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Matrix sector function

The sector regions
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Matrix sector function

The scalar p-sector function

o sp(A) is the pth root of unity which lies in
the same sector ®, in which \ is.

Representation

VAP

@ {/a principal pth root of a¢ R™, /aliesin &
@ s,(A) is not defined for the pth roots of nonpositive real ,__
numbers.




Matrix sector function

Principal matrix pth root

Let nonsingular complex matrix A have no
negative eigenvalue. There is a unique pth
root of A:

X = Al/P
all of whose eigenvalues lie in the region ®o.

m™ T

XP=A, arg\;(X) € (——,—)
J(X) i

N.J. Higham, Functions of Matrices: Theory and
Computation, SIAM 2008




Matrix sector function

The scalar p-sector function

Let A = |Ae"? € C, X #0O,

2k
wzarg(x)%{ﬁ, ke{01,....p—1}

Then
sp(A) = e/2ma/P

where g € {0,1,...,p — 1} such that




Matrix sector function of A € C"™<"
—1
_ P
sect, (A) = A ( AP>

N(A) £0, arg(N) #2n(q+3)/p

qe{ou"'ap_l}

Matrix sector function is some pth root
of identity /.




Matrix sector function

Matrix sector function

sectp (A) = Zdiag (sp(A)) 277

j

A= Zdiag (A, b, ..., dm) 27,

Jordan canonical form
Jordan block Jix(\)




Matrix sign function

Let
A = Zdiag(J, b)Z 71,

eigenvalues of J; lie in the open left
half-plane, those of J, in open right
half-plane. Then

sign(A) = Zdiag(—/y, h)Z 7"

Algorithms for matrix sign function: Schur method,
Newton's method, Pade family of iterations,...




Conditioning of matrix sector function

Fréchet derivative and

condition numbers of matrix function

Let F = F(X) be a matrix function. The Fréchet derivative of
F at X in the direction E is a linear mapping such that

F(X+ E)— F(X)=L(X,E) = o(|]|E]|).

Absolute and relative condition numbers of F(X)

condaps(F, X) = lim sup = ||L(X)]|

IF(X+ E) = FX)
e=0)|E|<e 3
OO Xl
condlFX) = "TE 00




Conditioning of matrix sector function

Fréchet derivative of matrix sign function

Matrix sign decomposition - Higham
A=SN, S=sign(A), N=(A%Y?
S =1, st=5

A\

S+ As =sign(A+ Aj)

L = L(A, A,) Fréchet derivative of matrix sign function of A
in direction Ax4
As — L= o(||Aall)

Kenney-Laub

[ satisfies  NL+ LN = Aqg— SALS.




Conditioning of matrix sector function

Fréchet derivative of matrix sector function

sectp(A) + As = sectp(A+ Ap)

Matrix sector decomposition A = SN,
S =sect,(A), N = (AP)Y/P, S t=5r"1

The Fréchet derivative L = L(A, Ap) of matrix sector function
is the unique solution of

p—2
NL+ SKLS™N = Aa— ST'A4S
k=0
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Schur algorithm

Real Schur algorithm for f(A)

Aec R™" A=QRQT real Schur decomposition

R upper quasi-triangular and block, @ orthogonal

Matrix function f of R has the same block
structure as R

Parlett 1976

Main blocks of R are 1 x 1 or 2 x 2.

Recurrence relations between blocks of R and f(R) lead to
real Schur algorithm for f.
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Schur algorithm

Schur algorithm for matrix pth root

Schur algorithms
Higham 1987 - square root
Smith 2003 - pth root

Stability of Schur algorithm - Smith 2003

Let A= QRQT be real Schur decomposition, U = (R)'/".

p
g
IRlle

Schur algorithm for pth root stable provided 3(U) is
sufficiently small.

