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Part | - dual Padé family of iterations

for matrix p-sector function and pth root

Guo (2010) shows some common properties of Newton and
Halley iterations for computing matrix pth root.

Why “Newton” and “Halley” have some common properties?

“Halley” is Padé iteration, but “Newton" is not.

It was reason for which | introduce in 2013 a new dual Padé
family of iterations which includes “Newton” and “Halley".

Dual Padé iterations have properties observed by Guo for
“Newton” and “Halley".




Part Il - join work with Joao Cardoso (Coimbra, Portugal)

sub-Stiefel Procrustes problem

Let S, denote set of sub-Stiefel matrices of order n

sub-Stiefel matrix is obtained by taking off
the last row and last column of orthogonal matrix of order n + 1

We find matrix X, for which minimum is reached

min ||A— BX||r
XESsub

A, B _given square matrices




Motivation

PART |

“Padé people’ - Kenney and Laub (see their home pages)




PART Il

inspirations: Elden, Ferreira and Park (see their home pages)




Iterations generated by Padé approximants |

@ sign function
Kenney, Laub (1991)
@ square root
Higham (1997)
Higham, Mackey, Mackey, Tisseur (2004)
@ polar decomposition
Higham, Functions of Matrices,... (2008)
@ p-sector function and pth root
Laszkiewicz, Zigtak (2009)
@ sign function
reciprocal Padé iterations
Greco-lannazzo-Poloni (2012)
@ p-sector function and pth root
dual Padé iterations, Zietak (2014)



p-sector function

scalar p-sector function

V4

sectp(z) = — —

the nearest pth root of unity to z

for p =2 sign function

ian(z) = 1 if Re(z) >0
SEIZ) T —1 if Re(2) <0

red - principal sector &



p-sector function

Principal pth root and p-sector function

matrix principal pth root X = AY/P

no eigenvalue of A lies on closed negative real axis

XP=A  N(X)e b

matrix p-sector function
A nonsingular

arg(\j(A)) # (2¢+1)m/p,  ¢=0,1,...,p—1

sect,(A) = A(AP)~L/P




Padé approximants

Gauss hypergeometric function

g(z) = (1—2)"P =1R(1/p,1;1;2)

Padé approximants Pim(2)/Qim(2z) to g(2)
for all integer k, m

2F1(— k——m —k — m; z)
2F1(m—— k;—k —m; z)

Pkm(Z
ka(z

) _
)

Gomilko, Greco, KZ (Numer. Lin. Alg. Appl. 2012)
Gomilko, Karp, Lin, KZ (J. Comput. Appl. Math. 2012)
KZ (J. Comput. Appl. Math. 2014)



Padé approximants

roots and poles of Padé approximants Pym(z)/Qkm(2)
e If 1 < k < m, then all roots of Pyn,(2) lie in (1,00)

o If k > m > 1, then m roots lie in (1, 00), remaining roots
have moduli bigger than 1

@ all poles have moduli bigger than 1

positivity of coefficients of power series expansions of
Pkm(Z) ].
ka(z) ’ ka(Z)

fm(2) =1 — (1 — 2) (%)p




Padé iterations

lterations for matrix p-sector function

Pade X4 = x U =X)
N T N QT = XP)’

Laszkiewicz, KZ (2009)

Xo=A

for p = 2 (sign) Kenney-Laub (1991)
Halley k =m=1

Qum(l — X:7°
dual Pade  Xj;; = Xjk(—ﬂ), Xo=A
Pim(! — X; ?)
KZ (2013)
Halley k = m =1, Newton k =0, m=1

Schréder k = 0, m arbitrary  Cardoso, Loureiro (2011)



Padé iterations

Principal Padé iterations (k = m) for p-sector are
structure preserving.

arbitrary p - Laszkiewicz, KZ (2009)
p = 2 Higham, Mackey, Mackey, Tisseur (2004)

After suitable change of variable, (dual) Padé iterations for
p-sector can be applied to computing

@ pth roots
@ square root (p = 2)
@ polar decomposition

Convergence

Pure matrix iterations (lannazzo, 2008):
convergence of scalar sequences of eigenvalues — convergence
of matrix sequences




Padé iterations

Certain regions of convergence
for p-sector function

eigenvalues \;(A) in regions:

