Dual Padé iterations for the matrix pth sector function and pth root, and one topic more

Krystyna Ziętak

Wrocław School of Information Technology the second affiliation: Wroclaw University of Technology

Householder Symposium XIX, Spa June 10. 2014

Outline

- Motivation
- p-sector function
- Padé approximants
- Padé iterations
- Procrustes problems
- **6** Summary
- References

 1993 - Householder Symposium XII, Lake Arrowhead invitation by Gene Golub and Tony Chen

 2014 - Householder Symposium XIX, Spa invitation by Ilse Ipsen and Paul Van Dooren • 1996 - Householder Symposium XIII, Pontresina Diane O'Leary, W. Gander, M. Guthnecht

Ilse Ipsen (Pontresina 1996) Paul Van Dooren (ILAS, Chemnitz 1996)

Part I - dual Padé family of iterations for matrix *p*-sector function and *p*th root

Guo (2010) shows some common properties of Newton and Halley iterations for computing matrix *p*th root.

Why "Newton" and "Halley" have some common properties?

"Halley" is Padé iteration, but "Newton" is not.

It was reason for which I introduce in 2013 a new dual Padé family of iterations which includes "Newton" and "Halley".

Dual Padé iterations have properties observed by Guo for "Newton" and "Halley".

Part II - join work with Joao Cardoso (Coimbra, Portugal)

sub-Stiefel Procrustes problem

Let S_{sub} denote set of sub-Stiefel matrices of order n

sub-Stiefel matrix is obtained by taking off the last row and last column of orthogonal matrix of order n+1

We find matrix X_* for which minimum is reached

$$\min_{X \in \mathbb{S}_{sub}} \|A - BX\|_F$$

A, B given square matrices

PART I

"Padé people" - Kenney and Laub (see their home pages)

inspirations: Guo, Higham and Iannazzo

PART II

inspirations: Elden, Ferreira and Park (see their home pages)

Iterations generated by Padé approximants

- sign function Kenney, Laub (1991)
- square root
 Higham (1997)
 Higham, Mackey, Mackey, Tisseur (2004)
- polar decomposition
 Higham, Functions of Matrices,... (2008)
- p-sector function and pth root Laszkiewicz, Ziętak (2009)
- sign function reciprocal Padé iterations Greco-lannazzo-Poloni (2012)
- p-sector function and pth root dual Padé iterations, Zietak (2014)

scalar *p*-sector function

$$\operatorname{sect}_p(z) = \frac{z}{\sqrt[p]{z^p}}$$

the nearest *pth* root of unity to z

for p = 2 sign function

$$\operatorname{sign}(z) = \begin{cases} 1 & \text{if } \operatorname{Re}(z) > 0 \\ -1 & \text{if } \operatorname{Re}(z) < 0 \end{cases}$$

red - principal sector Φ_0

Principal pth root and p-sector function

matrix principal pth root $X = A^{1/p}$

no eigenvalue of A lies on closed negative real axis

$$X^p = A, \quad \lambda_j(X) \in \Phi_0$$

matrix *p*-sector function

A nonsingular

$$rg(\lambda_j(A))
eq (2q+1)\pi/p, \qquad q=0,1,\ldots,p-1$$
 $\operatorname{sect}_p(A) = A(A^p)^{-1/p}$

Gauss hypergeometric function

$$g(z) = (1-z)^{-1/p} = {}_{2}F_{1}(1/p, 1; 1; z)$$

Padé approximants $P_{km}(z)/Q_{km}(z)$ to g(z)

for all integer k, m

$$\frac{P_{km}(z)}{Q_{km}(z)} = \frac{{}_{2}F_{1}(-k, \frac{1}{p} - m; -k - m; z)}{{}_{2}F_{1}(-m, -\frac{1}{p} - k; -k - m; z)}$$

Gomilko, Greco, KZ (Numer. Lin. Alg. Appl. 2012) Gomilko, Karp, Lin, KZ (J. Comput. Appl. Math. 2012) KZ (J. Comput. Appl. Math. 2014)

roots and poles of Padé approximants $P_{km}(z)/Q_{km}(z)$

- If $1 \le k \le m$, then all roots of $P_{km}(z)$ lie in $(1, \infty)$
- If $k > m \ge 1$, then m roots lie in $(1, \infty)$, remaining roots have moduli bigger than 1
- all poles have moduli bigger than 1

positivity of coefficients of power series expansions of

$$rac{P_{km}(z)}{Q_{km}(z)}, \qquad rac{1}{Q_{km}(z)}$$
 $f_{km}(z) = 1 - (1-z)\left(rac{P_{km}(z)}{Q_{km}(z)}
ight)^p$