B(Y)
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Schur algorithm

Algorithms for matrix sector function

sect,(A) = A(AP)~1/P
sectp(A) = A exp(—log(AP)/p)

MATLAB: expm, logm

@ real Schur algorithm
@ Newton'’s iterations

e Halley's method
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Schur algorithm

Real Schur algorithm for sector

A= QRQT real Schur decomposition
U = sectp(R), sectp(A) = QUQT.
RU = UR, UP = |

Recurrence relations between blocks of R and U
and some Sylvester equations for the blocks lead to
real Schur algorithm for sector.

Remark. If A has multiple complex eigenvalues in the sectors
different from ®,/, (if p even) and ®, then real Schur
algorithm does not work.
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Newton's method

Newton's method for sector

X = A
Xes1 = ((p = D)X + 1) pX,°

Newton's method is applied to the scalar equation

xP—1=0; xo=\(A)

Convergence regions for matrix sector function follow from thes
results of Higham and lannazzo for matrix pth roots.
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Newton's method

Regions of convergence of Newton for sector

determined experimentally

Newton's method, p=5, 30 iterations

Newton’s method, p=7, 30 iterations

Im(2)

1 L L
-16 -12 -08 -04 00
Re(2)

wj pth root of unity %
color: |x3p — wj| < 107° '




Algorithms for matrix sector function
0000

Newton's method

Convergence of Newton for sector

If all eigenvalues of A lie in

p—1
U(BkUCkUR‘[)
k=0
2k 2k
Bk:{ze((ji|Z|21,—W—l<arg(z)<_ﬂ-+l}
p2p p2p

1 2kt w 2kt w
(Ck:{ZE(C.m§‘2’§1,7—2—p<arg(2)<7+_}

2k
]R;f:{z:(j: Rez>0and o8 - 1 ~
p2p

then Newton is convergent
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Newton's method

Convergence regions of Newton

Region B, and

im(z)
im(z)

o
-16 -12 -08 -04

real(z)
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Newton's method

nce regions of Newton

Additional regions

Newton dia p=5, sektor glowny

im(z)
im(z)

01 02 03 04 05 07 08 09 10 ’ 01 02 03 04 05 06 07 08 09 10
real(z) real(z)
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Halley's method

Halley's method for sector

Bakkaloglu, Kog, 1995

Xo=A

Xisr = Xi[(p = DXE + (p+ /] x [(p+ 1)XE — (p— 1)/

4

Halley's method is applied to the scalar equation

xP—1=0; xo=\(A)
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Halley's method

Regions of convergence of Halley for sector

determined experimentally

Halley's method, p=5, 30 iterations Halley's method, p=7, 30 iterations

-16 -12 -08 -04 00
real(z) real(z)

wj pth root of unity %
color: |z3p — wj| < 1075 '
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Halley's method

Halley for sector
"yellow flowers" - conjecture for Pade

Newton and B Halley and Pade

Halley's method, p=5, 30 iterations

im@2)

16 -12 08 04 00 04 08 12 16 20

16 -12 -08 -04 0 04 08 12 16 20
i(z) real(z)

If all eigenvalues of A lie in

p—1
2km w 2km
Bhall — {zE(C:———<argz<—+—}
P kL:JO p2p (=) p 2p

then Hallev ic convercent to <ector
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Halley's method

Stability of Newton's and Halley's methods for

matrix sector function

o Matrix sector function is idempotent, i.e.
sectp(sectp(A)) = secty(A).
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Halley's method

Stability of Newton's and Halley's methods for

matrix sector function

o Matrix sector function is idempotent, i.e.
sectp(sectp(A)) = secty(A).

o From the theorem of Higham we deduce that
Newton's and Halley's iterations are stable, i.e.
Fréchet derivatives of the functions, generating
iterations, have bounded powers.
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Halley's method

Fréchet derivative

Let A € C"™" be such that sect,(A) exists and the Newton
iterates X are convergent to sect,(A). Let

1 LR o
Yip1 = 5 ((p = =R (Z Xp—2 ka;> X,}"’) :

j=0
Yo=A0 X =A

Then the sequence Y/ tends to the Fréchet derivative
L(A, AA) of sectp(A): Iimk_,oo Yk = L(A, AA)