L,={zeC:|1-2| <1}, Xo=A

“yellow flowers”

dual Padé

L,={zeC:|]1-z7° <1}, X

Il
>

solid countur




Padé iterations

-16 -12 -08 -04 0 04 08 1.2 1.6 20 -16 -12 -08 -04 0 04 08 12 16 20

Halley iterations for p =3 and p =5
the unit circle (solid contour), the pth roots of unity (boxes)

L9 for “Padé” (yellow flower)
L(,P,fde) for “dual Padé" (solid contour)



Padé iterations

p =2 sign function,

Padé approximant to g(z) = (1 — z)7/2

Padé for sign (Kenney-Laub, 1991)

y Pim(l — Y?)

—y VTN v = A
Jj+1 Jka(I _ \/j2)7 0

reciprocal Padé for sign (Greco-lannazzo-Poloni, 2012)

Qum(l — Y?)
Vi = v 7" y2)
J km( - j)

Y, = A

dual Padé for sign (KZ 2014)

Y Qum(l — Y72)
Yo, =2 J Yy=A




Padé iterations

Properties of dual Padé family for pth root

residuals for Padé iteration generated by [k/m]

S =1 —ATXP
Ser1 = fim(Se)

residuals for dual Padé iteration generated by [k/m]

Ro= 1 — AX;?
Rit1 = fum(Ry)

=102 (g1 )

Guo (2010) applies “dual residuals” to investigation of
convergence of Newton and Halley iterations




Padé iterations

(1 . Z)l/P — Zﬁjzj
j=0

the /th iterate Y;, computed by the dual Padé iteration
generated by [k/m] Padé approximant applied to computing
(I — B)Y/P, satisfies

N
Y= Z Wsm)w,ij

Jj=0

wheregpfﬂd-zﬁjforj:O,...,(k+m+1)e—1

Guo (2010) - Newton (k =0, m = 1) and Halley (k =m=1)
KZ (2014) - arbitrary k, m



PART Il - sub-Stiefel Procrustes problem

characterization
X is sub-Stiefel iff o(X) ={1,...,1,s}, 0<s<1

Procrustes problems (Frobenius norm):

min [|[A — BX||r
XeM

where M:

@ orthogonal matrices (Green, 1952)
symmetric matrices (Higham, 1988)
Stiefel matrices (Elden and Park, 1999)
other types (Andresson and Elfiving 1997)
sub-Stiefel (join work with Cardoso, 2014)




Procrustes problems

Motivation for sub-Stiefel matrices:

surface unfolding problem in computer vision:

reconstructing smooth, flexible and isometrically embedded flat
surfaces (Ferreira, Xavier, Costeira (2009), n = 2)

@ Properties of sub-Stiefel matrices.

@ Necessary conditions for solution of sub-Stiefel Procrustes
problem.

@ When sub-Stiefel Procrustes problem has orthogonal
solution?

@ lterative algorithm - in each iteration one solves some
orthogonal Procrustes problem.

Cardoso, KZ, Numerical Linear Alg. Appl.



Procrustes problems

Let X, be solution of sub-Stiefel Procrus.

min [|A— BX||r = ||A — BX.|r
XESsub

Let
- [ 1]

v,

orthogonal for appropriate vectors u,, v, and number «,.
Then Y, is the solution of the orth. Procrus. problem (with
extended matrices):

A Bu, B 0
KA

*

s -l e

*

F

min
Yorth

F



Procrustes problems

Iterative algorithm for sub-Stiefel Procrustes problem

@ Let Xj be initial approximation of solution Xi.

@ The next iterate Xj is subblock of solution Y; of
orthogonal Procrustes problem:

ABUO_BOY
v o7 1

o

min

Yorth. ’

F

where ag = o min(Xo) and vectors ug, vo such that

Xo U
[ Vog a(:) } orthogonal.

compare iterative algorithms
for Stiefel (unbalanced) Procrustes problem:
Ten Berg (1984), Park (1991), Zhang 2006, ...



Summary

o Properties of Padé approximants to (1 — z)"*/P have
been shown.

@ The dual Padé iterations for matrix sector function and
matrix pth root have been introduced and investigated.

@ Sub-Stiefel Procrustes problem has been formulated and
investigated.

@ lterative algorithm for Sub-Stiefel Procrustes problem has
been proposed.
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