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Abstract In this chapter a review of recent results on robust discrete optimization
is presented. The most popular discrete and interval uncertainty representations are
discussed. Various robust concepts are presented, namely the traditional minmax
(regret) approach with some of its recent extensions, and several two-stage concepts.
A special attention is paid to the computational properties of the robust problems
considered.

1 Introduction

In this chapter we will be concerned with a class of discrete optimization problems
defined as follows. We are given a finite set of elements E = {e1, . . . ,en} and a set
of feasible solutions Φ ⊆ 2E . Each element ei ∈ E has a nonnegative cost ci and
we seek a feasible solution X ∈ Φ which minimizes the total cost f (X) = ∑ei∈X ci.
This traditional deterministic discrete optimization problem will be denoted by P .
The above formulation encompasses, for instance, an important class of network
problems. Namely, E can be identified with the set of arcs of a network G = (V,E)
and Φ contains some objects in G such as s− t paths, spanning trees, s− t cuts,
perfect matchings, or Hamiltonian cycles. We thus get the well known and basic
problems such as SHORTEST PATH, MINIMUM SPANNING TREE, MINIMUM S-T
CUT, MINIMUM ASSIGNMENT, or TRAVELING SALESPERSON, respectively. A
comprehensive description of the class of deterministic network problems can be
found, for example, in books [1, 79].
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In most cases, P can be alternatively formulated as a 0-1 programming problem.
Indeed, a binary variable xi ∈ {0,1} is associated with element ei ∈ E and so P has
the following formulation:

min ∑
n
i=1 cixi

s.t. (x1, . . . ,xn) ∈ ch(Φ),

where ch(Φ) is the set of characteristic vectors of Φ , described in a compact form
by a system of constraints involving x1, . . . ,xn. For example, when we have one con-
straint of the form ∑

n
i=1 wixi ≥ p, we obtain the KNAPSACK problem. If, addition-

ally, wi = 1 for each i ∈ [n] and p is an integer in [n] ([n] denotes the set {1, . . . ,n}),
then we get the SELECTION problem. An optimal solution to this problem can be
computed in O(n) time by choosing p elements out of E of the smallest costs. In this
chapter, we will also discuss the following REPRESENTATIVES SELECTION prob-
lem (it is also called WEIGHTED HITTING DISJOINT SET, see, e.g., [17]). Let us
partition the set [n] into u disjoint subsets T1, . . . ,Tu. Then ch(Φ) is described by
a system of constraints of the form ∑i∈Tj xi = 1 for each j ∈ [u]. Hence, each fea-
sible solution is composed of exactly one element e j from each Tj. An important
characteristic of this problem is the value of rmax = max j∈[u] |Tj|. An optimal so-
lution to this problem is composed of elements of the smallest costs from each Tj.
Both SELECTION and REPRESENTATIVES SELECTION problems become nontriv-
ial under uncertainty. We will discuss them later in detail as they allow us to obtain
strong negative complexity results for many robust versions of discrete optimization
problems.

In many practical applications the element costs are often uncertain, which means
that their precise values are not known before computing a solution. In this case a
scenario set U , containing all possible realizations of the element costs, is a part
of input. Each particular cost realization (cS

1, . . . ,c
S
n) ∈U is called a scenario. Then

f (X ,S) = ∑ei∈X cS
i is the cost of solution X under scenario S. In this chapter we will

focus on two popular methods of defining set U - discrete and interval uncertainty
representations. For the discrete uncertainty representation [62], scenario set, de-
noted by UD, contains K explicitly listed scenarios. This uncertainty representation
is appropriate when each scenario corresponds to an event which globally influences
the element costs. For example, an uncertain weather forecast can globally change
a system environment, and these uncertain weather conditions can be modeled by
discrete scenarios. For the interval uncertainty representation [15], scenario set, de-
noted by U `

I is defined as follows. We assume that the cost of element ei can take
any value within the interval [ci,ci + di], where ci is a nominal cost and di is the
maximum deviation of the value of the cost from its nominal value. Then U `

I is a
subset of the Cartesian product of these intervals, under the additional assumption
that in each scenario in U `

I , the costs of at most ` elements can be greater than their
nominal values. The value of ` ∈ [0,n] is fixed and allows us to control the degree
of uncertainty. When `= 0, then we get a deterministic problem with one scenario.
On the other hand, when `= n, then we get the traditional interval uncertainty rep-
resentation [62], in which scenario set is equal to the Cartesian product of all the
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uncertainty intervals. We will denote this particular special case of scenario set by
UI = U n

I . The scenario set UI models a local uncertainty, i.e. we assume that the
cost of each element may vary independently on the costs of the remaining elements.
For instance, a traveling time of some link is often uncertain and can be modeled
by a closed interval which provides us a bound on the minimum and the maximum
possible value of the traveling time. It is often not possible to measure some costs
precisely and the measurement error can also be expressed as a closed interval.

In mathematical programming problems some other types of scenario sets, in
particular the ellipsoidal uncertainty or the column-wise uncertainty, are also used.
In general U can be any set, typically assumed to be convex [14]. In this chapter
we will not be concerned with such more general scenario sets. Some discussion on
them can be found in the recent survey [39]. In robust optimization, also the set of
feasible solutions can be uncertain and may depend on a scenario (see, e.g. [66]). In
the class of problems discussed in this chapter the set of feasible solutions Φ is de-
terministic, i.e. it remains the same for each scenario in U . Under this assumption,
the discrete and interval uncertainty representations are the easiest and, in many
cases, possess sufficient expressive power.

If no additional information for U (such as a probability distribution) is pro-
vided, then we face a decision problem under uncertainty. In order to choose a
solution we can use some well known criteria used in decision theory under uncer-
tainty (see e.g. [64]). Among them there are the minmax and minmax regret criteria,
which assume that the decision maker is risk averse and seeks a solution minimizing
the cost or opportunity loss in a worst case, i.e under a worst scenario which may
occur. By using the minmax (regret) criterion we obtain the robust minmax (regret)
optimization problem. This traditional robust approach to discrete optimization has
some well known drawbacks, which we will discuss in more detail in Sect. 2. By ap-
plying the minmax (regret) criterion we may sometimes get unreasonable solutions
(we will show some examples in Sect. 2). Furthermore, it is not true that decision
makers are always extremely risk averse. Hence, there is a need to soften the very
conservative minmax (regret) criterion. Also, in many practical applications deci-
sion makers have some additional information provided with U . For example, a
probability distribution in U or its estimation may be available. This information
should be taken into account while computing a solution. In Sect. 3 we will present
some recent extensions of the robust approach which take into account both an at-
titude of decision makers towards a risk and an information about the probability
distribution in U .

The minmax approach can be generalized by considering the robust optimization
problem with incremental recourse [73]. This problem can be seen as a zero-sum
game against the nature with the following rules. The decision maker chooses first
a solution X whose cost f (X) is precisely known. Then nature picks a scenario S
from U and the decision maker, chooses the next solution Y after observing S. The
solution Y has the cost f (Y,S) and must be of some predefined distance from X . The
decision maker wants to minimize the total cost f (X)+ f (Y,S) while the nature aims
to maximize this total cost, i.e. it always picks the worst scenario for solution X . It is
easily seen that the robust optimization problem with incremental recourse contains
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the minmax problem as a special case. Indeed, by assuming that the initial cost of X
is always 0 and Y must be the same as X (no modification of X is allowed) we
arrive to the minmax problem. The robust optimization with incremental recourse is
similar to robust recoverable optimization [17, 18, 63], because a limited recovery
action is allowed after observing which scenario has occurred. We will study the
robust optimization problems with incremental recourse in Sect. 4.

The traditional min-max (regret) approach is a one-stage decision problem, i.e. a
complete solution must be computed before a true scenario reveals. However, many
practical problems have a two-stage nature. Namely, a partial solution is formed in
the first stage, when the costs are precisely known and then it is completed optimally
when a true cost scenario from U occurs. We seek a solution whose maximum
total cost in both stages is minimum. We will discuss the class of robust two-stage
problems in Sect. 5.

