unless NP⊆ DTIME(npoly logn), RENT-RR MINIMUM SPANNING TREE is not ap-
proximable within O(log1−ε n) for any ε > 0, where n is the input size, unless NP
⊆ DTIME(npolylogn) and RENT-RR MINIMUM SELECTING ITEMS is not approx-
imable within constant factorγ > 1, unless P=NP.

We now show some positive results, which are generalizations of the results given
in [4], for the shortest path problem. We consider first the ROB P and RENT RRP

problems with the same discrete scenario setSD.

Theorem 3. Suppose that there exists an approximation algorithm forROB P with
a performance ratio ofγ. Let XRob∈ Φ be a solution constructed by this algorithm.
Then CRent(XRob)≤ min{γ +1+β ,γ/α} ·OPTRent.

Proof. The following bounds can be concluded directly from (2) and (3):

OPTRent≥ α min
X∈Φ

max
S∈SD

CS(X) = αOPTRob, OPTRent≥ max
S∈SD

min
Y∈Φ

CS(Y), (5)

CRent(X) = max
S∈SD

{αCS(X)+min
Y∈Φ

{(1−α)CS(Y)+ (α +β )CS(Y \X)}}

≤ max
S∈SD

{αCS(X)+ (1−α)CS(X)}=CRob(X) for all X ∈ Φ. (6)
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CRent(XRob) = max
S∈SD

{αCS(XRob) + min
Y∈Φ

{(1−α)CS(Y) + (α + β )CS(Y \XRob)}} ≤

γα OPTRob+ max
S∈SD

min
Y∈Φ

{(1−α)CS(Y)+ (α +β )CS(Y)}
(5)
≤ (γ +1+β )OPTRent.

CRent(XRob)
(6)
≤ CRob(XRob)≤ γ OPTRob

(5)
≤ (γ/α)OPTRent. ⊓⊔

We now consider the interval uncertainty representation.

Theorem 4. An optimal solution toRENT-RR P with scenario setSI can be ob-
tained by computing an optimal solution of its deterministic counterpartP with the
costsce, e∈ E.

Proof. Let X ∈ Φ be an optimal solution forP with the costsce, e∈ E. Then for
everyX ∈ Φ it holds:CRent(X) = maxS∈SI {α ∑e∈X cS

e+minY∈Φ{(1−α)∑e∈Y cS
e+

(α + β )∑e∈Y\X cS
e}} ≥ α ∑e∈X ce+ (1− α)minY∈Φ ∑e∈Y ce ≥ minY∈Φ ∑e∈Y ce =

∑e∈X ce. A trivial verification shows thatCRent(X) = ∑e∈X ce. ⊓⊔

3 k-Dist-RR Spanning tree problem

In this section, we prove hardness and inapproximability results fork-Dist-RR MIN-
IMUM SPANNING TREE with scenario setSD.

Theorem 5. The k-Dist-RRM INIMUM SPANNING TREE problem with scenario
setSD is weakly NP-hard in series-parallel graphs, even for two scenarios and
any constant k.

Proof. Consider an instance of 2-PARTITION [5] in which we are given a setA=
{a1, . . . ,an} and an integer sizes(a) for eacha ∈ A such that∑a∈As(a) = 2b. We
ask if there is a subsetA

′
⊂ A such that∑a∈A′ s(a) = ∑a∈A\A′ s(a). We construct an

instance ofk-Dist-RR MINIMUM SPANNING TREE as follows: graphG= (V,E) is
a series composition ofn+ k, 4-edge subgraphs,G1, . . . ,Gn,G

′

1, . . . ,G
′

k, whereGi

corresponds to elementai ∈ A andk is a constant. The costs of each edgee∈ E are
given by a triple(c1

e,c
S1
e ,cS2

e ), wherec1
e is the first stage cost andcS1

e andcS2
e are the

costs under scenariosS1 andS2, respectively. The reduction is depicted in Fig. 1,
M > 2b.

(0, M,M)(0, M,M)

(M, 0, 0)(M, 0, 0)(0, s(a1), 0)

(0, 0, s(a1))

G1

(0, s(a2), 0)

(0, 0, s(a2))

G2

(0, s(an), 0)

(0, 0, s(an))

Gn G
′

k
G

′

1

Fig. 1 A reduction from 2-PARTITION to k-Dist-RR MINIMUM SPANNING TREE. All the dummy
edges (the dashed edges) have costs(0,0,0).

It is not difficult to show that a 2-partition exists if and only if there exists an
optimal spanning treeX in G such thatCDist(X) = b (see Fig. 1). ⊓⊔
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Theorem 6. For the unbounded case, the k-Dist-RRM INIMUM SPANNING TREE

with scenario setSD is strongly NP-hard and not at all approximable unless P=NP.

Proof. We show a gap-introducing reduction from a decision versionof M INIMUM

DEGREESPANNING TREE [5]. We are given a graphG=(V,E) andd∈ IN, d< |V|.
We ask if there is a spanning tree inG such that its maximum node degree is not
greater thand. For eache= {i, j}∈E, we add toE arecovery edge, er = {i, j}r , that
connects nodesi and j. The resulting graphG

′
= (V,E

′
) is a multigraph such that

|E
′
|= 2|E|. All the edges inE have zero first stage costs and all the recovery edges

have the first stage costs equal to|V|. The scenario setSD = {S1, . . . ,S|V|}. The cost
of edge{u,v} ∈ E under scenarioSj equals 1 ifu= j or v= j and 0 otherwise; the
cost of recovery edge{u,v}r under scenarioSj equals 0 ifu = j or v = j and|V|
otherwise. Finally, we setk = d. Suppose that the maximum node degree of some
spanning treeX of G is at mostd. Clearly, X is also a spanning tree ofG

′
and

does not use any recovery edge. Under each scenarioSj ∈ SD, we can decrease the
cost ofX to zero be replacing at mostk = d edges incident to nodej with their
recovery counterparts. Thus,CDist(X) = 0. On the other hand, ifCDist(X) = 0, then
the spanning treeX of G′ cannot use any recovery edge (because its first stage cost
is positive) and at mostd edges incident to each nodej, which can be replaced by at
mostk= d recovery edges. ThusX is a spanning tree ofG with the maximum node
degree at mostd. ⊓⊔
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