Iterations for matrix *p*-sector function

Pade
$$X_{j+1} = X_j \frac{P_{km}(I - X_j^p)}{Q_{km}(I - X_j^p)}, \quad X_0 = A$$

Laszkiewicz, KZ (2009)

for
$$p = 2$$
 (sign) Kenney-Laub (1991)

KZ (2013)

Halley k = m = 1

dual Pade
$$X_{j+1} = X_j \frac{Q_{km}(I - X_j^{-p})}{P_{km}(I - X_j^{-p})}, \qquad X_0 = A$$

Halley
$$k=m=1$$
, Newton $k=0, m=1$
Schröder $k=0, m$ arbitrary Cardoso, Loureiro (2011)

Principal Padé iterations (k = m) for *p*-sector are structure preserving.

arbitrary
$$p$$
 - Laszkiewicz, KZ (2009) $p = 2$ Higham, Mackey, Mackey, Tisseur (2004)

After suitable change of variable, (dual) Padé iterations for p-sector can be applied to computing

- pth roots
- square root (p=2)
- polar decomposition

Convergence

Pure matrix iterations (lannazzo, 2008): convergence of scalar sequences of eigenvalues \rightarrow convergence of matrix sequences

Certain regions of convergence for p-sector function

eigenvalues $\lambda_j(A)$ in regions:

Padé

$$\mathbb{L}_{p} = \{ z \in \mathbb{C} : |1 - z^{p}| < 1 \}, \quad X_{0} = A$$

"yellow flowers"

dual Padé

$$\mathbb{L}_{-p} = \{ z \in \mathbb{C} : |1 - z^{-p}| < 1 \}, \quad X_0 = A$$

solid countur

Halley iterations for p=3 and p=5 the unit circle (solid contour), the pth roots of unity (boxes) $\mathbb{L}_p^{(Pade)}$ for "Padé" (yellow flower) $\mathbb{L}_{-p}^{(Pade)}$ for "dual Padé" (solid contour)

p=2 sign function, Padé approximant to $g(z) = (1-z)^{-1/2}$

Padé for sign (Kenney-Laub, 1991)

$$Y_{j+1} = Y_j \frac{P_{km}(I - Y_j^2)}{Q_{km}(I - Y_i^2)}, \qquad Y_0 = A$$

reciprocal Padé for sign (Greco-lannazzo-Poloni, 2012)

$$Y_{j+1} = \frac{Q_{km}(I - Y_j^2)}{Y_i P_{km}(I - Y_i^2)}, \qquad Y_0 = A$$

dual Padé for sign (KZ 2014)

$$Y_{j+1} = \frac{Y_j Q_{km} (I - Y_j^{-2})}{P_{km} (I - Y_i^{-2})}, \qquad Y_0 = A$$

Properties of dual Padé family for pth root

residuals for Padé iteration generated by $\lfloor k/m \rfloor$

$$S_{\ell} = I - A^{-1} X_{\ell}^{p}$$

$$S_{\ell+1} = f_{km}(S_{\ell})$$

residuals for dual Padé iteration generated by [k/m]

$$R_{\ell} = I - AX_{\ell}^{-p}$$

$$R_{\ell+1} = f_{km}(R_{\ell})$$

$$f_{km}(z) = 1 - (1 - z) \left(\frac{P_{km}(z)}{Q_{km}(z)}\right)^{p}$$

Guo (2010) applies "dual residuals" to investigation of convergence of Newton and Halley iterations

binomial expansion

$$(1-z)^{1/p} = \sum_{j=0}^{\infty} \beta_j z^j$$

the ℓ th iterate Y_{ℓ} , computed by the dual Padé iteration generated by $\lfloor k/m \rfloor$ Padé approximant applied to computing $(I-B)^{1/p}$, satisfies

$$Y_{\ell} = \sum_{j=0}^{\infty} \varphi_{km,j}^{(\ell)} B^{j}$$

where $\varphi_{km,j}^{(\ell)} = \beta_j$ for $j = 0, \dots, (k+m+1)^{\ell} - 1$

Guo (2010) - Newton (k=0,m=1) and Halley (k=m=1) KZ (2014) - arbitrary k,m

PART II - sub-Stiefel Procrustes problem

characterization

X is sub-Stiefel iff
$$\sigma(X) = \{1, \dots, 1, s\}, \quad 0 \le s \le 1$$

Procrustes problems (Frobenius norm):

$$\min_{X \in \mathbb{M}} \|A - BX\|_F$$

where M:

- orthogonal matrices (Green, 1952)
- symmetric matrices (Higham, 1988)
- Stiefel matrices (Elden and Park, 1999)
- other types (Andresson and Elfiving 1997)
- sub-Stiefel (join work with Cardoso, 2014)

Motivation for sub-Stiefel matrices:

surface unfolding problem in computer vision: reconstructing smooth, flexible and isometrically embedded flat surfaces (Ferreira, Xavier, Costeira (2009), n = 2)

- Properties of sub-Stiefel matrices.
- Necessary conditions for solution of sub-Stiefel Procrustes problem.
- When sub-Stiefel Procrustes problem has orthogonal solution?
- Iterative algorithm in each iteration one solves some orthogonal Procrustes problem.