The aim of this chapter is to present and compare various concepts used in robust
discrete optimization under the discrete and interval uncertainty representations. A
survey of the results in the area of robust minmax (regret) optimization up to 2009
can be found in [62, 41, 5]. In this chapter we present new results and concepts
which have recently appeared in the literature. We will pay a special attention to
the computational properties of the problems under study (a recent survey from the
algorithmic perspective can be found in [39]). In Sect. 2 we present the traditional
minmax (regret) approach. We also show, in Sect. 3, some of its extensions which
allow decision makers to model their attitude towards risk and exploit scenario prob-
abilities. In Sect. 4 we examine the robust optimization problems with incremental
recourse. Finally, in Sect. 5 we describe the class of robust two-stage problems.

The class of problems considered in this chapter is rather broad. However, it does
not cover an important class of sequencing problems in which a feasible solution is
represented by a permutation of the elements (typically called jobs). A recent survey
of the results for the minmax (regret) sequencing problems can be found in [55].
Another class of problems, which is not discussed in detail, contains the ones with
the bottleneck cost function. The minmax (regret) versions of such problems were
investigated in [8], where it was shown that their complexity is nearly the same
as the complexity of their deterministic counterparts. An extension of the minmax
bottleneck problems has been discussed in [54]. We also do not mention about the
maximum relative regret criterion. Some properties of this criterion, in particular its
connections with the maximum regret, can be found in [10, 62].

2 Robust min-max (regret) problems

In this section we discus the traditional robust approach to deal with discrete opti-
mization problems with uncertain costs. We describe the minmax and minmax regret
criteria, which are typically used in the robust optimization framework. We present
the known complexity results for basic problems and show some drawbacks of the
minmax (regret) approach.
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2.1 Using the minmax criterion

This section is devoted to the study of the following minmax problem:

MIN-MAX P : min
X∈Φ

max
S∈U

f (X ,S).

We thus seek a solution minimizing the maximum cost over all scenarios. Minmax
is the most popular criterion used in robust optimization [62, 14]. The minmax prob-
lem can be alternatively stated as follows:

min t
s.t. ∑i∈[n] cS

i xi ≤ t ∀S ∈U
(x1, . . . ,xn) ∈ ch(Φ)
t ≥ 0

(1)

The minmax criterion can be extremely conservative and it will be used by pes-
simistic decision makers, or in situations in which it is very important to avoid bad
scenarios. Perhaps, the most serious drawback of the minmax approach is that it
may lead to solutions which are not Pareto optimal. Consider two sample MIN-
MAX SHORTEST PATH problems, shown in Fig. 1. All the three paths, depicted in
Fig. 1a, have the same maximum cost equal to 16. Hence, we can choose the path
{e2,e5} which is weakly dominated by the remaining two paths. When the number
of scenarios becomes large, then the so-called drowning effect may occur [33], i.e.
only one bad scenario is taken into account while choosing a solution and the infor-
mation associated with the remaining scenarios is ignored. A similar situation occurs
for the interval uncertainty representation and it is shown in the sample problem in
Fig. 1b. Path {e1} is almost always better than path {e2}, but both can be chosen
after applying the minmax criterion. Also, an optimal minmax solution which is
Pareto optimal, can be a questionable choice. Consider again the sample problem
presented in Fig. 1a, and change the cost of arc e2 under S3 to 7. The path {e2,e5} is
then an optimal minmax solution which is also Pareto optimal. However, this path
is only slightly better than {e1,e4} under S3 and much worse under S1 and S2.

Fig. 1 a) A sample MIN-MAX SHORTEST PATH problem with three scenarios S1 = (2,10,3,1,1),
S2 = (1,11,0,5,1), S3 = (8,8,0,8,8). b) A sample MIN-MAX SHORTEST PATH problem with
interval costs.
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The examples given in Fig. 1 show that there is a need of modification of the
minmax criterion. If the decision maker is interested in minimizing the total cost,
then a chosen solution should always be Pareto optimal. Furthermore, an attitude
of decision makers towards a risk should be taken into account, because not all
decision makers are extremely risk averse. In Sect. 3.1 we will suggest a criterion
which allows us to overcome both these drawbacks. In the next section, we will
discuss all the known complexity results for MIN-MAX P .

2.1.1 Discrete uncertainty representation

Consider the discrete uncertainty representation, i.e. when U = UD. The known
complexity results for some basic minmax problems are shown in Table 1.

Table 1 Complexity results for various MIN-MAX P problems with scenario set UD.

MIN-MAX P constant K unbounded K
SHORTEST PATH NP-hard for K = 2 [89], strongly NP-hard [89],

FPTAS [3] not appr. within O(log1−ε K)
for any ε > 0 [50],
appr. within K [5]

MINIMUM SPANNING TREE NP-hard for K = 2 [88, 62], strongly NP-hard [88, 62],
FPTAS [3] not appr. within O(log1−ε K)

for any ε > 0 [53],
appr. within O(log2 n)
with high probability [53]

MINIMUM S-T CUT strongly NP-hard strongly NP-hard [4],
for K = 2 [4] not appr. within O(log1−ε K)

for any ε > 0 [50],
appr. within K [5]

MINIMUM ASSIGNMENT strongly NP-hard strongly NP-hard [2, 84, 90],
for K = 2 [84, 90] not appr. within O(log1−ε K)

for any ε > 0 [50],
appr. within K [5]

SELECTION NP-hard for K = 2 [9], strongly NP-hard [51],
FPTAS [3] not appr. within any const. γ > 0 [42],

appr. within O(logK/ log logK) [31]
REPR. SELECTION NP-hard for K = 2 [32], strongly NP-hard [32],

FPTAS [32] not appr. within O(log1−ε K)
for any ε > 0 [44],
not appr. within 2− ε when rmax = 2
for any ε > 0 [29],
appr. within min{K,rmax} [44]

KNAPSACK NP-hard for K = 1 [38], strongly NP-hard [87, 51],
FPTAS [3] not appr. within any const. γ > 0 [42]

Observe that all these problems become NP-hard or strongly NP-hard, even when
the number of scenarios equals 2. However, if the number of scenarios is constant
then some of them can be solved in pseudopolynomial time (typically a dynamic
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programming method is applied) and admit a fully polynomial time approximation
scheme (FPTAS). We should point out, here, that the running times of the pseu-
dopolynomial algorithms and the FPTAS’s proposed in the literature are exponen-
tial in K and, in consequence, the practical applicability of them is rather limited.
The complexity of the problems become worse when the number of scenarios is
a part of input. In particular, the network problems are then hard to approximate
within O(log1−ε K) for any ε > 0 [50, 53]. A similar result holds for the MIN-MAX
REPRESENTATIVES SELECTION problem [44]. The MIN-MAX SELECTION and
MIN-MAX KNAPSACK problems are then hard to approximate within any constant
factor γ > 0 [42].

If the underlying deterministic problem P is polynomially solvable, then MIN-
MAX P is approximable within K. It is enough to solve the deterministic prob-
lem P for the aggregated costs ĉi = maxS∈UD cS

i (or ĉi = ∑S∈UD cS
i ), i ∈ [n]. A

straightforward proof of this fact can be found, for instance, in [5]. This ap-
proximation ratio has been improved for two particular problems. For MIN-MAX
MINIMUM SPANNING TREE a randomized O(log2 n)-approximation algorithm was
constructed in [53] and for the MIN-MAX SELECTION problem a deterministic
O(logK/ log logK)-approximation algorithm was proposed in [31]. These algo-
rithms are based on the idea of randomized rounding of linear programming pro-
grams, which seems to be a promising tool for establishing stronger approximation
results for the minmax problems, when the number of scenarios is a part of input.

The MIN-MAX P problem can be solved exactly by applying the formula-
tion (1). After replacing (x1, . . . ,xn) ∈ ch(Φ) with a system of linear constraints,
we obtain a compact MIP formulation for the problem. Other exact methods for this
problem, such as branch and bound algorithms, can be found in [62].

In some cases, the underlying deterministic problem P is a maximization prob-
lem, i.e. we seek a solution which maximizes the total cost. It is then natural to study
the symmetric MAX-MIN P problem, in which we wish to find a solution maximiz-
ing the minimum cost over all scenarios, i.e. maxX∈Φ minS∈U f (X ,S). Interestingly,
for scenario set UD, MAX-MIN P seems to be harder than the corresponding MIN-
MAX P problem. In [57] it has been shown that MAX-MIN INDEPENDENT SET
problem in interval graphs (this problem was first discussed in [76]), whose deter-
ministic version is polynomially solvable, is not at all approximable when K is a
part of input. A similar fact was observed for MAX-MIN KNAPSACK in [3] (see
also [75]).