Matrix sign (p = 2) Kenney-Laub
Yier = 3(Yi = X7 VX )




Implementation




Numerical experi

Example 1- test matrix

AeCrn, Y =AP

r 0/ -
0 I
C = c (Cpnxpn'
/
| A 0]

0o Y 0

sectp(C) = 0
0 Yyt




Numerical experi

eigenvalues of A ¢ R¥*8; _1—’52 + ik, k=1,23,4

black boxes - eigenvalues of C for p = 3, convergence regions

2 16 20 20 -16 -12 -08 -04 ) 04 08 12 16 20
al(z)
d(C) ~ 10°
con ~

C has 4 groups of eigen. with 2p eigenvalues
with the same module in each group
for p=3: pB(U) ~ 10
forp=6: B(U)~ 103
U = sect(R), R quasi-triang. from Schur decomp. of C




Table: Results for C

Numerical experi

n=24 p=3, |X|=171x10° iternews =8, itergay =5
alg. IXP =11 | IcX = XC]| W
Newt | 1.32¢e —09 | 1.50e —09 | 1.94e — 18
Hall | 1.88e—09 | 3.12e —09 | 4.03e —18
r—Sch | 2.76e — 06 | 8.91e —08 | 1.15¢ — 16
n=148, p=6, |X|=876x10° @ iternew =9, iteriay =>5
alg. | |XP—1| | lIck - Xc| | FgmEd
Newt | 5.07e —09 | 3.21e—09 | 8.10e — 18
Hall | 4.00e —09 | 3.57e —09 |9.03e —18
r—Sch [ 8.8le—04 | 58le—08 | 1.47e—16
forp=06 max;| A3 — M| ~ 1071




Example 2

Numerical experi

A=D+T, D = diag();), complex

T triangular real, n =140

Table: Results for A
p=5, |X|| =11, iternewt =28, iterg. = 16

= SRS AX—XA
alg. | IXP— 1| | AKX = XA| | Teomal

Newt | 6.40e — 16 | 5.57e —15 | 4.13e — 17
Hall | 1.45e — 15| 1.65e — 11 | 1.22e — 13




Example 3

A as in the previous example, n = 10

Numerical experi

p=4, |X||=1.01, iternewt =22, itergay = 13
XP — IXe=11 K — X [AX—XA|
alg. | IXP—1| IX]? IAX = XAl | “ixial
Newt | 2.68e — 18 | 2.54e — 18 | 1.47e — 15 | 1.52e — 17
Hall |4.44e—16 | 4.22¢ — 16 | 4.32¢ — 15 | 4.46e — 17
c—Sch|268e—18|255e—18 | 3.57e—16 | 3.69e¢ — 18
slow convergence of Newton
p=10, | X|=1.02, iternews =51, iterg. =28
&p IXP—1] % [AX—XA|
alg. | IXP—TI x| IAX = XA Tira
Newt | 1.32e — 15| 1.08e — 15| 1.75e — 15 | 1.47e — 17
Hall |1.94e—15|1.59¢ — 15| 3.29e — 08 | 2.76e — 10
c—Sch|128e—-15|1.0be—15| 4.11e — 16 | 3.45e — 18




Summary

@ Real Schur algorithm for the matrix sector function was
proposed.

Other results in PhD of Beata Laszkiewicz, in preparation.
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Summary

@ Real Schur algorithm for the matrix sector function was
proposed.

@ Some convergence regions of Newton's and Halley's
Iterations were given.

e Conditioning and stability of the algorithms were
discussed.

@ Numerical experiments were presented.

e the commutativity condition was not well satisfied by
Halley in some cases,

e accuracy of Schur algorithm for A with multiple
eigenvalues was bad.

Other results in PhD of Beata Laszkiewicz, in preparation.




Thank you for your attention! I
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