Cardoso, KZ, Numerical Linear Alg. Appl.

Let X_* be solution of sub-Stiefel Procrus.

$$\min_{X \in \mathbb{S}_{sub}} \|A - BX\|_F = \|A - BX_*\|_F$$

Let

$$Y_* = \left[\begin{array}{cc} X_* & u_* \\ v_*^T & \alpha_* \end{array} \right]$$

orthogonal for appropriate vectors u_* , v_* and number α_* . Then Y_* is the solution of the **orth**. **Procrus**. problem (with extended matrices):

$$\min_{Y \text{ orth}} \left\| \begin{bmatrix} A & Bu_* \\ v_*^T & \alpha_* \end{bmatrix} - \begin{bmatrix} B & 0 \\ 0^T & 1 \end{bmatrix} Y \right\|_F = \\
\left\| \begin{bmatrix} A & Bu_* \\ v_*^T & \alpha_* \end{bmatrix} - \begin{bmatrix} B & 0 \\ 0^T & 1 \end{bmatrix} Y_* \right\|_F$$

Iterative algorithm for sub-Stiefel Procrustes problem

- Let X_0 be initial approximation of solution X_* .
- The next iterate X_1 is subblock of solution Y_1 of orthogonal Procrustes problem:

$$\min_{Y \text{ orth.}} \left\| \begin{bmatrix} A & Bu_0 \\ v_o^T & \alpha_0 \end{bmatrix} - \begin{bmatrix} B & 0 \\ 0^T & 1 \end{bmatrix} Y \right\|_F,$$

where $\alpha_0 = \sigma_{min}(X_0)$ and vectors u_0, v_0 such that

$$\begin{bmatrix} X_0 & u_0 \\ v_0^T & \alpha_0 \end{bmatrix}$$
 orthogonal.

compare iterative algorithms for Stiefel (unbalanced) Procrustes problem: Ten Berg (1984), Park (1991), Zhang 2006, ...

Summary

- Properties of Padé approximants to $(1-z)^{-1/p}$ have been shown.
- The dual Padé iterations for matrix sector function and matrix pth root have been introduced and investigated.
- Sub-Stiefel Procrustes problem has been formulated and investigated.
- Iterative algorithm for Sub-Stiefel Procrustes problem has been proposed.

otivation $\it p$ -sector function Padé approximants Padé iterations Procrustes problems Summary **References**

References I

- Cardoso, Loureiro, On the convergence of Schröder iteration function for the *p*th roots of complex numbers, *Applied Math. Comput.* (2011).
- Elden, Park, A Procrustes problem on the Stiefel manifold, *Numer. Math.* (1999).
- Greco, Iannazzo, Poloni, The Padé iterations for the matrix sign function and their reciprocal are optimal, Lin. Alg. Appl. (2012).
- **Guo**, On Newton's and Halley's method for the principal *p*th root of a matrix, *Lin. Alg. Appl.* (2010).
- Higham, Mackey, Mackey, Tisseur, Computing the polar decomposition and the matrix sign decomposition in matrix group, SIAM J. Matrix Anal. 25 (2004).
- Kenney, Laub, Rational iterative methods for the matrix sign function, SIAM J. Matrix Anal. Appl. 12 (1991).

References II

- Cardoso, Zietak, On a sub-Stiefel Procrustes problem arising in computer vision, Numer. Lin. Alg. Appl. submitted.
- Gomilko, Greco, Ziętak, A Padé family of iterations for the matrix sign function and related problems, Numer. Lin. Alg. Appl. (2011).
- Gomilko, Karp, Lin, Zietak, Regions of convergence of a Padé family of iterations for the matrix sector function, J. Comput. Appl. Math. (2012).
- Laszkiewicz, Ziętak, A Padé family of iterations for the matrix sector function and the matrix pth root, Numer. Lin. Alg. Appl. (2009).
- Ziętak, The dual Padé families of iterations for the matrix pth root and the matrix p-sector function,
 J. Comput. Appl. Math. (2014).