2.1.2 Interval uncertainty representation

Let us address the interval uncertainty representation, i.e. when U = U `
I . We first

discuss the case UI = U n
I . It is easy to check that the complexity of MIN-MAX P

is then almost the same as P , because it is sufficient to solve the deterministic
problem P for scenario (c1 + d1, . . . ,cn + dn). Consequently, when P is solvable
in O(T (n)) time, then MIN-MAX P is solvable in O(n+T (n)) time. The problem
is more challenging when U = U `

I for a fixed ` ∈ [0,n]. An algorithm for this case
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was proposed in [15]. We now briefly describe it. Let us number the elements so that
d1 ≥ d2 ≥ ·· · ≥ dn and define dn+1 = 0. Define scenario S j under which the cost of
ei is equal to ci +(di−d j) if i≤ j and ci otherwise, where j ∈ [n+1]. In [15] it has
been shown that MIN-MAX P with scenario set U `

I is equivalent to the following
problem:

min
j∈[n+1]

(`d j +min
X∈Φ

f (X ,S j)). (2)

Observe that (2) reduces to solving n+ 1 deterministic problems P for the costs
specified in scenarios S1, . . . ,Sn+1 and, in consequence, when P is solvable in
O(T (n)) time, then MIN-MAX P is solvable in O(nT (n)) time. We thus get a
tractable class of problems under uncertainty. Furthermore, it has been observed
in [15] that this algorithm can be extended to problems P which are NP-hard but
admit an α-approximation algorithm. In this case, that approximation algorithm can
be used to solve the inner problem minX∈Φ f (X ,S j) and the minmax problem is also
approximable within α .

2.2 Using the minmax regret criterion

In this section we treat the following minmax regret problem:

MIN-MAX REGRET P : min
X∈Φ

max
S∈U

( f (X ,S)− f ∗(S)),

where f ∗(S) is the cost of an optimal solution under scenario S. The quantity
f (X ,S)− f ∗(S) is called a regret of X under S and it expresses a deviation of so-
lution X from the optimum under S. We thus seek a solution which minimizes the
maximum regret over all scenarios. The maximum regret criterion is also called
Savage criterion or maximum opportunity loss. The minmax regret problem can be
alternatively stated as follows:

min t
s.t. ∑i∈[n] cS

i xi ≤ t + tS ∀S ∈U
(x1, . . . ,xn) ∈ ch(Φ)
t ≥ 0,

(3)

where tS is the cost of an optimal solution under scenario S. If we apply the minmax
regret criterion to the sample problem presented in Fig. 1, then we get the reasonable
paths {e1,e3,e5} in Fig. 1a and {e1} in Fig. 1b. Observe that the maximum regret
of {e1} equals 0 which means that this path is optimal under each scenario.

It is important to realize that the maximum regret is quite different quantity than
the maximum cost. In the former, the decision maker aims to minimize the oppor-
tunity loss, i.e. the cost of a solution is compared ex-post to the cost of the best
solution which could be chosen. Consider the sample MIN-MAX REGRET SHORT-
EST PATH problem depicted in Fig. 2a. Both paths {e1} and {e2} have the same
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maximum regret equal to 1. However, the maximum cost of path {e1} is twice the
maximum cost of {e2}. Hence, a solution with small maximum regret may have a
large maximum cost in comparison with other solutions. Decision makers who just
want to minimize the solution cost should be careful while using the minmax regret
criterion.

Fig. 2 Two sample MIN-MAX REGRET SHORTEST PATH problems with scenarios sets UI .

Another drawback of the minmax regret criterion is shown in Fig. 2b. It is easy to
check that path {e1,e4} has the smallest maximum regret equal to 3 and there is no
path with smaller maximum regret. Suppose that we remove the path (a single arc)
{e5} from the network. Then path {e1,e3} has the smallest maximum regret equal
to 2 and no other path has smaller maximum regret. Observe that the path {e5} is
never optimal since its regret is very large. This example shows that the maximum
regret criterion does not satisfy the property of independency of irrelevant alterna-
tives [64], i.e. adding a non-optimal (and thus irrelevant) solution to the problem can
make the optimal solution nonoptimal and vice versa.

It is evident that MIN-MAX REGRET P is NP-hard and not at all approximable
when P is NP-hard. This is true even in the deterministic case when K = 1. It
follows from the fact that it is then NP-hard to compute a solution of the maximum
regret equal to 0. Also, computing the maximum regret of a given solution is, in this
case, NP-hard. This implies, in particular, that MIN-MAX REGRET KNAPSACK is
not at all approximable under both discrete and interval uncertainty representations.

In [65] the following randomized version of MIN-MAX REGRET P has been
proposed. That is, instead of choosing a single solution, a probability distribution
over all solutions is computed and we seek a probability distribution which mini-
mizes the maximum expected regret. This problem can be seen as a game, in which
the decision maker chooses a probability distribution and an adversary chooses then
the worst scenario, knowing this probability distribution. Notice that in the tradi-
tional minmax regret problem, the decision maker is restricted to choose the solution
deterministically. Interestingly, the best probability distribution can be computed in
polynomial time if P is polynomially solvable. This holds for both discrete and
interval uncertainty representations (see [65] for details).
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2.2.1 Discrete uncertainty representation

Let us now discuss the discrete uncertainty representation, i.e. the case when U =
UD. The known complexity results for the minmax regret versions of some basic
problems P are shown in Table 2.

Table 2 Complexity results for various MIN-MAX REGRET P problems with scenario set UD.

MIN-MAX REGRET P constant K unbounded K
SHORTEST PATH NP-hard for K = 2 [89], strongly NP-hard [89],

FPTAS [3] not appr. within O(log1−ε K)
for any ε > 0 [50],
appr. within K [5]

MINIMUM SPANNING TREE NP-hard for K = 2 [88, 62], strongly NP-hard [88, 62],
FPTAS [3] not appr. within O(log1−ε K)

for any ε > 0 [53],
appr. within K [5]

MINIMUM S-T CUT strongly NP-hard strongly NP-hard [4],
for K = 2 [4] not appr. within O(log1−ε K)

for any ε > 0 [50],
appr. within K [5]

MINIMUM ASSIGNMENT strongly NP-hard strongly NP-hard [2, 84, 90],
for K = 2 [84, 90] not appr. within O(log1−ε K)

for any ε > 0 [50],
appr. within K [5]

SELECTION NP-hard for K = 2 [9], strongly NP-hard [51],
FPTAS [3] not appr. within any const. γ > 0 [42],

appr. within K [5]
REPR. SELECTION NP-hard for K = 2 [32], strongly NP-hard [32],

FPTAS [32] not appr. within O(log1−ε K)
for any ε > 0 [44],
not appr. within 2− ε when rmax = 2
for any ε > 0 [29],
appr. within K [5]

KNAPSACK NP-hard for K = 1 [38], strongly NP-hard [87, 51],
not at all appr. not at all appr.

Similarly to MIN-MAX P , MIN-MAX REGRET P becomes NP-hard or strongly
NP-hard when the number of scenarios equals 2. These negative results can be
strengthen when the number of scenarios is a part of input and they are the same
as for MIN-MAX P (see Table 1). In fact, the proof showing the hardness of MIN-
MAX P can be, in most cases, easily modified to show the same hardness result for
the minmax regret version of P . Typically, it suffices to add a number of dummy
elements and scenarios to the constructed instance.

Observe that there is lack of stronger positive results when the number of sce-
narios is a part of input. The only known and general result states that when P is
polynomially solvable, then MIN-MAX REGRET P is approximable within K. The
idea is to solve the deterministic problem for the average costs ĉi =

1
K ∑S∈UD cS

i ,
i ∈ [n]. A straightforward proof of this fact can be found in [5].
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We can use (3) to construct a compact MIP formulation for the minmax regret
problem. However, the underlying problem P must by polynomially solvable, since
we need the costs of the optimal solutions tS for each S ∈UD. Other exact methods
for solving the problem can be found in [62].

2.2.2 Interval uncertainty representation

We now turn to case when U = UI , i.e. the interval uncertainty representation. In
the existing literature the problem with scenario set UI has been extensively studied.
To the best of our knowledge, more general scenario set U `

I has been not yet inves-
tigated. The known complexity results and solution methods for various problems,
under scenario set UI , are shown in Table 3.

