Department of Fundamentals of Computer Science


Wrocław University of Science and Technology

Aplety

Riemann's sums

The lower Riemann sum sn and the upper Rieman sum (Sn) for the function f(x)=x2 on the interval [0,1] for the partition of the interval [0,1] of the form σn = {[0,1n), [1n,2n)), [2n,3n), ... , [n1n,1]} can be calculated as follow:

sn(f)=n1k=0((kn)21n)=1n3(12+22++(n1)2) ,
Sn(f)=nk=1((kn)21n)=1n3(12+22++n2) .

Therefore Sn(f)sn(f)=1n, so limn(Sn(f)sn(f))=0, hence the function f is Riemann - integrable on the interval [0,1]. Check it yoursef on the following aplet:

0.20.40.60.810.20.40.60.81−0.2−0.4
n = 10.00
Suma górna = 0.3850
Suma dolna = 0.2850
Różnica = 0.1000

Using the formula 12+22++n2=16n(n+1)(2n+1), we deduce that 10x2dx=limn16(1+1n)(2+1n)=13 .