Table 3 Complexity results and solutions methods for various MIN-MAX REGRET P problems
with scenario set UI .
MIN-MAX REGRET P Complexity Solution methods
SHORTEST PATH strongly NP-hard [11], MIP [40], B&B [72, 23],

appr. within 2 [46], Benders [71],
NP-hard for planar graphs [91], Enumeration [69],
NP-hard for sp-graphs [47], Other methods [34]
FPTAS for sp-graphs [49]

MINIMUM SPANNING TREE strongly NP-hard [11, 6], MIP [86], B&B [70, 7],
appr. within 2 [46] B&Cut [82],

Benders [67],
Tabu Search [45],
Simulated Annealing [74],
Other methods [34]

MINIMUM S-T CUT strongly NP-hard [4], MIP [41]
appr. within 2 [46],
NP-hard for sp-graphs [47, 49],
FPTAS for sp-graphs [49]

MINIMUM ASSIGNMENT strongly NP-hard [2], MIP [41],
appr. within 2 [46] Benders [80],

Local Search [80], GA [80]
SELECTION solv. in O(n ·min{n,n− p}) time [24]
REPR. SELECTION solv. in O(n2) time [32]
KNAPSACK Σ

p
2 -hard [28], MIP [37], B&Cut [37],

not at all appr. Local Search [37]

The number of scenarios in UI is infinite. It is, however, easy to show that we
can replace UI with the set of extreme scenarios, which is the Cartesian product
Πi∈[n]{ci,ci+di}. It is also not difficult to show (see, e.g. [41, 52]) that the maximum
regret of X equals f (X ,SX )− f ∗(SX ), where SX is the extreme scenario under which
the costs of ei ∈ X equal ci+di and the costs of ei /∈ X are equal to ci. Consequently,
the maximum regret of a given solution X can be computed in polynomial time if
the underlying deterministic problem P is polynomially solvable. Remarkable, this
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is not the case for the minmax regret version of the linear programming problem
with interval objective function coefficients, since it has been shown in [12] that
computing the maximum regret of a given solution is strongly NP-hard.

It turns out (see [11]) that in order to compute an optimal minmax regret solution
it is enough to compute an optimal solution for each extreme scenario and choose
the best one. Consequently, if the number of nondegenerate cost intervals, i.e. such
that di > 0, is bounded by r · logn, then it is sufficient to enumerate at most nr

solutions. This yields a polynomial method for constant r. Obviously, this method
is exponential in general case.

Let us now discuss some general properties of MIN-MAX REGRET P . A solu-
tion X is called possibly optimal if it is optimal under at least one scenario in U and
X is called necessarily optimal if it is optimal under all scenarios in U . Similarly,
an element ei is possibly optimal if it is a part of an optimal solution under at least
one scenario and it is necessarily optimal if it is a part of an optimal solution under
all scenarios. It turns out that under scenario set UI , each optimal minmax regret
solution is possibly optimal and is entirely composed of possibly optimal elements.
This fact was first observed for the minmax regret versions of SHORTEST PATH and
MINIMUM SPANNING TREE in [40, 86] and it was generalized to all problems P
in [52]. Notice, that this is not the case for scenario set UD, where it is easy to con-
struct a sample problem whose optimal minmax regret solution is not optimal under
any scenario. On the other hand, the maximum regret of a necessarily optimal solu-
tion equals 0, so it must be the optimal minmax regret solution (this is true for any
scenario set U ). It was shown in [52] that when all cost intervals are nondegenerate,
i.e. di > 0 for all i ∈ [n], then there is an optimal minmax regret solution containing
all necessarily optimal elements.

The notions of possibly and necessarily optimal elements can be very useful, as
they allow us to reduce the size of a problem instance before a solution is com-
puted, for example, by using a MIP formulation or a branch and bound algorithm.
Namely, all non-possibly optimal elements can be removed from E and, under the
absence of degeneracy, all necessarily elements can be automatically added to the
solution constructed. Some computational tests (see. e.g. [40, 45]) suggest that for
many instances more than 50% elements are non-possibly optimal. One can also
expect several elements to be necessarily optimal in each instance. Hence, a partial
solution can be formed before a more complex algorithm is executed. Unfortunately,
detecting possibly and necessarily optimal elements is not an easy task in general.
In particular, the problem of checking whether a given element is possibly optimal,
is strongly NP-hard for the SHORTEST PATH, MINIMUM ASSIGNMENT and MIN-
IMUM S-T CUT problems [21, 52]. All possibly and necessarily optimal elements
can be detected in polynomial time if P is a matroidal problem [48], in particular,
when P is SELECTION or MINIMUM SPANNING TREE. For the SHORTEST PATH
problem a subset of possibly optimal elements (arcs) can be detected by efficient
algorithms proposed in [40, 20]. Also, when the network is acyclic all necessarily
optimal arcs can be detected in polynomial time [36]

As we can see in Table 3, the minmax regret versions of all the basic network
problems are strongly NP-hard for general graphs. Two special cases, namely MIN-
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MAX REGRET SHORTEST PATH and MIN-MAX REGRET MINIMUM S-T CUT in
series-parallel multidigraphs can be solved in pseudopolynomial time and admit an
FPTAS [47, 49]. Fortunately, the following positive and general result is known
for all polynomially solvable problems P . Let SM be the midpoint scenario, under
which the cost of ei is equal to ci+0.5di, i ∈ [n]. In [46] it has been shown that if X∗

is an optimal solution under scenario SM , then the maximum regret of X∗ is at most
twice the maximum regret of an optimal minmax regret solution. Consequently, if
P is polynomially solvable, then MIN-MAX REGRET P is approximable within 2.
The 2-approximation algorithm has been extended to a wider class of minmax regret
problems in [25]. We do not know whether there exists an approximation algorithm
with a performance ratio better than 2 (except for some very special cases). Also,
no negative approximation result for MIN-MAX REGRET P is known, when P is
polynomially solvable. So, the existence of an PTAS in this case cannot be excluded.
Observe that this result allows us to detect efficiently a solution with the maximum
regret equal to 0 (i.e. a necessarily optimal solution).

The computational tests (see, e.g. [45, 41]) suggest that the approximation algo-
rithm behaves well in practice. It is often profitable to modify it by considering two
solutions: an optimal solution under the midpoint scenario and an optimal solution
under the pessimistic scenario (c1 +d1, . . . ,cn +dn). The approximation algorithm,
denoted as AMU, returns the better of these two solutions. Algorithm AMU seems
to perform well except for some rather artificial instances [45]. However, it is also
only a 2-approximation algorithm and a sample worst case instance for it (a MIN-
MAX REGRET SHORTEST PATH instance) is depicted in Fig. 3. Note that algorithm
AMU may return any of the three possible paths. But the maximum regret of the
best path equals 1, while the maximum regret of the worst path equals 2. A similar
example for MIN-MAX REGRET MINIMUM SPANNING TREE can be found in [45].

Fig. 3 A worst case instance
for algorithm AMU.

In the following we give a brief exposition of the known approaches to deal
with the NP-hard minmax regret problems (see also Table 3). For the class of net-
work problems there exists a compact mixed integer programming (MIP) formu-
lation [5, 41], which can be solved by means of some available software such as
CPLEX. Another popular approach is to apply the Benders decomposition tech-
nique or a specialized branch and bound (cut) method. The detailed description of
the computational tests for various instances can be found in the references given in
Table 3.

The exact methods seem to be particularly efficient for the minmax regret ver-
sion of the SHORTEST PATH problem, as they allow us to solve large problems
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in reasonable time (see e.g. [71]). The exact methods perform much worse for the
minmax regret version of MINIMUM SPANNING TREE, which is a very interest-
ing problem still requiring more deep investigation. The largest instances which can
be solved to optimality are composed of networks having up to 40 nodes [45, 82].
For this problem a local search method seems to be more efficient. There is a very
natural definition of a neighborhood of a given spanning tree. Namely, we get a
neighbor X ′ of a spanning tree X by performing the operation X ′ = X ∪{e} \ { f},
where e ∈ E \X and f ∈ X . We can then apply a simple iterative improvement or
more sophisticated tabu search algorithm to compute a solution. The computational
tests performed in [45] suggest that the obtained solutions are close to the optimum
even for large instances. Interestingly, a local minimum with respect to the specified
neighborhood can also be a factor of 2 away from the global minimum, even when
one starts from a solution computed by AMU (see [45]).

For the minmax regret version of MINIMUM SPANNING TREE another interest-
ing result has been established in [34]. It turns out that the problem complexity
depends on the number of intersecting intervals. Indeed, an optimal minmax regret
spanning tree can be found in O(2kn logn) time, where k is the maximum number
of intervals that intersect at least one other interval. So, from this point of view,
the hardest instances are the ones in which all the cost intervals are the same, for
instance equal to [0,1] (a MIP approach is very poor in this case [45]). This spe-
cial case is equivalent to the strongly NP-hard CENTRAL SPANNING TREE prob-
lem [16, 6]. Observe that for this problem algorithm AMU may return any solution
and designing an approximation algorithm with a performance ratio better than 2 is
an interesting and important open problem.

In the existing literature some other problems have been also investigated and,
in the following, we briefly describe them. In [68] the minmax regret version of the
TRAVELING SALESPERSON problem with interval costs and in [81] the minmax
regret version of the SET COVERING problem with interval costs have been stud-
ied. Both problems are quite challenging as their deterministic versions are strongly
NP-hard. The solution methods proposed in [68, 81] (a branch and cut algorithm,
Benders decomposition and some heuristics) are general and can easily be extended
to other minmax regret problems with interval data, whose deterministic counter-
parts are NP-hard. In [26] the minmax regret version of the MINIMUM SPANNING
ARBORESCENCE problem with interval costs has been examined. An arborescence
is a subgraph of a given graph G in which there is exactly one path from a given
root node r to any other node of G. For undirected graphs the problem is equiva-
lent to MINIMUM SPANNING TREE, so its minmax regret version is strongly NP-
hard. However, for acyclic directed graphs this problem can be solved in polynomial
time [26].
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3 Extensions of the minmax approach

In this section we introduce several extensions of the traditional minmax approach
presented in the previous section. These extensions allow us to overcome some
drawbacks of this approach. Namely, we will be able to model an attitude of de-
cision makers towards risk and take additional information associated with scenario
set into account.

3.1 Using the OWA criterion

In decision making under uncertainty some other criteria for choosing a solution,
such as minmin, Hurwicz, or Laplace (the average), are also used. For an excellent
discussion on their various properties we refer the reader to [64]. It turns out that
most of them are special cases of the criterion called Weighted Ordering Averaging
aggregation (OWA for short) proposed by Yager in [85]. We will now show how to
apply the OWA criterion to problem P under scenario set UD.

Let vvv = (v1, . . . ,vK) be a vector of weights, where v j ∈ [0,1] for each j ∈ [K]
and v1 + · · ·+ vK = 1. Given a feasible solution X ∈ Φ , let σ be a permutation of
[K] such that f (X ,Sσ(1))≥ f (X ,Sσ(2))≥ ·· · ≥ f (X ,Sσ(K)). The OWA aggregation
criterion is defined as follows:

OWA(X) = ∑
j∈[K]

v j f (X ,Sσ( j)).

Observe that OWA(X) is a convex combination of the costs f (X ,S1), . . . , f (X ,SK).
Hence its value is always between the minimum and the maximum cost of X over
scenarios in UD. In this section we assume that a vector of weights vvv is specified for
scenario set UD and we consider the following problem:

MIN-OWA P : min
X∈Φ

OWA(X).

By fixing the weights vvv we get some special cases of MIN-OWA P which are listed
in Table 4. Observe that OWA generalizes all the basic criteria used in decision
making under uncertainty except for the minmax regret (Savage) criterion.

Table 4 Special cases of MIN-OWA P .

Problem weights vvv
MIN-MAX P v1 = 1, v j = 0 for j 6= 1
MIN-MIN P vK = 1, v j = 0 for j 6= K
MIN-AVERAGE P v j =

1
K for all j ∈ [K]

MIN-QUANT(k) P vk = 1, v j = 0 for j 6= k
MIN-MEDIAN P vbK/2c+1 = 1, v j = 0 for j 6= bK/2c+1
MIN-HURWICZ P v1 = α , vK = 1−α , v j = 0 for j 6= 1,K, α ∈ [0,1]
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Since MIN-MAX P is a special case of MIN-OWA P , all the negative results
presented in Table 1 remain valid for MIN-OWA P . However, the computational
properties of MIN-OWA P strongly depend on the weight distribution in vvv. For ex-
ample, it is easily seen that MIN-MIN P and MIN-AVERAGE P are polynomially
solvable if P is polynomially solvable. On the other hand, MIN-HURWICZ P is
at least as hard as MIN-MAX P , because it generalizes the latter problem. Table 5
summarizes all the known results for the MIN-OWA SHORTEST PATH problem.
Most of these results remain valid for any problem P (see [56] for details).

Table 5 Summary of results for the MIN-OWA SHORTEST PATH problem.

Problem K = 2 K ≥ 3 constant K unbounded
MIN-OWA equivalent to NP-hard, strongly NP-hard,

MIN-HURWICZ P FPTAS appr. within v1K if
the weights are nonincreasing,
not at all appr. if
the weights are nondecreasing

MIN-MAX NP-hard, NP-hard, strongly NP-hard,
FPTAS FPTAS appr. within K,

not appr. within
O(log1−ε K), ε > 0

MIN-MIN poly. solvable poly. solvable poly. solvable
MIN-AVER. poly. solvable poly. solvable poly. solvable
MIN-HURWICZ poly. solv. if α ∈ [0, 1

2 ) NP-hard if α ∈ (0,1] strongly NP-hard if α ∈ (0,1],
NP-hard if α ∈ ( 1

2 ,1] FPTAS appr. within
FPTAS if α ∈ ( 1

2 ,1] αK +(1−α)(K−2) if α ∈ [ 1
2 ,1]

K
α

if α ∈ (0, 1
2 ),

not appr. within
O(log1−ε K), ε > 0

MIN-QUANT(k) poly. solvable if k = 2 poly. solvable strongly NP-hard
NP-hard if k = 1 for k = K, NP-hard for any k ∈ [K−1],
FPTAS for constant approx. within K for constant k,

k ∈ [K−1], FPTAS not at all appr. if k = bK
2 c+1

The complexity of MIN-OWA P depends on the weight distribution in vvv. In
particular, if the weights model the minimum or the average, then the problem is
polynomially solvable when P is polynomially solvable. On the other hand, when vvv
models the median, MIN-OWA SHORTEST PATH is not at all approximable. Fortu-
nately there is a positive approximation result for the problem when the weights are
nonincreasing, i.e. v1 ≥ v2 ≥ ·· · ≥ vK . This important special case will be described
in more detail in the next section.

3.1.1 OWA criterion and the robust approach

The maximum and the average (Laplace) criteria are special cases of OWA. They
form two boundary cases of nonincreasing weights, i.e. when v1 ≥ v2 ≥ ·· · ≥ vK .
We get the maximum when v1 = 1, v j = 0 for j 6= 1, and the average when v j = 1/K
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for all j ∈ [K]. It turns out that for nonincreasing weights a general positive approx-
imation result holds. Namely, if P is polynomially solvable, then MIN-OWA P
is approximable within v1K [56]. The idea of the approximation algorithm is to
solve problem P for the aggregated costs ĉi = owavvv(c

S1
i , . . . ,cSK

i ), i ∈ [n]. So, it
generalizes the K-approximation algorithm, well known for the MIN-MAX P prob-
lem. Note that v1 ∈ [1/K,1], so we get the worst approximation ratio when OWA
is the maximum. On the other hand, when v1 = 1/K, i.e. when OWA is the aver-
age, we obtain a polynomial algorithm for the problem. The assumption of nonin-
creasing weights allows us also to construct more efficient MIP formulations for
MIN-OWA P (see [77, 22, 35]), which makes the problem more tractable.

The nonincreasing weights are compatible with the robust approach, because
larger weights are assigned to larger solution costs. Furthermore, the weights al-
low risk-averse decision makers to model their attitude towards a risk. The more
uniform is the weight distribution the less risk averse the decision maker is. In par-
ticular, extremely risk averse the decision maker will choose v1 = 1, which leads
to the maximum criterion and the minmax problem discussed in Sect. 2. Using the
OWA criterion allows us to overcome another drawback of the minmax approach.
When all the weights in vvv are positive, then the obtained solution must be Pareto op-
timal. We can thus reject such solutions as the one presented in Fig. 1a, by choosing
positive (even very small) weights.

Fig. 4 A sample interpo-
lation function w∗(z) =

1
(1−α) (1− αz) for α ∈
{10−1,10−2,10−3,10−4}.
The weights v1, . . . ,v4 for
α = 10−1.

The weights v1, . . . ,vK can be specified explicitly. However, it may be convenient
to obtain them by using an interpolation function w∗ : [0,1]→ [0,1], which is as-
sumed to be concave, nondecreasing and satisfies w∗(0) = 0, w∗(1) = 1. Having w∗

we get v j = w∗( j/K)−w∗(( j−1)/K) for j ∈ [K]. A sample interpolation function
w∗(z) = 1

(1−α) (1−αz), α ∈ (0,1), is shown in Fig. 4. Observe that when α tends
to 0, the OWA tends to the maximum. On the other hand, when α tends to 1, the
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OWA tends to the average. Thus the decision maker can adjust his attitude towards
a risk by fixing a single value of α ∈ (0,1). The weights obtained for α = 10−1

and K = 4 are also shown in Fig. 4. Observe that the more concave is w∗ the less
uniform is the weight distribution in vvv. When w∗ is a straight line, then v1 = · · ·= vK
and OWA is the average. The interpolation function w∗(z) can also be defined for
explicitly listed weights v1 ≥ v2 ≥ ·· · ≥ vK . It is enough to assume that w∗(z) is the
linear interpolation of the points (0,0) and ( j/K,∑i≤ j vi) for j ∈ [K]. Then w∗(z) is
a concave piecewise linear function. We use this fact in the next section, in which
we describe a generalization of the OWA criterion.

3.2 Using the WOWA criterion

One drawback of the OWA criterion is that it does not allow us to exploit any ad-
ditional information associated with scenarios. One such important information is a
probability distribution over the set UD. Assume that such a probability distribution
is available and let p j be the probability that scenario S j ∈ UD will occur, j ∈ [K].
Let us examine a sample SHORTEST PATH problem with scenario set UD, shown in
Fig. 5.

Fig. 5 A sample Shortest Path problem with four scenarios S1 = (5,6,0,5,0), S2 = (1,6,4,0,0),
S3 = (1,6,6,0,0), and S4 = (2,6,6,0,0). The costs of all three paths under all scenarios are shown
in the table.

A natural approach to solve this problem is to choose a solution with the mini-
mum expected cost. Hence, the path X1 = {e1,e4} is then the best choice. However,
X1 may be unreasonable for some risk averse decision makers. Observe that the
probability that the path X1 will have a large cost equal to 10 is equal to 0.5. This
choice may be questionable if path X1 is to be used only once, i.e. when a decision
is not repetitious in the same environment. On the other hand, path X3 = {e2,e5}
has the smallest maximum cost and should be chosen when the minmax criterion
is used and the probabilities of scenarios are ignored. Notice that the path X3 has
a deterministic cost equal to 6. However, some decision makers may feel that path
X2 = {e1,e3,e5} is better, since the probability that the cost of X2 will be less than 6
equals 0.7 and the probability that X2 will have a large cost, equal to 8, is only 0.1.

The sample problem demonstrates that there is a need of criterion which estab-
lishes a link between the stochastic and robust approach when scenario probabilities
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are available. Such a criterion can be proposed by a generalization of OWA. In order
to introduce this criterion it is convenient to use the interpolation function w∗(z) de-
fined in the previous section. Consider a solution X and let σ be a permutation of [K]
such that f (X ,Sσ(1))≥ ·· · ≥ f (X ,Sσ(K)). The permutation σ defines also the order
of scenario probabilities pσ(1) ≥ ·· · ≥ pσ(K). In particular pσ(1) is the probability
that the worst scenario will occur and pσ(K) is the probability that the best scenario
will occur for X . Define now the weights ω j = w∗(∑i≤ j pσ(i))−w∗(∑i< j pσ(i)),
j ∈ [K] and let

WOWA(X) = ∑
j∈[K]

ω j f (X ,Sσ( j)).

We have thus obtained the Weighted OWA criterion (WOWA for short), first
proposed in [83]. A trivial verification shows that ω j ∈ [0,1] for all j ∈ [K] and
ω1 + · · ·+ωK = 1. The value of ω j can be seen as a distorted probability of sce-
nario Sσ( j). The value of ω j depends on p j and the rank position of scenario Sσ( j)
for solution X , so it is solution dependent. Hence, WOWA(X) can be seen as the
expected cost of solution X with respect to the distorted probabilities. For a more
detailed interpretation of this expectation we refer the reader to [30].

Fig. 6 Computing the weights
ω1, . . . ,ω4 for path {e1,e4} in
Fig. 4.

Let us look at the sample problem in Fig. 5 again. For path X1 = {e1,e4} we
have σ = (1,4,2,3). The computations of the weights ω1, . . . ,ω4 is shown in Fig. 6.
One can see in Fig. 6 how scenario probabilities are distorted. For example, ω1 > p1
and ω4 < p3, so we assign larger probability to the worst scenario S1 and smaller to
good scenario S3. If the probability distribution in UD is uniform, then WOWA be-
comes OWA, because ω j = v j for each j ∈ [K]. The uniform probability distribution
results from applying the principle of insufficient reason, i.e. in a situation under un-
certainty, when it is not possible to distinguish more or less probable scenarios [64].
If w∗(z) is a straight line, or equivalently, v1 = v2 = · · ·= vK , then WOWA becomes
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the expected value, because ω j = pσ( j) is then just the scenario probability. We thus
can see that WOWA is a very general criterion. It contains both OWA and the ex-
pected value as special cases. It allows us to establish a link between the robust and
stochastic approaches.

Since MIN-MAX P is a special case of MIN-WOWA P , all the negative results
shown in Table 1 remain true for the latter problem. Fortunately, when w∗(z) is the
linear interpolation function for the nonincreasing weights v1 ≥ v2 ≥ ·· · ≥ vK (see
Sect. 3.1), then the problem is approximable within v1K if P is polynomially solv-
able [59]. An idea is to solve P for the aggregated cots ĉi = wowavvv,ppp(c

S1
i , . . . ,cSK

i ),
i ∈ [n]. Note that this approximation ratio is the same as for MIN-OWA P . For the
linear interpolation function w∗(z) a compact MIP formulation for the problem can
also be constructed [59, 78]. Some computational tests for the MIP formulation and
the approximation algorithm were performed in [59].

4 Robust optimization with incremental recourse

In this section we address the adjustable approach to combinatorial optimization
problems with uncertain element costs, introduced in [73], called the robust opti-
mization with incremental recourse. It extends the concept of robustness to deal
with uncertainties by incorporating adjustable actions, after an element cost sce-
nario is realized. Namely, the decision maker chooses first the best initial solution,
taking into account that a worst scenario can happen (the first stage). Then he makes
some incremental changes in the initial solution chosen, subject to a given distance
measure, in order to obtain another one (the incremental recourse stage).

Formally, the robust optimization problem P with incremental recourse can be
stated as follows:

ROIR P : min
X∈Φ

( f (X)+max
S∈U

min
Y∈Φk

X

f (Y,S)),

where f (X) = ∑ei∈X Ci is the cost of an initial solution X and Φk
X = {Y ∈ Φ :

d(X ,Y )≤ k} is the incremental set, i.e. the set of possible solutions in the incremen-
tal recourse stage, where d(X ,Y ) is a fixed measure of the distance between the ini-
tial solution X and the incremental solution Y . The distance d(X ,Y ) is also called an
incremental function bounded by a specified parameter k. Finally, f (Y,S) =∑ei∈Y cS

i
is the cost of solution Y under scenario S. The most popular distance measures
d(X ,Y ), proposed in literature [17, 18, 73, 27], are: the element inclusion distance
d(X ,Y ) = |Y \X |, the element exclusion distance d(X ,Y ) = |X \Y |, and the element
symmetric difference distance d(X ,Y ) = |X ⊕Y |. It is worthwhile to mention that
for MINIMUM SPANNING TREE the above distance measures are equivalent from
the computational point of view.

The concept of the robustness with incremental recourse is similar in spirit to
the one of the recoverable robustness, proposed in [63] for linear programing under
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uncertainty. In the recoverable approach limited recovery actions are permitted after
uncertain parameters reveal. Later, in [17, 18, 19] the recoverable robustness, called
k-distance recoverable robustness, has been applied to some classical combinatorial
optimization problems. Yet another interesting concept of recoverable robustness,
proposed in [17, 18], is the rent recoverable robustness in which, in the second
recoverable stage, the number of elements that can be replaced is not limited, but
deviating from previous choice comes at extra cost.

The ROIR P problem contains the following three inner problems. The first one
is the incremental problem:

INC(X ,S∗) P : min
Y∈Φk

X

f (Y,S∗),

where we are given an initial solution X and a cost scenario S∗ revealed. We wish
to make incremental changes in X , subject to the constraint d(X ,Y )≤ k, which lead
to the maximum improvement in the objective function. This problem is a special
case of ROIR P . Indeed, it is sufficient to set U = {S∗}, the initial costs Ci = 0
if ei ∈ X and M otherwise, where M is a sufficiently large number, for example
M≥ nC, C =maxei∈E{cS∗

i }. Several incremental versions of network problems have
been investigated in [27]. The second inner problem is the adversarial one:

ADV(X) P : max
S∈U

min
Y∈Φk

X

f (Y,S).

In this problem we seek a scenario S ∈U that maximizes INC(X ,S) with respect to
a given solution X . The problem ROIR P reduces to ADV(X) P when we set Ci =
0 if ei ∈ X and Ci = M, otherwise. The last inner problem is MIN-MAX P . We get
this problem after fixing Ci = 0 for each ei ∈ E and k = 0, which implies Φk

X = {X}.
We thus can see that ROIR P generalizes MIN-MAX P . In consequence, all the
negative results for MIN-MAX P remain valid for the robust incremental version
of P .

In the next two sections we will present the known results on ROIR P . We will
show that the complexity of this problem highly depends on both the uncertainty
representation and the distance measure. As we will see, there are a lot of things
to do in this area. In particular, there is lack of approximation algorithms for the
considered problem. The most of presented results are negative ones.

4.1 Discrete uncertainty representation

We now give a brief summary of the complexity results on ROIR P under the
discrete scenario uncertainty, i.e. when U = UD. In this case, the only complexity
results that exist in the literature are for the element inclusion distance d(X ,Y )= |Y \
X |. Unfortunately, all of them are negative ones, except for the robust incremental
problems with one scenario (see Table 6).
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Table 6 Complexity results for ROIR P with scenario set UD and the element inclusion distance.

ROIR P constant K unbounded K
SHORTEST PATH strongly NP-hard, not at all appr.

for K = 1 and k ≥ 2 [18]
MINIMUM SPANNING TREE NP-hard in sp-graphs strongly NP-hard, not at all appr.

for K = 2 and constant k [43] for unbounded k [43]
SELECTION NP-hard for K = 2 and k ≥ 1, strongly NP-hard, not at all appr.

solv. in O((p− k+1)n2) for any const. k ≥ 1 [58]
for K = 1 [58]

MINIMUM MATROID BASE poly. solvable for constant k
and for K = 1 [17]

Since MIN-MAX P is a special case of ROIR P , all negative results presented
in Table 1 for MIN-MAX P are still true for ROIR P . Hence, Table 6 can be
completed by complexity results for other combinatorial problem. One can observe
(see Table 6) that ROIR P can be much harder than its minmax counterpart. For
instance, the ROIR SHORTEST PATH problem is strongly NP-hard and not at all ap-
proximable even for one scenario. Notice that MIN-MAX SHORTEST PATH in this
case is a deterministic problem and so it is polynomially solvable. Let us also men-
tion a more general result on KNAPSACK that has been examined in [19], i. e. the
problem under the discrete uncertainty in the objective and the constraint with a dis-
tance measure that takes into account the element inclusion and exclusion distances.
The problem turned out to be inapproximable for unbounded K, but pseudopolyno-
mially solvable for constant K.

We now look into the adversarial problem with scenario set UD. It easily seen
that the complexity of this problem highly relies on the complexity of the incre-
mental problem. Indeed, solving ADV(X) P , for a given initial solution X , boils
down to solving INC(X ,S) P for every S ∈ UD and choosing a scenario which
results in the maximum cost. It turns out (see [27]) that the incremental versions
of SHORTEST PATH and MINIMUM SPANNING TREE, with the element inclusion
distance function, are polynomially solvable, and the incremental version of MIN-
IMUM ASSIGNMENT can be solved in random polynomial time. Unfortunately the
incremental versions of MINIMUM S-T CUT and SHORTEST PATH, with the element
symmetric difference distance function, d(X ,Y ) = |X⊕Y |, and the incremental ver-
sion of SHORTEST PATH, with the element exclusion distance, d(X ,Y ) = |X \Y |, are
NP-hard [27, 73]. In consequence, their adversarial and robust incremental versions
are also NP-hard.

4.2 Interval uncertainty representation

In this section we are concerned with ROIR P under the interval uncertainty rep-
resentation and with three distance measures. We start by showing a few complexity
results for the case U = UI and the element inclusion distance d(X ,Y ) = |Y \X |
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(see Table 7). To the authors’ knowledge, nothing more has been recorded in the
literature on the robust incremental optimization with recourse under the scenario
set UI .

Table 7 Complexity results for ROIR P problems with scenario set UI and the element inclusion
distance.

ROIR P Complexity
SHORTEST PATH strongly NP-hard, not at all appr., poly. solvable in sp-graphs [18]
SELECTION solvable in O((p− k+1)n2) time [58]
MINIMUM MATROID BASE poly. solvable for constant k [17]

In the robust incremental optimization with recourse there is a link between
the interval uncertainty representation UI and the discrete one UD, namely, the
ROIR P problem with scenario set UI can be rewritten as follows:

min
X∈Φ

( ∑
ei∈X

Ci +max
S∈UI

min
Y∈Φk

X
∑

ei∈Y
cS

i ) = min
X∈Φ

( ∑
ei∈X

Ci + min
Y∈Φk

X
∑

ei∈Y
(ci +di))

= min
X∈Φ

( ∑
ei∈X

Ci + INC
(
X ,(ci +di)i∈[n]

)
).

From the above it follows that ROIR P with scenario set UI is equivalent to
ROIR P with only one scenario S = (ci+di)i∈[n]. This property has been exploited
in construction of the algorithms for the SHORTEST PATH, SELECTION and MIN-
IMUM MATROID BASE problems with the element inclusion distance [58, 17, 18].
Moreover, using it we can conclude that ROIR KNAPSACK is at least NP-hard. One
can also deduce from the NP-hardness of the incremental versions of SHORTEST
PATH and MINIMUM S-T CUT with the element symmetric difference and exclu-
sion distances the NP-hardness of their robust incremental counterparts [27, 73]
(see Sect. 4.1).

Let us now discuss the interval uncertainty representation which allows us to con-
trol the amount of uncertainty. Following [73], we define two scenario sets. Namely,
given ` > 0

U `
I1 = {S = (cS

i )i∈[n] : cS
i = ci +δi,0≤ δi ≤ di, ∑

i∈[n]
δi ≤ `},

U `
I2 = {S = (cS

i )i∈[n] : cS
i = ci +δidi,δi ∈ {0,1}, ∑

i∈[n]
δi ≤ `}.

It easy to see that U `
I1 models the situation where the total amount of deviation in the

element costs is bounded by a specified `. The set U `
I2 is the set of extreme points

(scenarios) of U `
I , here ` ∈ [0,n] (for `= n it is the set of extreme points of UI).

We first review of the complexity results on the robust incremental optimization
problems with recourse under the scenario set U `

I1. In this case the adversarial ver-
sion of SHORTEST PATH with the element inclusion distance can be formulated as
a linear program and, in consequence, is solvable in polynomial time [73]. Unfor-
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tunately, the robust incremental version of SHORTEST PATH with the same distance
is strongly NP-hard and not approximable within a factor of 2 even for ` = k = 1.
The rest of the hardness results for the adversarial and robust incremental versions
of SHORTEST PATH with the element symmetric difference and exclusion distances
presented in [73] follow from the NP-hardness of its incremental versions [27] (see
Sect. 4.1). The adversarial version of MINIMUM SPANNING TREE with the element
inclusion distance is polynomially solvable since it can be also modeled as a linear
program [73]. However, the complexity status of the robust incremental version of
MINIMUM SPANNING TREE remains open.

The complexity situation under the scenario set U `
I2 is much worse that under the

set U `
I1. The adversarial version of SHORTEST PATH with all three distance mea-

sures considered is NP-hard and not approximable within a factor of 2 [73]. The ro-
bust incremental version of SHORTEST PATH with the element inclusion distance is
strongly NP-hard and not approximable within a factor of 2 even for `= k = 1 [73].
This result improves the one shown in [18], where it has been proved that the prob-
lem is NP-hard for constant k ≥ 1. For the remaining two distance measures, the
robust incremental version of SHORTEST PATH is NP-hard and not approximable
within a factor of 2, due to the hardness of the adversarial counterpart [73]. The
adversarial version of MINIMUM SPANNING TREE with the element inclusion dis-
tance is NP-hard and hence its robust incremental version is NP-hard as well [73].

5 Robust two-stage problems

In many applications, the discrete optimization problem has a two-stage nature.
Namely, a partial solution is formed in the first stage, when the element costs are
precisely known. This partial solution is then completed optimally after a true sce-
nario reveals. Let Ci be the deterministic, first stage cost of element ei ∈ E and let
cS

i be the second stage cost of element ei under scenario S ∈ U . In this section we
study the following problem:

TWO-STAGE P : min
X⊆E

( ∑
ei∈X

Ci +max
S∈U

min
{Y⊆E: X∪Y∈Φ} ∑

ei∈Y
cS

i ).

Note that a solution to this problem is determined by a subset X of the elements,
chosen in the first stage. Given X and scenario S we compute Y such that X ∪Y ∈Φ .
It may happen that X cannot be completed to any solution from Φ . In this case we
assume that the cost of X is infinite. Given Φ , let us define set Φ ′ in the following
way: X ′ ∈ Φ ′ if there is X ∈ Φ such that X ⊆ X ′. Hence Φ ⊆ Φ ′ and Φ ′ contains
all solutions from Φ and all the supersets of these solutions. In the one-stage robust
problems described in Sect. 2, an optimal solution is the same when we replace Φ

with Φ ′. However, for the examined two-stage model the problems with Φ and Φ ′

may be quite different. Consider the sample TWO-STAGE SHORTEST PATH problem
with two scenarios, shown in Figure 7. If Φ contains two paths {e1,e3} and {e2,e4},
then we can choose either e1 or e2 in the first stage. In both cases the maximum cost
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of the obtained path after the second stage equals M + 1. However, if we replace
Φ with Φ ′, then we can choose both e1 and e2 in the first stage and the maximum
cost of the obtained solution after the second stage equals only 3. This example
demonstrates that it may be profitable to add some redundant elements in the first
stage. It is thus justified to explore the complexity of the problem with both Φ

and Φ ′.

Fig. 7 A sample TWO-STAGE
SHORTEST PATH problem
with two scenarios.
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5.1 Discrete uncertainty representation

The known complexity results for the TWO-STAGE P problem, when U =UD are
shown in Table 8. All the basic problems are NP-hard even for two scenarios. One
exception is the two-stage version of MINIMUM SPANNING TREE, for which no
negative result for constant K has appeared in the literature yet. As usual, the prob-
lems become more complex when the number of scenarios is a part of input (see Ta-
ble 8). The negative approximation results for the two-stage versions of SHORTEST
PATH, MINIMUM S-T CUT and MINIMUM ASSIGNMENT have been established
in [60] by showing a cost preserving reduction from the MIN-MAX REPRESENTA-
TIVES SELECTION problem. For the two-stage versions of MINIMUM SPANNING
TREE, SELECTION, and MINIMUM ASSIGNMENT some approximation algorithms
have been recently proposed [53, 58, 61]. They are based on randomized rounding
of LP programs, which is a promising technique to construct approximation algo-
rithms for robust problems with discrete scenario sets.

5.2 Interval uncertainty representation

Let us first deal with scenario set UI = Πi∈[n][ci,ci +di]. In this case, the two-stage
problem can be rewritten as follows:

min
{X ,Y⊆E: X∪Y∈Φ}

( ∑
ei∈X

Ci + ∑
ei∈Y

(ci +di)). (4)
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Table 8 Complexity results for various TWO-STAGE P problems with scenario set UD. The sym-
bol * means that the negative result holds only for Φ (we do not know if it holds for Φ ′).

TWO-STAGE P constant K unbounded K
SHORTEST PATH NP-hard strongly NP-hard [60],

for K = 2 [60] not appr. within O(log1−ε K)
for any ε > 0 [60]*,

MINIMUM SPANNING TREE strongly NP-hard [53],
not appr. within (1− ε) logn
for any ε > 0 [53],
appr. within O(log2 n) with
high probability [53]

MINIMUM S-T CUT NP-hard strongly NP-hard [60],
for K = 2 [60] not appr. within O(log1−ε K)

for any ε > 0 [60]*,
MINIMUM ASSIGNMENT NP-hard strongly NP-hard [60],

for K = 2 [60] not appr. within O(log1−ε K)
for any ε > 0 [60]*,
appr. within 1/β , β ∈ (0,1)
to match at least n(1−β ) nodes [61]

SELECTION NP-hard strongly NP-hard [58],
for K = 2 [13] not appr. within (1− ε) logn

for any ε > 0 [58],
appr. within O(logK + logn) with
high probability [58]

It follows easily that an optimal solution to (4) can be obtained by solving the de-
terministic problem P for the element costs ĉi = min{Ci,ci +di}, i ∈ [n]. If Z is an
optimal solution to this problem, then for each ei ∈ Z we choose ei in the first stage
when Ci ≤ ci +di and we choose ei in the second stage otherwise.

Consider now the more general scenario set U `
I . If all the first stage costs Ci,

i ∈ [n], are large enough, then X = /0 and the two-stage problem reduces to a special
case of the adversarial problem, where Φk

X = Φ , (see Sect. 4.1), namely:

max
S∈U `

I

min
Y∈Φ

∑
ei∈Y

cS
i . (5)

It turns out (see [60]) that (5) is strongly NP-hard when P is MINIMUM SPAN-
NING TREE or SHORTEST PATH. This fact immediately implies that the two-stage
versions of both problems, under scenario set U `

I , are strongly NP-hard. It is worth
pointing out that the corresponding MIN-MAX P problem, which can be obtained
by interchanging the min and max operators in (5), is polynomially solvable (see
Sect. 2.1.2).

There is a number of interesting open questions related to TWO-STAGE P with
scenario set U `

I . We do not know if the problem is NP-hard when ` is constant (only
the boundary cases `= 1 and `= n are known to be polynomially solvable). There is
also lack of positive results for this problem, in particular approximation algorithms
with some guaranteed worst case ratio.
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6 Conclusions

In this chapter we have described a class of robust discrete optimization problems
with uncertain costs. We have discussed two most popular methods of modeling the
uncertainty, namely the discrete and interval uncertainty representations. A lot of
results and new concepts in this area have appeared in literature since 1997, when
the book [62] has been published. In particular, the complexity of basic minmax
(regret) problems, described in [62], has been explored more deeply. Unfortunately,
with a few exceptions, all these problems are NP-hard and solving them is often
a challenging task. There is still a number of important open problems in this area.
One of them is to decide whether the approximation ratio of 2 is the best possible for
the minmax regret problems with interval data. There is also lack of positive results
for the minmax regret problems under the discrete uncertainty representation. The
minmax approach has been recently generalized by using the OWA and WOWA cri-
teria, which allow us to take both the attitude of decision makers towards a risk and
scenario probabilities into account. Some special cases, for instance the problems
with the Hurwicz criterion, still require more deep investigation.

In this chapter we have also reviewed some recent extensions of the minmax
approach, in which computing an optimal solution is a two-stage process. In the
robust incremental recourse approach an initial solution can be modified to some
extent after observing a true scenario. In the two-stage approach a solution is built
in two stages. A part of this solution is constructed in the first stage and the rest is
constructed after a true scenario reveals. Most results, known on both approaches,
are negative and there are many open questions related to their complexity and ap-
proximability.
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